CDMA IF VGAs and I/Q Demodulators with VCO and Synthesizer

General Description

The MAX2306/MAX2308/MAX2309 are IF receivers designed for dual-band, dual-mode, and single-mode N-CDMA and W-CDMA cellular phone systems. The signal path consists of a variable-gain amplifier (VGA) and I/Q demodulator. The devices feature guaranteed +2.7 V operation, a gain control range of over 110 dB , and high input IP3 $(-31 \mathrm{dBm}$ at 35 dB gain, 3.4 dBm at -35dB gain).
Unlike similar devices, the MAX2306 family of receivers includes dual oscillators and synthesizers to form a self-contained IF subsystem. The synthesizer's reference and RF dividers are fully programmable through a 3 -wire serial bus, enabling dual-band system architectures using any common reference and IF frequency. The differential baseband outputs have enough bandwidth to suit both N-CDMA and W-CDMA systems, and offer saturated output levels of $2.7 \mathrm{Vp}-\mathrm{p}$ at a low +2.75 V supply voltage. Including the low-noise voltage-controlled oscillator (VCO) and synthesizer, the MAX2306 draws only 26 mA from a +2.75 V supply in CDMA (differential IF) mode.
The MAX2306/MAX2308/MAX2309 are available in 28pin Thin QFN and QFN packages.

Applications
Single/Dual/Triple-Mode CDMA Handsets
Globalstar Dual-Mode Handsets
Wireless Data Links
W-CDMA Handsets
Wireless Local Loop (WLL)
\qquad Features

- Complete IF Subsystem Includes VCO and Synthesizer
- Supports Dual-Band, Triple-Mode Operation
- VGA with >110dB Gain Control
- Quadrature Demodulator
- High Output Level (2.7V)
- Programmable Charge-Pump Current
- Supports Any IF Frequency Between 40MHz and 300MHz
- 3-Wire Programmable Interface
- Low Supply Voltage (+2.7V)

Ordering Information

PART	TEMP RANGE	PIN-PACKAGE
MAX2306EGI	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	28 QFN-EP*
MAX2306ETI	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	28 TQFN-EP*
MAX2308EGI	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	28 QFN-EP*
MAX2308ETI	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	28 TQFN-EP*
MAX2309EGI	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	28 QFN-EP*
MAX2309ETI	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	28 TQFN-EP*

*Exposed paddle

Pin Configurations appear at end of data sheet. Block Diagram appears at end of data sheet.

Selector Guide

PART	MODE	DESCRIPTION	INPUT RANGE
MAX2306	AMPS, Cellular CDMA, PCS CDMA	Dual Band, Triple Mode with Two IF VCOs	40 MHz to 300 MHz
MAX2308	AMPS, Cellular CDMA, PCS CDMA	Dual Band, Triple Mode with Common	
IF VCO			

CDMA IF VGAs and I/Q Demodulators with VCO and Synthesizer

ABSOLUTE MAXIMUM RATINGS

VCc to GND \qquad -0.3 V to +6.0 V
SHDN to GND \qquad -0.3 V to ($\mathrm{V} \mathrm{Cc}+0.3 \mathrm{~V}$)
STBY, BUFEN, MODE, EN, DATA, CLK, DIVSE \qquad -0.3 V to (Vcc + 0.3V) VGC to GND. \qquad -0.3 V , the lesser of +4.2 V or $\left(\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}\right)$
AC Signals TANKH \pm, TANKL \pm,
REF, $\mathrm{FM} \pm, \mathrm{CDMA} \pm$ \qquad .1.0V peak

Digital Input Current SHDN, MODE, DIVSEL, BUFEN, DATA, CLK, EN, STBY $\pm 10 \mathrm{~mA}$ Continuous Power Dissipation ($\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$) 28-Pin QFN (derate $28.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$) 2 W Operating Temperature Range .. $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ Junction Temperature ${ }^{-\ldots+150^{\circ} \mathrm{C}}$ Storage Temperature Range $65^{\circ} \mathrm{C}$ to $+160^{\circ} \mathrm{C}$ Lead Temperature (soldering, 10s) $+300^{\circ} \mathrm{C}$

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC ELECTRICAL CHARACTERISTICS

