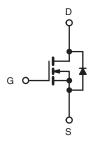


N-Channel 30-V (D-S) MOSFET

PRODUCT SUMMARY							
V _{DS} (V)	$R_{DS(on)}\left(\Omega\right)$	I _D (A) ^a	Q _g (Typ.)				
30	0.006 at V _{GS} = 10 V	35	12 nC				
30	0.008 at V _{GS} = 4.5 V	35	12110				

PowerPAK SO-8

Ordering Information: SiR402DP-T1-GE3 (Lead (Pb)-free and Halogen-free)


FEATURES

- Halogen-free According to IEC 61249-2-21 Definition
- TrenchFET® Power MOSFET
- 100 % R_g Tested
- 100 % UIS Tested
- Compliant to RoHS Directive 2002/95/EC

ROHS COMPLIANT HALOGEN FREE

APPLICATIONS

- Synchronous Rectification
- DC/DC Point-of-Load
- Server

N-Channel MOSFET

Parameter		Symbol	Limit	Unit	
Drain-Source Voltage		V _{DS}	30	V	
Gate-Source Voltage		V _{GS}	± 20	1 V	
Continuous Drain Current (T _J = 150 °C)	$T_{C} = 25 ^{\circ}\text{C}$ $T_{C} = 70 ^{\circ}\text{C}$ $T_{A} = 25 ^{\circ}\text{C}$	I _D	35 ^a 35 ^a 20.7 ^{b, c}	A	
T _A = 70 °C Pulsed Drain Current Avalanche Current		I _{DM}	16.6 ^{b, c} 70 35		
Avalanche Energy L = 0.1 mH		E _{AS}	61	mJ	
Continuous Source-Drain Diode Current $ T_{C} = 25 ^{\circ}C $ $ T_{A} = 25 ^{\circ}C $		- I _S -	30 3.5 ^{b, c}	А	
Maximum Power Dissipation	$T_{C} = 25 ^{\circ}\text{C}$ $T_{C} = 70 ^{\circ}\text{C}$ $T_{A} = 25 ^{\circ}\text{C}$ $T_{A} = 70 ^{\circ}\text{C}$	P _D	36 23 4.2 ^{b, c} 2.7 ^{b, c}	w	
Operating Junction and Storage Temperature Range		T _J , T _{stg}	- 55 to 150	°C	
Soldering Recommendations (Peak Temperations)	ature) ^{a, e}		260		

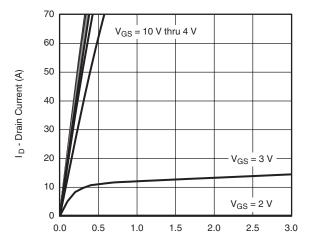
THERMAL RESISTANCE RATINGS						
Parameter		Symbol	Typical	Maximum	Unit	
Maximum Junction-to-Ambient ^{b, f}	t ≤ 10 s	R_{thJA}	25	30	°C/W	
Maximum Junction-to-Case (Drain)	Steady State	R _{thJC}	2.9	3.5	O/ V V	

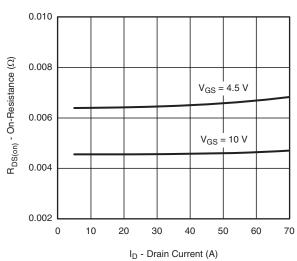
Notes

- a. Based on T_C = 25 °C. Package limited.
- b. Surface Mounted on 1" x 1" FR4 board.
- c. t = 10 s.
- d. See Solder Profile (www.vishay.com/ppg?73257). The PowerPAK SO-8 is a leadless package. The end of the lead terminal is exposed copper (not plated) as a result of the singulation process in manufacturing. A solder fillet at the exposed copper tip cannot be guaranteed and is not required to ensure adequate bottom side solder interconnection.
- e. Rework Conditions: manual soldering with a soldering iron is not recommended for leadless components.
- f. Maximum under Steady State conditions is 70 °C/W.

