1.8-3.3V Low-Power Precision CMOS Oscillator

General Description

The DSC1004 is a silicon MEMS based CMOS oscillator offering excellent jitter and stability performance over a wide range of supply voltages and temperatures. The device operates from 1 to 150 MHz with supply voltages between 1.8 to 3.3 Volts and extended temperatures from $-40^{\circ} \mathrm{C}$ to $105^{\circ} \mathrm{C}$. The DSC1004 has the same functionality and performance as the DSC1001 but with greater output drive ($\mathrm{C}_{\mathrm{L}}<40 \mathrm{pf}$).

The DSC1004 incorporates an all silicon resonator that is extremely robust and nearly immune to stress related fractures, common to crystal based oscillators. Without sacrificing the performance and stability required of today's systems, a crystal-less design allows for a higher level of reliability, making the DSC1004 ideal for rugged, industrial, and portable applications where stress, shock, and vibration can damage quartz crystal based systems.

Available in industry standard packages, the DSC1004 can be "dropped-in" to the same PCB footprint as standard crystal oscillators.

Block Diagram

Features

- Frequency Range: 1 to 150 MHz
- Exceptional Stability over Temperature - ± 10 PPM , ± 25 PPM, ± 50 PPM
- Operating voltage
- 1.7 to 3.6 V
- Operating Temperature Range
- Ext. Industrial $-40^{\circ} \mathrm{C}$ to $105^{\circ} \mathrm{C}$
- Industrial $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
- Ext. Commercial $-20^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
- Commercial $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
- Low Operating and Standby Current
- 8 mA Operating (40 MHz)
- 15uA Standby
- Ultra Miniature Footprint
- $2.5 \times 2.0 \times 0.85 \mathrm{~mm}$
- $3.2 \times 2.5 \times 0.85 \mathrm{~mm}$
- $5.0 \times 3.2 \times 0.85 \mathrm{~mm}$
- $7.0 \times 5.0 \times 0.85 \mathrm{~mm}$
- Excellent Shock and Vibration Resistance
- Lead Free, RoHS \& Reach SVHC Compliant

Benefits

- Pin for pin "drop in" replacement for industry standard oscillators
- Semiconductor level reliability, significantly higher than quartz
- Short mass production lead-times
- Longer Battery Life / Reduced Power
- Compact Plastic package
- Cost Effective

Applications

- Mobile Applications
- Consumer Electronics
- Portable Electronics
- CCD Clock for VTR Cameras
- Low Profile Applications
- Industrial

[^0]
Absolute Maximum Ratings ${ }^{1}$

Item	Min.	Max	Unit	Condition
Input Voltage	-0.3	VDD +0.3	V	
Junction Temp	-	+150	${ }^{\circ} \mathrm{C}$	
Storage Temp	-55	+150	${ }^{\circ} \mathrm{C}$	
Soldering Temp	-	+260	${ }^{\circ} \mathrm{C}$	40 sec max.
ESD	-		V	
HBM		4000		
MM		200		
CDM		1500		

* See Ordering Information for details

Ordering Code

Recommended Operating Conditions

Parameter	Symbol	Range
Supply Voltage	V_{DD}	$1.7-3.6 \mathrm{~V}$
Output Load	Z_{L}	$\mathrm{R}>10 \mathrm{~K} \Omega, \mathrm{C} \leq 40 \mathrm{pF}$
Operating Temperature		
Option 1	T	-40 to $+105^{\circ} \mathrm{C}$
Option 2	-40 to $+85^{\circ} \mathrm{C}$	
Option 3		-20 to $+70^{\circ} \mathrm{C}$
Option 4	0 to $+70^{\circ} \mathrm{C}$	

Specifications (VDD $=1.8$ to 3.3 v$) \mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$ unless otherwise specified