$\left(\mathrm{V} C \mathrm{CC}=+2.7 \mathrm{~V}\right.$ to $+3.6 \mathrm{~V}, \mathrm{MODE}=\mathrm{DIVSEL}=\overline{\mathrm{SHDN}}=\overline{\mathrm{STBY}}=\overline{\mathrm{BUFEN}}=$ high, differential output load $=10 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, registers set to default power-up settings. Typical values are at $\mathrm{VCC}=+2.75 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
Supply Current (Note 1)	Icc		$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		25.9	37.5	mA
		CDMA mode	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			41.5	
		FM_IQ mode	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		25.4	36.7	
			$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			40.6	
		FM_I mode	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		24.7	35.7	
			$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			39.5	
		STANDBY (VCO_H)	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		12.3	18.8	
			$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			20.7	
		STANDBY (VCO_L)	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		11.4	18.4	
			$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			20.3	
		Addition for LO out ($\overline{\mathrm{BUFEN}}=$ low)		3.5			
Shutdown Current	Icc	$\overline{\text { SHDN }}=$ low			1.5	10	$\mu \mathrm{A}$
Register Shutdown Current	ICC				4	5.8	mA
Logic High				2.0			V
Logic Low						0.5	V
Logic High Input Current	IIH			2			$\mu \mathrm{A}$
Logic Low Input Current	IIL					2	$\mu \mathrm{A}$
VGC Control Input Current		$0.5 \mathrm{~V}<\mathrm{VVGC}<2.3 \mathrm{~V}$		-5		5	$\mu \mathrm{A}$
VGC Control Input Current During Shutdown		$\overline{\text { SHDN }}=$ low				1	$\mu \mathrm{A}$
Lock Indicator High (locked)		$47 \mathrm{k} \Omega$ load		2.0			V
Lock Indicator Low (unlocked)		$47 \mathrm{k} \Omega$ load				0.5	V
DC Offset Voltage		I+ to I- and Q+ to Q	LL locked	-20	± 1.5	+20	mV
Common-Mode Output Voltage		$\mathrm{V}_{\mathrm{CC}}=+2.75 \mathrm{~V}$			VCC-1.4		V

CDMA IF VGAs and I/Q Demodulators with VCO and Synthesizer

AC ELECTRICAL CHARACTERISTICS

(MAX2306/MAX2308/MAX2309 EV kit, VCC $=+2.75 \mathrm{~V}$, registers set to default power-up states except M1 $=\mathrm{M} 2=306, \mathrm{R} 1=\mathrm{R} 2=16$, $\mathrm{f}_{\mathrm{IN}}=183.7 \mathrm{MHz}, \mathrm{f}$ REF $=19.2 \mathrm{MHz}, 0.6 \mathrm{Vp}-\mathrm{p}$ synthesizer locked with passive 3rd-order lead-lag loop filter, $\overline{\mathrm{SHDN}}=$ high, VGC set for +35 dB voltage gain, differential output load $=10 \mathrm{k} \Omega$, all power levels referred to $50 \Omega, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

CDMA IF VGAs and I/Q Demodulators with VCO and Synthesizer

AC ELECTRICAL CHARACTERISTICS (continued)

(MAX2306/MAX2308/MAX2309 EV kit, VCC $=+2.75 \mathrm{~V}$, registers set to default power-up states except M1 $=$ M2 $=306, \mathrm{R} 1=\mathrm{R} 2=16$, $\mathrm{f} \mathrm{IN}=183.7 \mathrm{MHz}$, $\mathrm{fREF}=19.2 \mathrm{MHz}, 0.6 \mathrm{Vp}-\mathrm{p}$ synthesizer locked with passive 3rd-order lead-lag loop filter, $\overline{\mathrm{SHDN}}=$ high, VGC set for +35 dB voltage gain, differential output load $=10 \mathrm{k} \Omega$, all power levels referred to $50 \Omega, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
REF Maximum Divide Ratio	R1, R2		2047			
Minimum Phase Detector Comparison Frequency		(Note 5)			20	kHz
Maximum Phase Detector Comparison Frequency		(Note 5)	1500			kHz
Phase Noise		1 kHz offset, $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		-79.6		$\mathrm{dBc} / \mathrm{Hz}$
		12.5 kHz offset, $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		-94.6		
		30 kHz offset, $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		-105		
		120 kHz offset, $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		-115.3		
		900 kHz offset, $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		-125		
TURBO LOCK						
Charge-Pump Source/Sink Current		Acquisition, $\mathrm{CPX}=\mathrm{XX}, \mathrm{TC}=1$	1480	2100	2650	$\mu \mathrm{A}$
		Locked, CPX $=00$	105	150	190	
		Locked, CPX = 01	150	210	265	
		Locked, CPX = 10	210	300	380	
		Locked, CPX = 11	300	425	530	
Charge-Pump Source/Sink Matching		Locked, all values of CPX, $0.5 \mathrm{~V}<\mathrm{V}_{\mathrm{CP}}<\mathrm{V}_{\mathrm{CC}}-0.5 \mathrm{~V}$		0.2	10	\%

