

Global Positioning System (GPS) Shield for Arduino™ and Raspberry-PI™

Technical Data

Features

- ArduinoTM UNO Shield standard form factor for simple integration into any Arduino project.
- I²C interface for simple connection to Arduino or Raspberry-PI
- Give your robot the ability to know where it is, how fast its moving and in what direction*.
- Fast <u>56-channel</u> position acquisition with battery backup for fast < 1 second hot start and < 30 second warm start.
- Simple register based data retrieval of latitude, longitude, heading, altitude, speed, time, date & satellites in view.
- Integral low power antenna.
- Built in fully programmable 4 line IO and 8 bit ADC input port for local sensors.

Description

The Designer Systems DS-GPM.S is a highly integrated Global Positioning System allowing your robotic application to determine its location on the earth's surface. Specifically targeted at the Arduino UNO board user [MEGA and NANO boards also supported] and the Raspberry-PI the GPM.S features I²C communication to leave the serial [TX/RX] port free for other functions eg. wireless communication.

GPS data received by the DS-GPM.S is stored within internal registers which are updated once per second and include:

- Latitude (i.e. vertical)
- Longitude (i.e. horizontal)
- Altitude (metres)
- Time & date (UTC)
- Heading (True & Magnetic)
- Speed (kilometres per hour)
- Satellites detected

In addition the DS-GPM.S features an on-board fully configurable four line programmable IO and analogue input port with automatic measurement.

DS-GPM.SFirmware version 1

Applications

The DS-GPM.S has many applications in robotics, security and timing. For example the module could be used to send a rover to a particular position or be used to form a vehicle security solution in-conjunction with an embedded controller and GSM modem. Application notes for the UNO controller are provided.

Selection Guide

Description	Part Number
Global Position System Shield	DS-GPM.S

^{*} Note: GPS information cannot be collected without a clear view of the sky. Raspberry-PI, Arduino, UNO, NANO, UNO & MEGA are trademarks

GPS basics

The heart of the DS-GPM.S is a Global Positioning System receiver module and antenna that receive signals from satellites orbiting the earth.

There are 32 of these satellites, each sending its own unique signal to the earth's surface for pickup by any GPS receiver, which searches the sky for available satellites.

Upon detecting the satellites in view and their current position the receiver uses the satellites with highest signal strength to calculate, using triangulation, the receiver's latitude, longitude & altitude** (position).

Latitude is measured in degrees and minutes either North or South of the equator.

Longitude is measured in degrees and minutes either West or East of an imaginary line drawn vertically through Greenwich in the UK.

Altitude is measured in metres above sea level.

For example the offices of Designer Systems in Truro, UK are located 50 degrees, 15.817 minutes North latitude and 5 degrees, 3.549 minutes West longitude.

Should the receiver also be moving, speed in kilometres per hour, and heading, in degrees true north and magnetic north, can also be deter-

To gain the best reception the GPM should be used outside with a good view of the sky. Trees and buildings will cause the GPS signals being received to degrade and positional/speed information may be lost. To greatly improve reception the GPM should be mounted above a metal

** LLA format to WGS-84 ellipsoid.

Operation

When power is applied to the GPM the unit immediately starts to search for satellites. The GPM can start in one of three (3) modes, as follows:

Cold start mode:

This mode only applies when the GPM has been powered-up for the first time after being removed from its packaging. As the GPM does not know where it is on the earth's surface, it starts to hunt for groups of satellites to determine its location. This process may take up to 30 minutes before positional information is available; it is suggested that a battery be connected and the

unit left in the open air until the STATUS indicator starts to flash.

Warm start mode:

This mode applies to a GPM that has already been 'cold-started' and whose location has not changed significantly when powered up again or has been powered down for at least one (1) hour. Positional information is normally available again within 45 seconds of power re-application.

Hot start mode:

This mode applies when the GPM has been powered off for less than 60 minutes. Positional information is normally available again within 1-10 seconds of power re-application.

The warm and hot start power-up modes are possible due to an internal backup battery which powers the Real Time Clock (RTC) and almanac memory when external power is removed.

STATUS indication...

The STATUS indicator is used to provide visual feedback of the current GPM condition. There are three (3) conditions as follows:

ON Steady Power applied and no positional information. Flashing slowly Positional information received. Flashing fast GPM in motion.