Parameter	Symbol	Condition	Min	Typ	Max	Unit
Frequency	f_{0}	Single Frequency	1		150	MHz
Frequency Tolerance	Δf	Includes frequency variations due to initial tolerance, temperature and power supply voltage			$\pm 10, \pm 25, \pm 50$	ppm
Aging	Δf	1 year @ $25^{\circ} \mathrm{C}$			± 5	ppm
Supply Current, standby	I_{DD}	$\mathrm{T}=25^{\circ} \mathrm{C}$			15	uA
Output Startup Time ${ }^{2}$	t_{su}	$\mathrm{T}=25^{\circ} \mathrm{C}$		1.0	1.3	ms
Output Disable Time	$t_{\text {DA }}$			20	100	ns
Output Duty Cycle	SYM		45		55	\%
Input Logic Levels Input logic high Input logic low	$\begin{aligned} & \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{~V}_{\mathrm{IL}} \end{aligned}$		$0.75 * V_{\mathrm{DD}}$		$0.25 * V_{D D}$	Volts

Notes:

1. Absolute maximum ratings are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated beyond these limits.
2. $\quad t_{S U}$ is time to stable output frequency after $V_{D D}$ is applied. $t_{S U}$ and $t_{E N}$ (after $E N$ is asserted) are identical values.
3. Measured over 50k clock cycles.
[^1]VDD $=1.8 v$

Parameter	Symbol	Condition		Min	Typ	Max	Unit
Supply Current, no load	I_{DD}	$\begin{aligned} & C_{L}=0 p \\ & R_{L}=\infty \\ & T=25^{\circ} \mathrm{C} \end{aligned}$	$\begin{gathered} 1 \mathrm{MHz} \\ 27 \mathrm{MHz} \\ 70 \mathrm{MHz} \\ 150 \mathrm{MHz} \end{gathered}$		$\begin{array}{r} 5.9 \\ 6.7 \\ 8.1 \\ 10.6 \\ \hline \end{array}$	$\begin{gathered} 6.2 \\ 7.1 \\ 8.5 \\ 11.9 \\ \hline \end{gathered}$	mA
Output Logic Levels Output logic high Output logic low	$\begin{aligned} & \mathrm{V}_{\mathrm{OH}} \\ & \mathrm{~V}_{\mathrm{OL}} \end{aligned}$	$\begin{gathered} -6 \mathrm{~mA} \\ 6 \mathrm{~mA} \\ \hline \end{gathered}$		$\begin{gathered} 0.8 * V_{D D} \\ - \\ \hline \end{gathered}$		$0 . \stackrel{2}{*}^{-} \mathrm{V}_{\mathrm{DD}}$	Volts
Output Transition time Rise Time Fall Time	$\begin{aligned} & \mathrm{t}_{\mathrm{R}} \\ & \mathrm{t}_{\mathrm{F}} \end{aligned}$	$\begin{gathered} \mathrm{C}_{\mathrm{L}}=40 \mathrm{pF} ; \mathrm{T}=25^{\circ} \mathrm{C} \\ 20 \% / 80 \% * \mathrm{~V}_{\mathrm{DD}} \end{gathered}$			$\begin{aligned} & 1.4 \\ & 1.1 \end{aligned}$	$\begin{aligned} & 3 \\ & 3 \end{aligned}$	ns
Output Transition time Rise Time Fall Time	$\begin{aligned} & \mathrm{t}_{\mathrm{R}} \\ & \mathrm{t}_{\mathrm{F}} \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{C}_{\mathrm{L}}=40 \mathrm{pF} ; \mathrm{T}=25^{\circ} \mathrm{C} \\ 10 \% / 90 \% * \mathrm{~V}_{\mathrm{DD}} \end{gathered}$			$\begin{aligned} & 2.2 \\ & 1.8 \\ & \hline \end{aligned}$	$\begin{array}{r} 4 \\ 4 \\ \hline \end{array}$	ns
Period Jitter	J_{p}	$\mathrm{F}=100 \mathrm{MHz}^{3}$			10	15	ps rms