Note 1: FM_IQ and FM_I modes are not available on MAX2309.
Note 2: Recommended operating frequency range. Contact factory for operating frequency outside this range.
Note 3: $f_{1}=183.7 \mathrm{MHz}, \mathrm{f}_{2}=183.71 \mathrm{MHz}, \mathrm{P}_{\mathrm{f} 1}=\mathrm{P}_{\mathrm{f} 2}=-15 \mathrm{dBm}$.
Note 4: $f_{1}=183.7 \mathrm{MHz}, \mathrm{f}_{2}=183.71 \mathrm{MHz}, \mathrm{P}_{\mathrm{f} 1}=\mathrm{P}_{\mathrm{f} 2}=-50 \mathrm{dBm}$.
Note 5: Guaranteed by design.
Note 6: Small-signal gain at 200kHz below the LO frequency will be reduced by less than 0.25 dB when an interfering signal at 1.25 MHz below the LO frequency is applied at the specified level.

Note 7: $f_{1}=183.7 \mathrm{MHz}, \mathrm{f}_{2}=183.71 \mathrm{MHz}, \mathrm{P}_{\mathrm{f} 1}=\mathrm{P}_{\mathrm{f} 2}=-23 \mathrm{dBm}$.
Note 8: $f_{1}=183.7 \mathrm{MHz}, f_{2}=183.71 \mathrm{MHz}, \mathrm{P}_{\mathrm{f} 1}=\mathrm{P}_{\mathrm{f} 2}=-55 \mathrm{dBm}$.

CDMA IF VGAs and I/Q Demodulators with VCO and Synthesizer

Typical Operating Characteristics
(MAX2306/MAX2308/MAX2309 EV kits, $\mathrm{V}_{\mathrm{CC}}=+2.75 \mathrm{~V}$, registers set to default power-up states, $\mathrm{f}_{\mathrm{I}} \mathrm{N}=183.7 \mathrm{MHz}$, $\mathrm{f}_{\mathrm{REF}}=19.2 \mathrm{MHz}$, synthesizer locked with passive 3rd-order lead-lag loop filter, $\overline{\text { SHDN }}=$ high, VGC set for +35 dB voltage gain, differential output load $=10 \mathrm{k} \Omega$, all power levels referred to $50 \Omega, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

GANvs. INPUT FREQUENCY

NaSE FGGREvs. GAN

RECEVESHUTDOWNCURRENT vs. SUPPLY VOLTACE

GAINvs. BASBANDFRECUENCY

NaSE FGGREvs. TEMPGATURE

GANvs. Vac

THRD-GRDRINPUT INIERCEPT vs. GAN

VCOVOLTACE vs. TIME

CDMA IF VGAs and I／Q Demodulators with VCO and Synthesizer

（MAX2306／MAX2308／MAX2309 EV kits， $\mathrm{V}_{\mathrm{CC}}=+2.75 \mathrm{~V}$ ，registers set to default power－up states， $\mathrm{fi}_{\mathrm{N}}=183.7 \mathrm{MHz}, \mathrm{f}_{\mathrm{REF}}=19.2 \mathrm{MHz}$ ， synthesizer locked with passive 3rd－order lead－lag loop filter，$\overline{\text { SHDN }}=$ high，VGC set for +35 dB voltage gain，differential output load $=10 \mathrm{k} \Omega$ ，all power levels referred to $50 \Omega, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ ，unless otherwise noted．）