These conditions will change as the GPM moves around its location and under objects that may block the satellite signals.

Power requirements

The DS-GPM.S takes the power necessary for operation (approx. 30-90mA) from an external battery or power adaptor or power from the Arduino UNO board.

The GPM provides three PCB pads, two marked 'GND' and one marked 'Vin' in the same format as that present on the UNO board, which should be connected to negative and positive battery/power supply terminals respectively. The input voltage range is 7 - 16VDC with the internal circuitry being protected against power supply reversal.

IO port

The DS-GPM.S features a fully programmable four line CMOS input/output or 8bit Analogue to Digital Converter port 'I/O' '1' to '4'. Each IO is configurable as an output, an input or an analogue input by configuring the registers R0-3. When an IO is configured for a normal input the applied voltage 0 or 5V is read and stored in an input register which can be read by the connected I²C device. When an IO is configured as an output the output state will be 0 or 5V dependant on the output register contents written by the connected I²C device. When an IO is configured for analogue input** it is automatically updated every 100mS from an external input voltage of 0 - 5V and the result stored in internal registers which can be read by the connected I²C device (see register details further on in this datasheet). The port also incorporates a ground and Vin bus that allows sensors to be directly connected (see Fig. 3.0) Warning: These inputs are not overvoltage protected and should not be

subjected to voltages over 5V.

I²C connection

The I²C connections are marked 'SDA' and 'SCL' and allow connection to the Arduino UNO board 'ANALOG IN' pins 4 and 5 or the Rasperberry-PI GPIO port pins 3 and 5 (see Fig. 2.0) or another I²C Master device.

The DS-GPM.S is fitted with pullup jumpers that can be configured to provide the source current necessary for I²C communication. The following jumpers should normally be set when using the UNO board, as long as the I²C bus does not have existing pull-up's provided by another device. These jumpers MUST be removed when using the Raspberry-PI:

I²C communication

Up to four DS-GPM.S modules may be connected to the same UNO / Raspberry-PI board or I²C bus and

accessed individually using their own individual address.

The address is configured with the following jumpers:

ADDRESS

A1

The following table shows how the jumpers are placed for the different binary addresses:

Address xx	A0	_ A1 _
00 (default)	ON	ON
01	OFF	ON
10	ON	OFF
11	OFF	OFF

The binary address (xx) above is used in conjunction with the device ID 11010xxD to form the complete device address i.e. if both jumpers are left connected (default) then the device address would be

 $1101000D_{binary}$.

The 'D' bit determines if a read or a write to the GPM is to be performed. If the 'D' bit is set '1' then a register read is performed or if clear '0' a register write.

To access individual registers a device write must be undertaken by the I²C Master which consists of a Start condition, device ID ('D' bit cleared), register to start write, one or more bytes of data to be written and a stop condition (see Figure 1.0 for I²C write protocol).

There are 3 individual registers that can be written within the GPM that control local IO port setup and output as follows:

GPM I2C address									
1. 1	1	0	1	0	Χ	Χ	0		
XX = Address select pins A1 & A0									
Register a	ddress	;							
2. U	U	U	U	U	U	В	В		
BB = 0 to 2 UU = unused on this implementation Local I/O port direction register									
R0 U	U	U	U	Χ	Χ	Χ	Χ		
X = 1 or 0 (1 = I/O is input, 0 = I/O is output) UU = unused on this implementation Local I/O port input type register**									

R1 U U U V Y X X X = 1 or 0 (1 = input pair is ana, 0= input pair is level) Y = 1 or 0 (1 = Input pair is ana, 0 = Input pair is level) U..U = unused on this implementation

Local I/O port output data register										
R2	U	U	U	U	Χ	Χ	Χ	Х		
X = 1 or 0 (1 = output pin is high, 0= output pin is low										
UU = unused on this implementation										

To read individual data and status
registers a device write then read
must be undertaken by the OOPic /
I ² C Master.