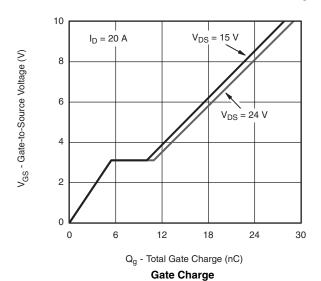
Parameter	Symbol	Test Conditions	Min.	Тур.	Max.	Unit
Static						•
Drain-Source Breakdown Voltage	V_{DS}	$V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$	30			V
V _{DS} Temperature Coefficient	$\Delta V_{DS}/T_{J}$	L = 250 uA		24		\//°C
V _{GS(th)} Temperature Coefficient	$\Delta V_{GS(th)}/T_J$	I _D = 250 μA		- 6		mV/°C
Gate-Source Threshold Voltage	V _{GS(th)}	$V_{DS} = V_{GS}$, $I_{D} = 250 \mu A$	1.15		2.2	V
Gate-Source Leakage	I _{GSS}	$V_{DS} = 0 \text{ V}, V_{GS} = \pm 20 \text{ V}$			± 100	nA
Zava Cata Valtaga Dvain Curvent	1	V _{DS} = 30 V, V _{GS} = 0 V			1	
Zero Gate Voltage Drain Current	I _{DSS}	$V_{DS} = 30 \text{ V}, V_{GS} = 0 \text{ V}, T_{J} = 55 ^{\circ}\text{C}$			5	μΑ
On-State Drain Current ^a	I _{D(on)}	$V_{DS} \ge 5 \text{ V}, V_{GS} = 10 \text{ V}$	50			Α
Drain Course On State Desigtance	В	V _{GS} = 10 V, I _D = 20 A		0.0048	0.006	_
Drain-Source On-State Resistance ^a	R _{DS(on)}	$V_{GS} = 4.5 \text{ V}, I_D = 17.5 \text{ A}$		0.0064	0.008	Ω
Forward Transconductancea	9 _{fs}	V _{DS} = 15 V, I _D = 20 A		82		S
Dynamic ^b						•
Input Capacitance	C _{iss}			1700		
Output Capacitance	C _{oss}	$V_{DS} = 15 \text{ V}, V_{GS} = 0 \text{ V}, f = 1 \text{ MHz}$		350		pF
Reverse Transfer Capacitance	C_{rss}			140		
Tabal Oata Obaana	0	$V_{DS} = 15 \text{ V}, V_{GS} = 10 \text{ V}, I_D = 20 \text{ A}$		28	42	
Total Gate Charge	Q _g			12	21	
Gate-Source Charge	Q_{gs}	$V_{DS} = 15 \text{ V}, V_{GS} = 4.5 \text{ V}, I_{D} = 20 \text{ A}$		5.4		nC
Gate-Drain Charge	Q_{gd}			4.6		
Gate Resistance	R_g	f = 1 MHz		1.2	2.4	Ω
Turn-On Delay Time	t _{d(on)}			25	40	
Rise Time	t _r	V_{DD} = 15 V, R_L = 1.5 Ω		20	30	
Turn-Off Delay Time	t _{d(off)}	$I_D \cong 10 \text{ A}, V_{GEN} = 4.5 \text{ V}, R_g = 1 \Omega$		25	40	
Fall Time	t _f			15	25	200
Turn-On Delay Time	t _{d(on)}			12	20	ns
Rise Time	t _r	V_{DD} = 15 V, R_L = 1.5 Ω		10	15	
Turn-Off Delay Time	t _{d(off)}	$I_D \cong 10 \text{ A}, V_{GEN} = 10 \text{ V}, R_g = 1 \Omega$		25	40	
Fall Time	t _f			10	15	
Drain-Source Body Diode Characteristi	cs					
Continuous Source-Drain Diode Current	I _S	$T_C = 25 ^{\circ}C$			30	Α
Pulse Diode Forward Current	I _{SM}				70	
Body Diode Voltage	V_{SD}	$I_S = 10 \text{ A}, V_{GS} = 0 \text{ V}$		0.8	1.2	V
Body Diode Reverse Recovery Time	t _{rr}			25	50	ns
Body Diode Reverse Recovery Charge	Q _{rr}	I _F = 10 A, dl/dt = 100 A/μs, T _{.I} = 25 °C		17	35	nC
Reverse Recovery Fall Time	t _a	1 _F = 10 Λ, αι/αι = 100 Λ/μο, 1 _J = 20 0		13		no
Reverse Recovery Rise Time	t _b			12		ns

- a. Pulse test; pulse width $\leq 300~\mu s,$ duty cycle $\leq 2~\%.$
- b. Guaranteed by design, not subject to production testing.


Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

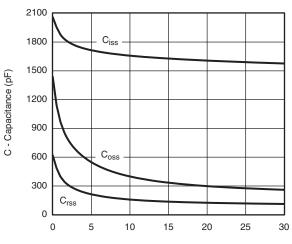


TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted

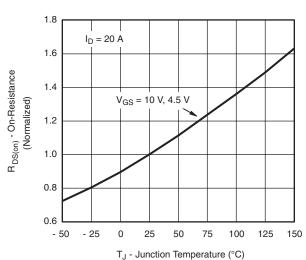


V_{DS} - Drain-to-Source Voltage (V)