VDD $=2.5 v$

Parameter	Symbol	Condition		Min	Typ	Max	Unit
Supply Current, no load	I_{DD}	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=0 \mathrm{p} \\ & \mathrm{R}_{\mathrm{L}}=\infty \\ & \mathrm{T}=25^{\circ} \mathrm{C} \end{aligned}$	$\begin{gathered} 1 \mathrm{MHz} \\ 27 \mathrm{MHz} \\ 70 \mathrm{MHz} \\ 150 \mathrm{MHz} \end{gathered}$		$\begin{gathered} 6.1 \\ 7.2 \\ 8.9 \\ 12.2 \end{gathered}$	$\begin{array}{r} 6.4 \\ 7.5 \\ 9.4 \\ 13.9 \\ \hline \end{array}$	mA
Output Logic Levels Output logic high Output logic low	$\begin{aligned} & \mathrm{V}_{\mathrm{OH}} \\ & \mathrm{~V}_{\mathrm{OL}} \end{aligned}$			$\begin{gathered} 0.9 * V_{D D} \\ - \\ \hline \end{gathered}$		$0.1 * V_{D D}$	Volts
Output Transition time Rise Time Fall Time	$\begin{aligned} & \mathrm{t}_{\mathrm{R}} \\ & \mathrm{t}_{\mathrm{F}} \\ & \hline \end{aligned}$	$\begin{array}{r} \mathrm{C}_{\mathrm{L}}= \\ 20 \\ \hline \end{array}$	$\begin{aligned} & \mathrm{T}=25^{\circ} \mathrm{C} \\ & \% * V_{D D} \end{aligned}$		$\begin{aligned} & 1.0 \\ & 0.9 \\ & \hline \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \\ & \hline \end{aligned}$	ns
Output Transition time Rise Time Fall Time	$\begin{aligned} & \mathrm{t}_{\mathrm{R}} \\ & \mathrm{t}_{\mathrm{F}} \\ & \hline \end{aligned}$	$\begin{array}{r} \mathrm{C}_{\mathrm{L}}= \\ 10 \\ \hline \end{array}$	$\begin{aligned} & \mathrm{T}=25^{\circ} \mathrm{C} \\ & \% * \mathrm{~V}_{\mathrm{DD}} \end{aligned}$		$\begin{aligned} & 1.7 \\ & 1.5 \\ & \hline \end{aligned}$	$\begin{gathered} 3.5 \\ 3 \\ \hline \end{gathered}$	ns
Period Jitter	J_{p}	F	$0 \mathrm{MHz}^{3}$		5	10	ps rms

VDD $=3.3 v$

Parameter	Symbol	Condition		Min	Typ	Max	Unit
Supply Current, no load	I_{DD}	$\begin{aligned} & C_{L}=0 p \\ & R_{L}=\infty \\ & T=25^{\circ} \mathrm{C} \end{aligned}$	$\begin{gathered} 1 \mathrm{MHz} \\ 27 \mathrm{MHz} \\ 70 \mathrm{MHz} \\ 150 \mathrm{MHz} \end{gathered}$		$\begin{gathered} 6.2 \\ 7.6 \\ 10.0 \\ 14.4 \end{gathered}$	$\begin{gathered} 6.5 \\ 8.0 \\ 10.5 \\ 16.6 \end{gathered}$	mA
Output Logic Levels Output logic high Output logic low	$\begin{aligned} & \mathrm{V}_{\mathrm{OH}} \\ & \mathrm{~V}_{\mathrm{OL}} \end{aligned}$	$\begin{gathered} -8 \mathrm{~mA} \\ 8 \mathrm{~mA} \\ \hline \end{gathered}$		$\begin{gathered} 0.9 * V_{D D} \\ - \\ \hline \end{gathered}$		$0.1 * V_{D D}$	Volts
Output Transition time Rise Time Fall Time	$\begin{aligned} & \mathrm{t}_{\mathrm{R}} \\ & \mathrm{t}_{\mathrm{F}} \end{aligned}$	$\begin{gathered} \mathrm{C}_{\mathrm{L}}=40 \mathrm{pF} ; \mathrm{T}=25^{\circ} \mathrm{C} \\ 20 \% / 80 \% * \mathrm{~V}_{\mathrm{DD}} \\ \hline \end{gathered}$			$\begin{aligned} & 0.8 \\ & 0.8 \\ & \hline \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \\ & \hline \end{aligned}$	ns
Output Transition time Rise Time Fall Time	$\begin{aligned} & \mathrm{t}_{\mathrm{R}} \\ & \mathrm{t}_{\mathrm{F}} \end{aligned}$	$\begin{gathered} \mathrm{C}_{\mathrm{L}}=40 \mathrm{pF} ; \mathrm{T}=25^{\circ} \mathrm{C} \\ 10 \% / 90 \% * \mathrm{~V}_{\mathrm{DD}} \end{gathered}$			$\begin{aligned} & 1.4 \\ & 1.3 \\ & \hline \end{aligned}$	$\begin{aligned} & 3 \\ & 3 \\ & \hline \end{aligned}$	ns
Period Jitter	J_{p}	$\mathrm{F}=100 \mathrm{MHz}^{3}$			5	10	ps rms