The write consists tion, device ID (" ter to start read ar This is followed by consists of a Start ID ('D' bit set), fe from the register minated with a St GPM also auto in ter specified for e read requested by device, which alle register to be read This allows for ex to Register 5, curi be read in one tra ure 1.1 for I²C rea There are 112 ind that can be read v follows:

1011	ionows.												
	N_7	N_6	N_5	N_4	N_3	N_2	N_1	N_0					
GPM Address													
1.	1	1	0	1	0	Χ	Χ	1					
XX = Address select pins													
Hours tens register													
R0	X	Х	X	Χ	Χ	Н	Н	Н					
HH	= Ten:	s of ho	ours (2	4 hou	r clock	UTC	time)						
	XX = not used												
Hour	s units	regis	ter										
R1	Х	Х	X	Χ	Н	Н	Н	Н					
HH	= Unit	s of ho	ours (2	24 hou	ır clock	(UTC	time)						

хх	XX = Not used										
Minutes tens register											
R2	Χ	X	Χ	Х	Χ	M	M	М			
MM	MM = Tens of minutes (UTC time)										
XX	XX = not used										

Minutes units register											
R3	Χ	Χ	Χ	Χ	М	М	М	М			
MM = Units of minutes (UTC time)											
XX	X X = not used										

Seconds tens register									
R4	Χ	Χ	Χ	Χ	Χ	S	S	S	
	= Tens = not ι	s of se used	conds	(UTC	time)				

Seconds units register											
R5	Χ	Χ	Χ	Χ	S	S	S	S			
SS = Units of seconds (UTC time)											
XX	XX = not used										

Day of month tens register										
R6	Χ	Χ	Χ	Χ	Χ	Χ	D	D		
DD	DD = Tens of day of month									
XX	XX = not used									

Day of month units register											
R7	Χ	Χ	Χ	Х	D	D	D	D			
DD	DD = Units of day of month										
XX	XX = not used										

Month tens register										
R8	X X X X X X M M									
	= Ten = not ι		onths	1						
Month units register										

IVIOIT	n units	regis	ier						
R9	Χ	Χ	Χ	Χ	М	М	М	М	
MM	MM = Units of months								
XX	= not ı	used							
Years	s thou	sands	regist	ter					
R10		X	_ · ·	ΙX	Х	Х	Υ	Υ	
	= Tho			ears	1				
	- not		,						

Years hundreds register								
R11	Χ	Χ	Χ	Χ	Υ	Υ	Υ	Υ
YY = Hundreds of years								
XX =	XX = not used							

al data and status e write then read ten by the OOPic /	Years tens register R12 X X X Y Y Y Y YY = Tens of years XX = not used
ts of a Start condi- 'D' bit clear), regis-	Years units register R13 X X X X Y Y Y Y Y Y = Units of years X X = not used
nd a Stop condition. by a read, which t condition, device	Latitude degrees tens register R14 X X X X D D D D DD = Tens of degrees XX = not used
followed by data specified and ter- top condition. The	Latitude degrees units register R15 X X X X D D D D DD = Units of degrees XX = not used
ncrements the regis- every additional y the Master I ² C	Latitude minutes tens register R16 X X X X M M M M M MM = Tens of minutes XX = not used
ows more than one d in one transaction. xample Register 0	Latitude minutes units register R17 X X X X M M M M M MM = Units of minutes XX = not used
rrent UTC time, to ansaction (see Fig- ead protocol).	Latitude minutes tenths register R18
dividual registers within the GPM as	Latitude minutes hundredths register R19 X X X X X M M M M M M.M = Hundredths of minutes XX = not used
N ₄ N ₅ N ₂ N ₁ N ₆	Latitude minutes thousandths register R20 X X X X M M M M M MM = Thousandths of minutes XX = not used
X X H H H H	Latitude minutes ten thousandths register R21 X X X X M M M M M M.M = Ten thousandths of minutes XX = not used
X	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
X X M M M M	Longitude degrees hundreds register R23 X X X X X X X D D DD = Hundreds of degrees XX = not used
X M M M M M	Longitude degrees tens register R24 X X X D D D D D DD = Tens of degrees XX = not used
X X S S S S J	Longitude degrees units register R25 X X X X X D D D D DD = Units of degrees XX = not used
X S S S S UTC time)	Longitude minutes tens register R26 X X X X X M M M M M M M.M = Tens of minutes XX = not used
er X X X D D D	Longitude minutes units register R27 X X X X X M M M M M M.M = Units of minutes XX = not used
er X D D D D nth	Longitude minutes tenths register R28 X X X X M M M M M M.M = Tenths of minutes XX = not used
X	Longitude minutes hundredths register R29 X X X X X M M M M M M.M = Hundredths of minutes XX = not used
X	Longitude minutes thousandths register R30 X X X X M M M M M M.M = Thousandths of minutes X.X = not used
X	Longitude minutes ten thousandths register R31