TANK PORT PARA山且 RESSTANCE
vs．FREQUENCY

IF PORT PARAШ⿴⿱冂一⿱一一厶胃 CAPACITANCE
vs．FREQUENCY

TANK PORT PARA山且 CAPACITANCE
vs．FREQUENCY

LOOT PORT
S11 vs．FRECUENCY

CDMA IF VGAs and I/Q Demodulators with VCO and Synthesizer

Pin Description

PIN			NAME	FUNCTION
MAX2306	MAX2308	MAX2309		
1,28	-	-	TANKL+, TANKL-	Differential Tank Input for Low-Frequency Oscillator
-	1, 4	-	N.C.	No Connection. Must be left open-circuit.
2, 3	2, 3	1, 2	TANKH + , TANKH-	Differential Tank Input for High-Frequency Oscillator
-	-	3	BUFEN	LO Buffer Amplifier-active low
4	-	-	MODE	Mode Select. High selects CDMA mode; low selects FM mode.
-	-	4	LOOUT	Internal VCO Output. Depending on setting of BD bit, LOOUT is either the VCO frequency (twice the IF frequency) or one-half the VCO frequency (equal to the IF frequency).
5	5	5	VCC	+2.7V to +5.5V Supply
6	6	6	GND	Ground
7	7	7	REF	Reference Frequency Input
8	8	8	$\overline{\text { SHDN }}$	Shutdown Input-active low. Low powers down entire device, including registers and serial interface.
9, 10	9, 10	9, 10	IOUT+, IOUT-	Differential In-Phase Baseband Output, or FM signal output if FM_I mode is selected.
11	11	11	LOCK	Lock Output-open-collector pin. Logic high indicates phase-locked condition.
12, 13	12, 13	12, 13	QOUT-, QOUT+	Differential Quadrature-Phase Baseband Output. Disabled if FM_I mode is selected.
14	14	14	CLK	Clock input of the 3-wire serial bus
15	15	15	$\overline{\mathrm{EN}}$	Enable Input. When low, input shift register is enabled.
16	16	16	DATA	Data input of the 3-wire serial bus.
17	17	17	VCC	+2.7 V to +5.5 V Supply
18	18	18	VGC	VGA Gain Control Input. Control voltage range is 0.5 V to 2.3 V .
19, 20	19, 20	19, 20	CDMA-, CDMA+	Differential CDMA Input. Active in CDMA mode.
21	21	-	FM+	Differential Positive Input. Active in FM mode.
22	22	-	FM-	Differential Negative Input for FM signal. Bypass to GND for single-ended operation.
-	-	22	$\overline{\text { STBY }}$	Standby Input-active low. Low powers down VGA and demodulator while keeping VCO, PLL, and serial bus on.
23, 24	23, 24	23, 24	BYP	Bypass Node. Must be capacitively decoupled (bypassed) to pin 17.

CDMA IF VGAs and I/Q Demodulators with VCO and Synthesizer

PIN			NAME	
MAX2306	MAX2308	MAX2309		FUNCTION
25	25	25	BYP	Bypass Node. Must be capacitively decoupled (bypassed) to ground.
26	26	26	CP_OUT	Charge-Pump Output
27	27	27	GND	Ground
-	28	21	N.C.	No Connection
-	-	DIVSEL	High selects M1/R1; low selects M2/R2.	
Exposed Paddle				

Detailed Description
MAX2306
The MAX2306 is intended for dual-band (PCS and cellular) and dual-mode code division multiple access (CDMA) and FM applications (Figure 1). The device includes an IF variable-gain amplifier, quadrature demodulator, dual VCOs, and dual-frequency synthesizers (Functional Diagram). Dual VCOs are provided for applications using different IF frequencies for each mode or band of operation. The analog FM output signal can be configured for conversion to the I channel, or it may be converted in quadrature to both the I and Q channels. The MAX2306's operation modes are described in Table 1. These modes are set by programming the control register and setting logic levels on control pins. If MODE is left floating, the internal register controls the operation. If driven high or low, mode will override certain register bits, as shown in Table 1.

MAX2308
The MAX2308 supports dual-band, triple mode with common IF VCO. As with the MAX2306, the FM mode can be configured for conversion to the I port or quadrature conversion to both the I and Q ports (Figure 2). The MAX2308's operational modes are described in Table 2. These modes are set by programming the control register.

MAX2309
The MAX2309 quadrature demodulators are simplified versions of the MAX2306 that can be used in singlemode CDMA or triple mode using an external FM discriminator (Figure 3). The MAX2309 VCO is optimized for the 67 MHz to 300 MHz IF frequency range.
The MAX2309 includes a buffered output for the VCO. The buffered VCO output can be used to support sys-
tems implementing traditional limiting IF stages for FM demodulation in dual-mode phones as well as for the transmit LO in TDD systems. This buffered output can be configured for the VCO frequency (twice the IF frequency) or one-half the VCO frequency (IF frequency). The BUFEN pin enables this feature. A standby mode, in which only the VCO and synthesizer are operational, can be selected through the serial interface or the STBY pin. The MAX2309's operational modes are described in Table 3. These modes are set by programming the control register and/or setting logic levels on control pins. If the control pins (STBY, BUFEN, DIVSEL) are left floating, the internal register controls the operational mode. If driven high or low, the control pins will override certain register bits, as shown in Table 3.