Output Characteristics

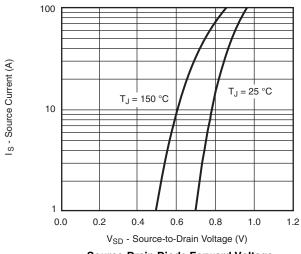

On-Resistance vs. Drain Current and Gate Voltage

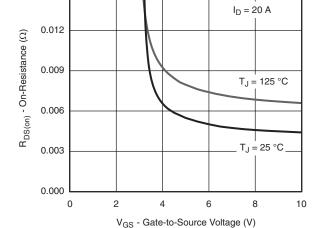
10 $T_C =$ - 55 °C 8 I_D - Drain Current (A) 6 $T_C = 25$ °C 2 T_C = 125 °C 0 0.0 0.5 1.0 1.5 2.5 3.0


V_{GS} - Gate-to-Source Voltage (V)

Transfer Characteristics

V_{DS} - Drain-to-Source Voltage (V)

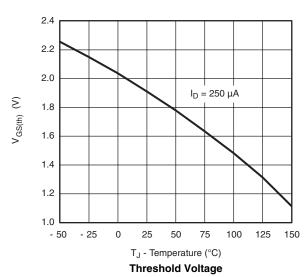

Capacitance

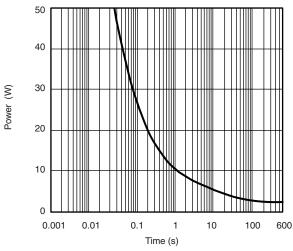


On-Resistance vs. Junction Temperature

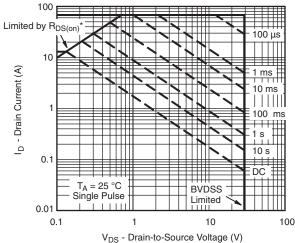
VISHAY

TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted

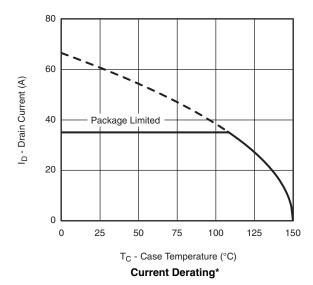


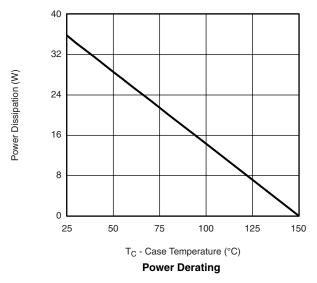


0.015

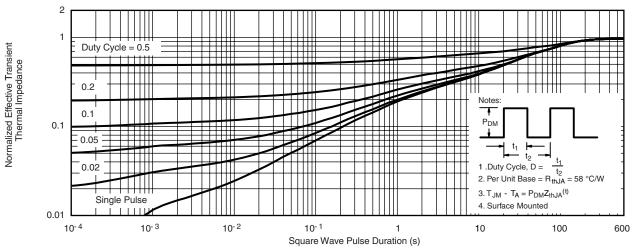

Source-Drain Diode Forward Voltage

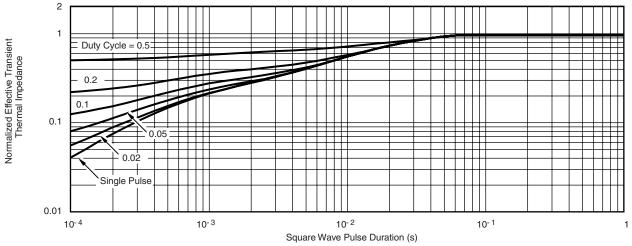
Single Pulse Power (Junction-to-Ambient)


* V_{GS} > minimum V_{GS} at which R_{DS(on)} is specified


Safe Operating Area, Junction-to-Ambient

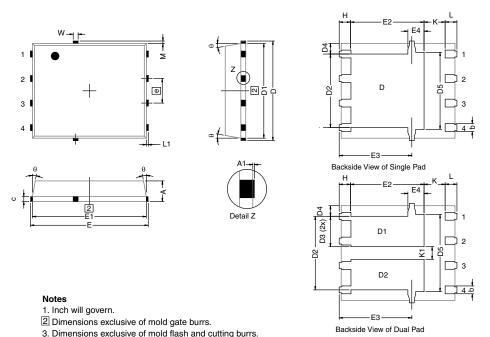
TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted




^{*} The power dissipation P_D is based on $T_{J(max)} = 150$ °C, using junction-to-case thermal resistance, and is more useful in settling the upper dissipation limit for cases where additional heatsinking is used. It is used to determine the current rating, when this rating falls below the package limit.

TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted

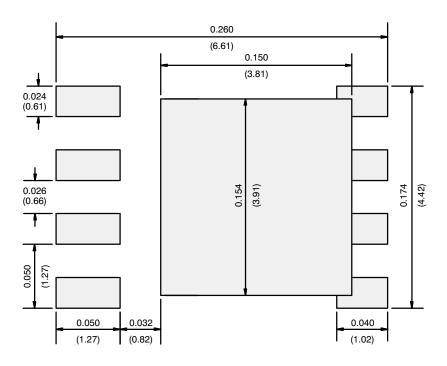
Normalized Thermal Transient Impedance, Junction-to-Ambient


Normalized Thermal Transient Impedance, Junction-to-Case

Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see www.vishay.com/ppq?68683.

DWG: 5881

PowerPAK® SO-8, (Single/Dual)



	MILLIMETERS			INCHES			
DIM.	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.	
Α	0.97	1.04	1.12	0.038	0.041	0.044	
A1		-	0.05	0	-	0.002	
b	0.33	0.41	0.51	0.013	0.016	0.020	
С	0.23	0.28	0.33	0.009	0.011	0.013	
D	5.05	5.15	5.26	0.199	0.203	0.207	
D1	4.80	4.90	5.00	0.189	0.193	0.197	
D2	3.56	3.76	3.91	0.140	0.148	0.154	
D3	1.32	1.50	1.68	0.052	0.059	0.066	
D4	0.57 typ.			0.0225 typ.			
D5	3.98 typ. 0.157			0.157 typ.			
E	6.05	6.15	6.25	0.238	0.242	0.246	
E1	5.79	5.89	5.99	0.228	0.232	0.236	
E2 (for AL product)	3.30	3.48	3.66	0.130	0.137	0.144	
E2 (for other product)	3.48	3.66	3.84	0.137	0.144	0.151	
E3	3.68	3.78	3.91	0.145	0.149	0.154	
E4 (for AL product)	0.58 typ.			0.023 typ.			
E4 (for other product)	0.75 typ.			0.030 typ.			
е	1.27 BSC			0.050 BSC			
K (for AL product)	1.45 typ.			0.057 typ.			
K (for other product)	1.27 typ.			0.050 typ.			
K1	0.56	-	-	0.022	-	-	
Н	0.51	0.61	0.71	0.020	0.024	0.028	
L	0.51	0.61	0.71	0.020	0.024	0.028	
L1	0.06	0.13	0.20	0.002	0.005	0.008	
θ	0°		12°	0°	-	12°	
W	0.15	0.25	0.36	0.006	0.010	0.014	
М	0.125 typ.			0.005 typ.			

Revison: 20-May-13 Document Number: 71655

RECOMMENDED MINIMUM PADS FOR PowerPAK® SO-8 Single

Recommended Minimum Pads Dimensions in Inches/(mm)

Return to Index

APPLICATION NOTE

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Material Category Policy

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as RoHS-Compliant fulfill the definitions and restrictions defined under Directive 2011/65/EU of The European Parliament and of the Council of June 8, 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment (EEE) - recast, unless otherwise specified as non-compliant.

Please note that some Vishay documentation may still make reference to RoHS Directive 2002/95/EC. We confirm that all the products identified as being compliant to Directive 2002/95/EC conform to Directive 2011/65/EU.

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as Halogen-Free follow Halogen-Free requirements as per JEDEC JS709A standards. Please note that some Vishay documentation may still make reference to the IEC 61249-2-21 definition. We confirm that all the products identified as being compliant to IEC 61249-2-21 conform to JEDEC JS709A standards.

Revision: 02-Oct-12 Document Number: 91000

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for vishay manufacturer:

Other Similar products are found below:

M39006/22-0577H Y00892K49000BR13L VSKT250-16PBF M8340109M6801GGD03 NTCALUG01A103F291L ITU1341SM3 VS-MBRB1545CTPBF 1KAB100E 1KAB20E IH10EB600K12 CP0005150R0JE1490 562R5GAD47RR S472M69Z5UR84K0R

MKP1848C65090JY5L CRCW1210360RFKEA VSMF4720-GS08 TSOP34438SS1V CRCW04024021FRT7 001789X LTO050FR0500JTE3

CRCW08054K00FKTA LVR10R0200FE03 CRCW12063K30FKEAHP 009923A CRCW2010331JR02 CRCW25128K06FKEG

CS6600552K000B8768 CSC07A0110K0GPA M34C156K100BZSS M39003/01-2289 M39003/01-2784 M39006/25-0133 M39006/25-0228

M64W101KB40 M64Z501KB40 CW001R5000JS73 CW0055R000JE12 CW0056K800JB12 CW0106K000JE73 672D826H075EK5C

CWR06JC105KC CWR06NC475JC MAL219699001E3 MCRL007035R00JHB00 GBU4K-E3/51 GBU8M-E3/51 GF1A-E3/67A

PTF56100K00QYEK PTN0805H1502BBTR1K RCWL1210R130JNEA