 Longitude direction character

 R32
 X
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D</td

X..X = not used

GPS quality indicator R33	Speed units register	Satellite 4 signal level units register R74 X X X L L L L LL = Units of satellite signal level XX = not used
Satellites in use tens register R34	Speed tenths register R55	Satellite 5 ID number tens register R75 X X X X X S S S.S = Tens of satellite ID number X.X = not used
Satellites in use units register R35	GPS Mode character R56	Satellite 5 ID number units register R76 X X X S S S S S.S = Units of satellite ID number X.X = not used
HDOP tens register R36	= Data Not Valid Satellites in view tens register R57	Satellite 5 signal level tens register R77
HDOP units register	Satellites in view units register	Satellite 5 signal level units register R78
R38	Satellite 1 ID number tens register	Satellite 6 ID number tens register
Altitude metres tens of thousands register R39	Satellite 1 ID number units register R60 X X X X X S S S S S.S = Units of satellite ID number	Satellite 6 ID number units register
Altitude metres thousands register R40	XX = not used Satellite 1 signal level tens register R61	Satellite 6 signal level tens register R81
Altitude metres hundreds register R41	XX = not used Satellite 1 signal level units register R62	Satellite 6 signal level units register R82
Altitude metres tens register R42	XX = not used Satellite 2 ID number tens register R63	Satellite 7 ID number tens register R83 X X X X X S S S.S = Tens of satellite ID number X.X = not used
Altitude metres units register R43	XX = not used Satellite 2 ID number units register R64	Satellite 7 ID number units register
Heading degrees (true North) hundreds register R44	XX = not used Satellite 2 signal level tens register R65	Satellite 7 signal level tens register
Heading degrees (true North) tens register R45	XX = not used Satellite 2 signal level units register R66	Satellite 7 signal level units register R86
Heading degrees (true North) units register R46	XX = not used Satellite 3 ID number tens register R67	Satellite 8 ID number tens register
Heading degrees (true North) tenths register R47	XX = not used Satellite 3 ID number units register R68	Satellite 8 ID number units register
Heading degrees (Magnetic North) hundreds register R48	XX = not used Satellite 3 signal level tens register R69	Satellite 8 signal level tens register R89
Heading degrees (Magnetic North) tens register R49	XX = not used Satellite 3 signal level units register R70	Satellite 8 signal level units register R90
Heading degrees (Magnetic North) units register R50	XX = not used Satellite 4 ID number tens register R71	Satellite 9 ID number tens register
Heading degrees (Magnetic North) tenths register R51	XX = not used Satellite 4 ID number units register R72	Satellite 9 ID number units register R92
Speed hundreds register R52	XX = not used Satellite 4 signal level tens register R73	Satellite 9 signal level tens register R93
Speed tens register R53 X	XX = not used	Satellite 9 signal level units register R94

Satellite 10 ID number tens register
Satellite 10 D number units register
Satellite 10 signal level tens register R97 X X X X X L L L L L.L = Tens of satellite signal level XX = not used
Satellite 10 signal level units register R98 X X X X X L L L L LL = Units of satellite signal level XX = not used
Satellite 11 ID number tens register R99 X X X X X X X S S S
Satellite 11 ID number units register
Satellite 11 signal level tens register R101 X X X X X L L L L L.L = Tens of satellite signal level XX = not used
Satellite 11 signal level units register
Satellite 12 ID number tens register
Satellite 12 D number units register
Satellite 12 signal level tens register R105 X X X X X L L L L L.L = Tens of satellite signal level XX = not used
Satellite 12 signal level units register R106 X X X X X L L L L L.L = Units of satellite signal level XX = not used
Local analogue input AN0 value R107 D D D D D D D D D.D = 0 to 255 (Analogue input value for AN0 input) D = 0 if IO line is configured for a normal input

D..D = 0 to 255 (Analogue input value for AN1 input)
D = 0 if IO line is configured for a normal input

Local analogue input AN2 value
R109 D D D D D D D D
D.D = 0 to 255 (Analogue input value for AN2 input)
D = 0 if 10 line is configured for a normal input

Registers R0 to R106 may contain invalid data until satellite information has been gained and stored.