[^2]
Output Waveform

Standby Function

Standby\# (pin 1)	Output (pin 3)
Hi Level	Output ON
Open (no connect)	Output ON
Low Level	High Impedance

Test Circuit

Board Layout (recommended)

Solder Reflow Profile

MSL $\mathbf{1}$ @ $\mathbf{2 6 0}{ }^{\circ} \mathrm{C}$ refer to JSTD-020C	
Ramp-Up Rate $\left(200^{\circ} \mathrm{C}\right.$ to Peak Temp)	$3^{\circ} \mathrm{C} / \mathrm{Sec} \mathrm{Max}$.
Preheat Time $150^{\circ} \mathrm{C}$ to $200^{\circ} \mathrm{C}$	$60-180 \mathrm{Sec}$
Time maintained above $217^{\circ} \mathrm{C}$	$60-150 \mathrm{Sec}$
Peak Temperature	$255-260^{\circ} \mathrm{C}$
Time within $5^{\circ} \mathrm{C}$ of actual Peak	$20-40 \mathrm{Sec}$
Ramp-Down Rate	$6^{\circ} \mathrm{C} / \mathrm{Sec} \mathrm{Max}$.
Time $25^{\circ} \mathrm{C}$ to Peak Temperature	8 min Max.

Package Dimensions

7.0×5.0 mm Plastic Package

[^3]
5.0×3.2 mm Plastic Package

External Dimensions

No.	Pin Terminal
1	Standby\#
2	GND
3	Output
4	VDD

Recommended Land Pattern

units: mm [inch]

$3.2 \times 2.5 \mathrm{~mm}$ Plastic Package

No.	Pin Terminal
1	Standby\#
2	GND
3	Output
4	VDD

units: mm [inch]

[^4]
2.5×2.0 mm Plastic Package

Ordering Information

DSC1004 PTS - xxx.xxxx T

PART NUMBERING GUIDE				
Package (Plastic QFN)	Temperature	Stability	Frequency	Packing Option
$\begin{array}{ll} \text { P=A: } & 7.0 \times 5.0 \mathrm{~mm} \\ \text { P=B: } & 5.0 \times 3.2 \mathrm{~mm} \\ \text { P=C: } & 3.2 \times 2.5 \mathrm{~mm} \\ \mathbf{P}=\mathrm{D}: & 2.5 \times 2.0 \mathrm{~mm} \end{array}$	$\begin{array}{cc} \hline \mathbf{T}=\mathbf{C}: & 0^{\circ} \sim+70^{\circ} \mathrm{C} \\ \mathbf{T}=\mathbf{E}: & -20^{\circ} \sim+70^{\circ} \mathrm{C} \\ \mathbf{T}=\mathbf{I}: & -40^{\circ} \sim+85^{\circ} \mathrm{C} \\ \mathbf{T}=\mathbf{L}: & -40^{\circ} \sim+105^{\circ} \mathrm{C} \end{array}$	$\begin{aligned} & \mathbf{S}=\mathbf{1}: \pm 50 \mathrm{ppm} \\ & \mathbf{S}=\mathbf{2}: \pm 25 \mathrm{ppm} \\ & \mathbf{S}=\mathbf{5}: \pm 10 \mathrm{ppm} \end{aligned}$	XXX.XXXX	Blank: Tubes T: Tape \& Reel