Applications Information

[^0]
CDMA IF VGAs and I/Q Demodulators with VCO and Synthesizer

Figure 1. MAX2306 Typical Operating Circuit

Voltage-Controlled Oscillator,
Buffers, and Quadrature Generation The LO signal for downconversion is provided by a voltage-controlled oscillator (VCO) consisting of an onchip differential oscillator, and an off-chip high-Q resonant network. Figure 4 shows a simplified schematic of the VCO oscillator. Multiband operation is supported by the MAX2306 with dual VCOs. VCO_H and VCO L are selectable with the MODE pin or the VCO_SEL (VS) control bit. They oscillate at twice the desired LO frequency. For applications requiring an external LO, the VCOs can be bypassed with the VCO_BYP (VB) control bit.

The MAX2309 buffers the output of the VCO and provides this signal at the LOOUT pin. This signal is enabled by the BUFEN (BE) control bit or by the BUFEN control pin. The frequency of this signal is selected by the BUF_DIV (BD) control bit, and can be either the VCO frequency or half the VCO frequency.
Quadrature downconversion is realized by providing inphase (I) and quadrature-phase (Q) components of the LO signal to the LO ports of the demodulator described above. The quadrature LO signals are generated by dividing the VCO output frequency using two latches.

CDMA IF VGAs and I/Q Demodulators with VCO and Synthesizer

Table 1. MAX2306 Control Register States

Note: $H=$ high, $L=$ low, $F=$ floating pin, $X=$ don't care, Blank = independent parameter, $1=$ logic high, $0=$ logic low.

The appropriate latch outputs provide I and Q signals at the desired LO frequency.

Synthesizer

The VCO's output frequency is controlled by an internal phase-locked-loop (PLL) dual-modulus synthesizer. The loop filter is off-chip to simplify loop design for emerging applications. The tunable resonant network is also off-chip for maximum Q and for system design flexibility. The VCO output frequency is divided down to the desired comparison frequency with the M counter. The M counter consists of a 4-bit A swallow counter and a 10 -bit P counter. A reference signal is provided from an external source and is divided down to the comparison frequency with the R counter. The two divided signals are compared with a three-state digital phase-frequen-
cy detector. The phase-detector output drives a charge-pump as well as lock-detect logic and turbocharge control logic. The charge-pump output (CP_OUT) pin is processed by the loop filter and drives the tunable resonant network, altering the VCO frequency and closing the loop.
Multimode applications are supported by two independent programmable registers each for the M counter (M1, M2), the R counter (R1, R2), and the charge-pump output current magnitude (CP1, CP2). The DIVSEL (DS) bit selects which set of registers is used. It can be overridden by the MAX2306's MODE pin or the MAX2309's DIVSEL pin. Programming these registers is discussed in the 3-Wire Interface and Registers section.

CDMA IF VGAs and I/Q Demodulators with VCO and Synthesizer

Table 2. MAX2308 Control Register States

Note: $H=$ high, $L=$ low, $1=$ logic high, $0=$ logic low, $X=$ don't care, blank = independent parameter

When the part initially powers up or changes state, the synthesizer acquisition time can be reduced by using the Turbo feature, enabled by the TURBOCHARGE (TC) control bit. Turbo functionality provides a larger charge-pump current during acquisition mode. Once the VCO frequency is acquired, the charge-pump output current magnitude automatically returns to the preprogrammed state to maintain loop stability and minimize spurs in the VCO output signal.
The lock detect output indicates when the PLL is locked with a logic high.

3-Wire Interface and Registers

The MAX2306 family incorporates a 3 -wire interface for synthesizer programming and device configuration (Figure 5). The 3 -wire interface consists of clock, data, and enable signals. It controls the VCO dividers (M1 and M 2), reference frequency dividers (R1 and R2), and a 13-bit control register. The control register is used to set up the operational modes (Table 4). The input shift is 17 data bits long and requires a total of 18 clock bits (Figure 6). A single clock pulse is required before enable drops low to initialize the data bus.