** Note: Analogue inputs can only be configured in pairs IO1&2 and IO3&4.

Register restoration...

All received data is formatted into decimal units (i.e. hundreds, tens & units) and stored in individual registers to facilitate either value or character restoration.

Value restoration can be undertaken by multiplying the required register by its multiplier e.g. to restore the value of register R0 'Hours tens' the register contents are multiplied by ten (10).

Character restoration, to allow the output to a PC via. RS232 or display of data on a LCD panel etc., can be undertaken by the addition of the constant value 48_{decimal} , 30_{hex} .

UTC Time format...

The standard GPS time coordinate system is called Universal Coordinated Time or UTC.

This time format replaced Greenwich Mean Time (GMT) in 1986 and is of the same value. Time zones relative to GMT should add or subtract a standard value to gain the correct time.

Example.

To read the complete time from registers 0 to 5 (Current time = 14:32:56, Device address = default) write:

 $\begin{tabular}{ll} \begin{tabular}{ll} \beg$

Battery replacement

The DS-GPM.S backup battery needs replacing if the real time clock resets to the year 2006 or time to first fix is significantly long.

The CR1220 type lithium battery can be replaced by removing the four screws in the base of the module, removing the cover, sliding out the old battery, sliding in a new battery [positive uppermost] and replacing the cover and screws. Please dispose of the exhausted battery responsibly.

See the website at www.designersystems.co.uk for sample Arduino and Raspberry-PI applications.

Electrical Characteristics ($T_A = 25^{\circ}C$ Typical)

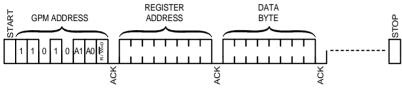
Local analogue input AN1 value

R108 D D D D D D D D D

Parameter	Minimum	Maximum	Units	Notes
Supply Voltage (7-16V)	7	16	V	1
Supply Current	30	90	mA	4
I ² C speed	-	400	kHz	
I ² C pull-up resistance	-	4700	Ω	3
GPS positional accuracy	1	2.5	Metres	
GPS frequency band	-	1575.42	MHz	2
GPS channels	-	56		
ADC input voltage	0	Vcc	V	
ADC measurement cycle	-	100	mS	
IO line output voltage	0.3	Vcc-0.8V	V	
IO line output current	-	20	mA	
IO line input voltage	0	Vcc+0.3V	V	

Absolute Maximum Ratings

Parameter	Minimum	Maximum	Units
Supply Voltage (7-16V)	-0.5	+18	V


Environmental

Parameter	Minimum	Maximum	Units	
Operating Temperature	0	70	°C	
Storage Temperature	-10	80	°C	
Humidity	0	80	%	
Dimensions	Length 56.25	25mm, Width 53.5mm, Height 20m		
Weight	28g			
Immunity & emissions	See statement on page 11			

Notes:

- 1. Supply voltage is supply rail from Arduino board or any other 7-16V supply.
- 2. L1 frequency, C/A code (Standard Positioning Service)
- 3. Value given is to Vcc when activated with appropriate jumpers.
- 4. Maximum value is only during initial acquisition.

Figure 1.0 (I²C write protocol)

Multiple bytes may be written before the 'STOP' condition. Data is written into registers starting at 'REGISTER ADDRESS', then 'REGISTER ADDRESS' +1, then 'REGISTER ADDRESS' +2 etc.

Each byte transfer is acknowledged 'ACK' by the GPM until the 'STOP' condition.

Figure 1.1 (I²C read protocol)

'DATA BYTE 1 & 2' are register values returned from the GPM. Each byte written is acknowledged 'ACK' by the GPM, every byte read is acknowledged 'ACK' by the I²C Master. A Not-acknowledge 'NACK' condition is generated by the I²C Master when it has finished reading.