Example: DSC1004CE1-123.0000T

The example part number above is a 123.0000 MHz oscillator in Plastic $3.2 \times 2.5 \mathrm{~mm}$ package, with $\pm 50 \mathrm{ppm}$ stability over an operating temperature of -20 to $+70^{\circ} \mathrm{C}$, shipped in Tape and Reel.

Disclaimer:

Micrel makes no representations or warranties with respect to the accuracy or completeness of the information furnished in this data sheet. This information is not intended as a warranty and Micrel does not assume responsibility for its use. Micrel reserves the right to change circuitry, specifications and descriptions at any time without notice. No license, whether express, implied, arising by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Micrel's terms and conditions of sale for such products, Micrel assumes no liability whatsoever, and Micrel disclaims any express or implied warranty relating to the sale and/or use of Micrel products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right.

[^5]
X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Standard Clock Oscillators category:
Click to view products by Microchip manufacturer:
Other Similar products are found below :
EP1400SJTSC-125.000M 601137 601252 CSX750FBC-24.000M-UT CSX750FBC-33.333M-UT CSX750FCC-3.6864M-UT F335-12 F33525 F535L-50 DSC506-03FM2 ASA-20.000MHZ-L-T ASA-25.000MHZ-L-T ASA-27.000MHZ-L-T ASV-20.000MHZ-LR-T ECS-2018-160-BN-TR EL13C7-H2F-125.00M MXO45HS-2C-66.6666MHZ NBXDBB017LN1TAG NBXHBA019LN1TAG SiT1602BI-22-33E50.000000E SIT8003AC-11-33S-2.04800X SiT8256AC-23-33E-156.250000X SIT8918AA-11-33S-50.000000G SM4420TEV-40.0M-T1K SMA4306-TL-H F335-24 F335-40 F335-50 F535L-10 F535L-12 F535L-16 F535L-24 F535L-27 F535L-48 PE7744DW-100.0M CSX750FBC-20.000M-UT CSX-750FBC33333000T CSX750FBC-4.000M-UT CSX750FBC-7.3728M-UT CSX750FBC-8.000M-UT CSX750FCC14745600T CSX750FCC-16.000M-UT CSX-750FCC40000000T CSX750FCC-4.000M-UT ASA-22.000MHZ-L-T ASA2-26.000MHZ-L-T ASA-40.000MHZ-L-T ASA-48.000MHZ-L-T ASA-60.000MHZ-L-T ASF1-3.686MHZ-N-K-S

[^0]:
 implied warranties of merchantability or fitness for a particular use.

[^1]:
 implied warranties of merchantability or fitness for a particular use.

[^2]: All Rights Reserved. No part of this document may be copied or reproduced in any form without the prior written permission of Micrel, Inc. Micrel Inc. may update or make changes to the contents, products, programs or services described at any time without notice. This document neither states nor implies any kind of warranty, including, but not limited to implied warranties of merchantability or fitness for a particular use. Page 3

[^3]:
 implied warranties of merchantability or fitness for a particular use.
 Page 5

[^4]:
 implied warranties of merchantability or fitness for a particular use.
 Page 6

[^5]: All Rights Reserved. No part of this document may be copied or reproduced in any form without the prior written permission of Micrel, Inc. Micrel Inc. may update or make changes to the contents, products, programs or services described at any time without notice. This document neither states nor implies any kind of warranty, including, but not limited to implied warranties of merchantability or fitness for a particular use.
 Page 7