Whenever the M or R divide register value is programmed and downloaded, the control register must also be subsequently updated. This prevents turbolock from going active when not desired.
The $\overline{\text { SHDN }}$ control bit is notable because it differs from the SHDN pin. When the SHDN control bit is low, the registers and serial interface are left active, retaining the values stored in the latches, while the rest of the device is shut off. In contrast, the $\overline{\text { SHDN }}$ pin, when low, shuts down everything, including the registers and serial interface. See Functional Diagram.

Registers

Figure 7 shows the programming logic. The 17 -bit shift register is programmed by clocking in data at the rising edge of CLK. Before the shift register is able to accept data, it must be initialized by driving it with at least one full clock cycle at the CLK input with EN high (see Figure 6). Pulling enable low will allow data to be clocked into the shift register; pulling enable high loads the register addressed by A0, A1, and A2, respectively (Figure 7). Table 5 lists the power-on default values of all registers. Table 6 lists the charge-pump current, depending on CP0 and CP1.

CDMA IF VGAs and I/Q Demodulators with VCO and Synthesizer

Figure 2. MAX2308 Typical Operating Circuit

CDMA IF VGAs and I/Q Demodulators with VCO and Synthesizer

Table 3. MAX2309 Control Register States

Note: $H=$ high, $L=$ low, $1=$ logic high, $0=$ logic low, $X=$ don't care, blank = independent parameter.

CDMA IF VGAs and I/Q Demodulators with VCO and Synthesizer

Figure 3. MAX2309 Typical Operating Circuit
\qquad

CDMA IF VGAs and I/Q Demodulators with VCO and Synthesizer

Figure 4. Voltage-Controlled Oscillators

Figure 5. 3-Wire Control Block Diagram

CDMA IF VGAs and I/Q Demodulators with VCO and Synthesizer

Figure 6. 3-Wire Interface Timing Diagram

Table 4. Control Register, Default State: 0B57h, Address: 110b

BIT ID	BIT NAME	POWERUP STATE	$\begin{gathered} \text { BIT } \\ \text { LOCATION } \\ 0=\text { LSB } \end{gathered}$	FUNCTION
TM	TEST_MODE	0	12	Must be 0 for normal operation.
POL	CP_POL	1	11	Logic "1" causes the charge-pump output CP_OUT to source current when $f_{R E F} / R>f v C O / M$. This state is used when the VCO tune polarity is such that increasing voltage produces increasing frequency. Logic " 0 " causes CP_OUT to source current when fvco/M $>f_{R E F} / R$. This state is used when increasing tune voltage causes the VCO frequency to decrease.
TE	TEST_ENABLE	0	10	Must be 0 for normal operation.
TC	TURBO_CHARGE	1	9	Logic "1" activates turbocharge mode, which provides rapid frequency acquisition in the PLL.
DS	DIV_SEL	1	8	Logic "1" selects M1/R1 divide ratios. Logic "0" selects M2/R2.
VB	VCO_BYP	0	7	Logic "1" bypasses the VCO inputs for external VCO operation.
VS	VCO_SEL	1	6	Logic "1" selects VCO_H. Logic "0" selects VCO_L.
BD	BUF_DIV	0	5	Logic "1" selects divide-by-2 on LOOUT port. Logic "0" bypasses divider.
BE	BUFEN	1	4	Logic " 1 " disables LOOUT. Logic "0" enables LOOUT.
FT	FM_TYPE	0	3	Active in FM mode. Logic " 0 " selects quadrature demodulator for FM mode. Logic "1" selects downconversion to I port.
IS	IN_SEL	1	2	Logic "0" selects FM input port. Logic "1" selects CDMA input.
SB	$\overline{\text { STBY }}$	1	1	Logic "0" enables standby mode, which shuts down the VGA and demodulator stages, leaving the VCO locked and the registers active.
SD	$\overline{\text { SHDN }}$	1	0	Logic " 0 " enables register-based shutdown. This mode shuts down everything except the M and R latches and the serial bus.