Figure 2.0 (Connection Schematic for Arduino UNO or Raspberry-Pi I²C communication)

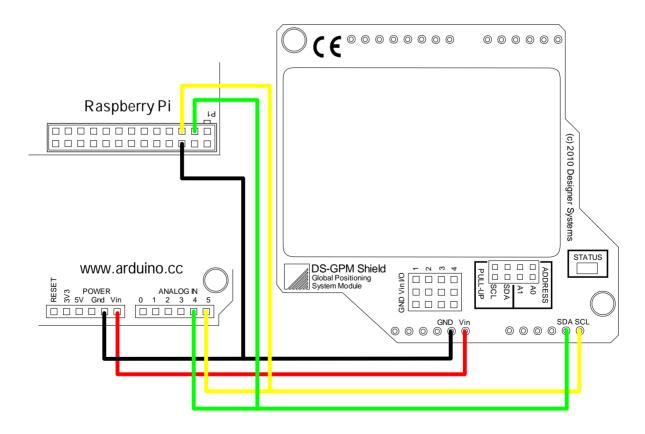
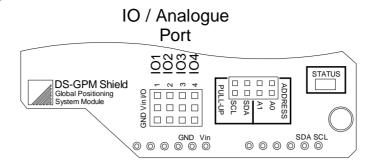
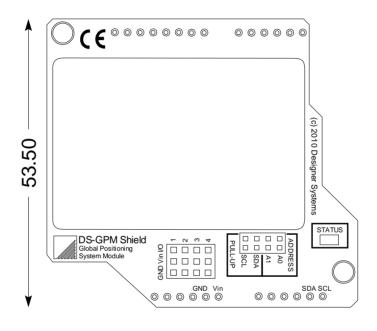
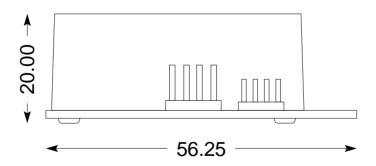





Figure 3.0 (I/O connections)

Mechanical Specifications – Units millimetres

Revision History:

- 1.00 Release version
- 1.01 Release version (Updated IO registers and HDOP registers, added battery recycling statement)
- 1.02 Release version (Added UNO board)
- 1.03 Release version (Added Raspberry-PI information)

WEEE Consumer Notice

This product is subject to Directive 2002/96/EC of the European Parliament and the Council of the European Union on Waste of Electrical and Electronic Equipment (WEEE) and, in jurisdictions adopting that Directive, is marked as being put on the market after August 13, 2005, and should not be disposed of as unsorted municipal/public waste. Please utilise your local WEEE collection facilities in the disposition and

otherwise observe all applicable requirements. For further information on the requirements regarding the disposition of this product in other languages please visit www.designersystems.co.uk

RoHS Compliance

This product complies with Directive 2002/95/EC of the European Parliament and the Council of the European Union on the Restriction of Hazardous Substances (RoHS) which prohibits the use of various heavy metals (lead, mercury, cadmium, and hexavalent chromium), polybrominated biphenyls (PBB) and polybrominated diphenyl ethers (PBDE).

Battery Recycling

The DS-GPM features an internal lithium coin cell that must be recycled at end of life. To access the cell remove the four (4) screws in the bottom of the product and lift off the plastic cover. Using the end of a paper clip, screw driver or other form of pointed tool slide the coin cell from its holder. To preserve natural resources, please recycle the battery properly.

Declaration of ConformityCopyright © 1997-2010 by Designer Systems Ltd

Apparatus name / model number DS-GPM.S Manufacturer Designer Systems, 11 Castle Street, Truro, Cornwall

Conformity via Generic Standard EN50081-1 TR1 3AF, United Kingdom

Generic Standard EN50082-1 **Description of apparatus** Robotic interface peripheral

Conformity criteria For use only within commercial, residential and light industrial applications

We certify that the apparatus identified above conforms to the requirements of Council Directive 2004/108/EC & 2006/95/EC

Signed.

Date 14/5/10

Having made this declaration the CE mark is affixed to this product, its packaging, manual or warranty.

The information appearing in this data sheet is believed to be accurate at the time of publication. However, Designer Systems assumes no responsibility arising from the use of the information supplied. The applications mentioned herein are used solely for the purpose of illustration and Designer Systems makes no warranty or representation that such applications will be suitable without further modification, nor recommends the use of its products for application that may present a risk to human life due to malfunction or otherwise. Designer Systems reserves the right to alter its products without prior notification.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for designer systems manufacturer:

Other Similar products are found below:

Designer Systems