CDMA IF VGAs and I/Q Demodulators with VCO and Synthesizer

Figure 7. Programming Logic

Table 5. Register Defaults

REGISTER	DEFAULT
M1	10519DEC
M2	4269DEC
R1	492DEC
R2	492DEC
CTRL	0B57HEX
CP0	11_{BIN}
CP1	11_{BIN}

Table 6. Charge-Pump Control Bits

CP1	CPO	CHARGE-PUMP CURRENT AFTER ACQUISITION $(\boldsymbol{\mu} \mathbf{A})$
0	0	150
0	1	210
1	0	300
1	1	425

CDMA IF VGAs and I/Q Demodulators with VCO and Synthesizer

CDMA IF VGAs and I/Q Demodulators with VCO and Synthesizer

CDMA IF VGAs and I/Q Demodulators with VCO and Synthesizer

(T) QFN-EP

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.
\qquad Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600

Notes:

1. See the MAX2306 QuickView Data Sheet for further information on this product family or down MAX2306 full data sheet (PDF, 208kB).
2. Other options and links for purchasing parts are listed at: http://www.maxim-ic.com/sales.
3. Didn't Find What You Need? Ask our applications engineers. Expert assistance in finding parts, us business day.
4. Part number suffixes: T or $\mathrm{T} \& \mathrm{R}=$ tape and reel; $+=$ RoHS/lead-free; $\#=$ RoHS/lead-exempt. N sheet or Part Naming Conventions.
5. * Some packages have variations, listed on the drawing. "PkgCode/Variation" tells which variatio uses.

Part Number	Free Sample	Buy Direct	Package: TYPE PINS SIZE DRAWING CODE/VAR *	Temp
MAX2306EGI			QFN;28 pin;5x5x0.9mm Dwg: 21-0091I (PDF) Use pkgcode/variation: G2855-2*	-40 C to +85 C
MAX2306EGI-T			QFN;28 pin;5x5x0.9mm Dwg: 21-0091I (PDF) Use pkgcode/variation: G2855-2*	-40 C to +85 C
MAX2306ETI+T			THIN QFN;28 pin;5x5x0.8mm Dwg: 21-0140K (PDF) Use pkgcode/variation: T2855+6*	-40 C to +85 C

| MAX2306ETI + |
| :--- | :--- |
| Didn't Find What You Need? |\quad| THIN QFN;28 pin;5x5x0.8mm |
| :--- |
| Dwg: 21-0140K (PDF) |
| Use pkgcode/variation: T2855+6* |$\quad-40 \mathrm{C}$ to +85C RoH

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Modulator/Demodulator category:
Click to view products by Maxim manufacturer:
Other Similar products are found below :
F1653NLGI LC72723MA-AH MAX5862BUXH+ MAX5860FUXH + SKY73009-11 LC72722PM-TLM-E NJM2549RB2-TE2 PM-103-PIN HMC495LP3TR MAX2021ETX + MAX2308ETI + MAX2306ETI + MAX2150ETI+ MAX2150ETI LT5517EUF\#PBF HMC1097LP4ETR LT5516EUF\#PBF LT5575EUF\#PBF ADL5373ACPZ-R7 ADRF6821ACPZ LTC5588IPF-1\#PBF LA72912V-TLM-H LT5506EUF\#PBF LT5515EUF\#PBF LT5572EUF\#PBF LT5546EUF\#PBF LTC5585IUF\#PBF LT5528EUF\#PBF TDA8296HN/C1,557 LA72914V-TLM-H RFMD2081TR13 LT5502EGN\#PBF CMX7143Q3 ADRF6702ACPZ-R7 031-5 CMX909BD5 CMX589AD5 AD630ADZ AD630ARZ AD630BDZ AD630JNZ AD630KNZ AD630SD AD630SD/883B AD8346ARUZ-REEL7 AD8333ACPZ-WP AD8339ACPZ AD8345ARE AD8345AREZ AD8345AREZ-RL7

[^0]: Variable-Gain Amplifier and Demodulator The MAX2306 family provides a VGA with exceptional gain range. The MAX2306/MAX2308 support multimode applications with dual differential inputs, selectable with the IN_SEL (IS) control bit. On the MAX2306, this function can be controlled with the MODE pin, which overrides the IS control bit. The VGA's gain is controlled over a 110 dB range with the VGC pin. The output of the VGA drives the RF ports of a quadrature demodulator. The MAX2306/MAX2308 provide two types of FM demodulation, controlled by the FM_TYPE (FT) control bit. When FM_TYPE is " 1 ," the signal is passed through both the I and Q signal paths for subsequent lowpass filtering and A/D conversion at baseband. If FM_TYPE is " 0 ," the FM signal is passed through the I mixer only.

