FAIRCHILD

SEMICロNロபСTロR®

FST16211

24－Bit Bus Switch

General Description

The Fairchild Switch FST16211 provides 24－bits of high－ speed CMOS TTL－compatible bus switching．The low On Resistance of the switch allows inputs to be connected to outputs without adding propagation delay or generating additional ground bounce noise．
The device is organized as a 12 －bit or 24 －bit bus switch． When $\overline{O E}_{1}$ is LOW，the switch is $O N$ and Port $1 A$ is con－ nected to Port 1 B ．When $\overline{\mathrm{OE}}_{2}$ is LOW，Port 2 A is connected to Port 2B．When $\overline{\mathrm{OE}}_{1 / 2}$ is HIGH，a high impedance state exists between the A and B Ports．

July 1997

Revised July 2002

Ordering Code：

Order Number	Package Number	Package Description
FST16211G （Note 1）（Note 2）	BGA54A	54－Ball Fine－Pitch Ball Grid Array（FBGA），JEDEC MO－205，5．5mm Wide
FST16211MEA （Note 2）	MS56A	56－Lead Shrink Small Outline Package（SSOP），JEDEC MO－118，0．300＂Wide
FST16211MTD （Note 2）	MTD56	56－Lead Thin Shrink Small Outline Package（TSSOP），JEDEC MO－153，6．1mm Wide
Note 1：Ordering code＂ G ＂indicates Trays．		

Note 1：Ordering code＂ G ＂indicates Trays．
Note 2：Devices also available in Tape and Reel．Specify by appending the suffix letter＂X＂to the ordering code．

Logic Diagram

Absolute Maximum Ratings(Note 3)		Recommended Operating
Supply Voltage (V_{CC})	-0.5 V to +7.0 V	Conditions (Note 6)
DC Switch Voltage (V_{S}) (Note 4)	-0.5 V to +7.0 V	Power Supply Operating ($\left.\mathrm{V}_{\mathrm{CC}}\right)$
DC Input Voltage ($\mathrm{V}_{\text {IN }}$) (Note 5)	-0.5 V to +7.0 V	
DC Input Diode Current (I_{IK}) $\mathrm{V}_{\text {IN }}<0 \mathrm{~V}$	$-50 \mathrm{~mA}$	Output Voltage ($\mathrm{V}_{\text {OUT }}$) 0 V to 5.5 V
DC Output (lout) Sink Current	128 mA	Input Rise and Fall Time ($\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$)
	+/- 100 mA	Switch Control Input $\quad 0 \mathrm{~ns} / \mathrm{V}$ to $5 \mathrm{~ns} / \mathrm{V}$
Storage Temperature Range ($\mathrm{T}_{\text {STG }}$)	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	Switch I/O $0 \mathrm{~ns} / \mathrm{V}$ to DC
		Free Air Operating Temperature (T_{A}) $\quad-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
		Note 3: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum rating. The "Recommended Operating Conditions" table will define the conditions for actual device operation.
		Note 4: V_{S} is the voltage observed/applied at either A or B Ports across the switch.
		Note 5: The input and output negative voltage ratings may be exceeded if the input and output diode current ratings are observed.
		Note 6: Unused control inputs must be held HIGH or LOW. They may not float.

DC Electrical Characteristics

Symbol	Parameter	V_{Cc} (V)	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			Units	Conditions
			Min	Typ (Note 7)	Max		
V_{IK}	Clamp Diode Voltage	4.5			-1.2	V	$\mathrm{I}_{\mathrm{I}}=-18 \mathrm{~mA}$
V_{IH}	HIGH Level Input Voltage	4.0-5.5	2.0			V	
$\mathrm{V}_{\text {IL }}$	LOW Level Input Voltage	4.0-5.5			0.8	V	
I	Input Leakage Current	5.5			± 1.0	$\mu \mathrm{A}$	$0 \leq \mathrm{V}_{\text {IN }} \leq 5.5 \mathrm{~V}$
		0			10	$\mu \mathrm{A}$	$\mathrm{V}_{1 \mathrm{~N}}=5.5 \mathrm{~V}$
I_{OZ}	OFF-STATE Leakage Current	5.5			± 1.0	$\mu \mathrm{A}$	$0 \leq \mathrm{A}, \mathrm{B} \leq \mathrm{V}_{\mathrm{CC}}$
R_{ON}	Switch On Resistance (Note 8)	4.5		4	7	Ω	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{IN}}=64 \mathrm{~mA}$
		4.5		4	7	Ω	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}, \mathrm{I}_{\text {IN }}=30 \mathrm{~mA}$
		4.5		8	12	Ω	$\mathrm{V}_{\mathrm{IN}}=2.4 \mathrm{~V}, \mathrm{I}_{\mathrm{IN}}=15 \mathrm{~mA}$
		4.0		11	20	Ω	$\mathrm{V}_{\mathrm{IN}}=2.4 \mathrm{~V}, \mathrm{I}_{\mathrm{IN}}=15 \mathrm{~mA}$
$\overline{\mathrm{I} C}$	Quiescent Supply Current	5.5			3	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}$ or GND, $\mathrm{I}_{\text {OUT }}=0$
$\Delta \mathrm{I}_{\mathrm{CC}}$	Increase in $\mathrm{I}_{\text {CC }}$ per Input	5.5			2.5	mA	One Input at 3.4 V Other Inputs at V_{CC} or GND

Note 8: Measured by the voltage drop between A and B pins at the indicated current through the switch. On Resistance is determined by the lower of the voltages on the two (A or B) pins.

AC Electrical Characteristics

Symbol	Parameter	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}, \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{U}}=\mathrm{R}_{\mathrm{D}}=500 \Omega \end{gathered}$				Units	Conditions	Figure Number
		$\mathrm{V}_{\mathrm{CC}}=4.5-5.5 \mathrm{~V}$		$\mathrm{V}_{\mathrm{CC}}=4.0 \mathrm{~V}$				
		Min	Max	Min	Max			
$\mathrm{t}_{\text {PHL }}, \mathrm{t}_{\text {PLH }}$	Propagation Delay Bus to Bus (Note 9)		0.25		0.25	ns	$\mathrm{V}_{1}=$ OPEN	Figures 1, 2
$\mathrm{t}_{\text {PZH }}, \mathrm{t}_{\text {PZL }}$	Output Enable Time	1.5	6.0		6.5	ns	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=7 \mathrm{~V} \text { for } \mathrm{t}_{\mathrm{PZL}} \\ & \mathrm{~V}_{\mathrm{I}}=\text { OPEN for } t_{\mathrm{PZH}} \end{aligned}$	$\begin{gathered} \hline \text { Figures } \\ 1,2 \end{gathered}$
$\mathrm{t}_{\text {PHZ }}, \mathrm{t}_{\text {PLZ }}$	Output Disable Time	1.5	7.0		7.2	ns	$\begin{aligned} & V_{1}=7 V \text { for } t_{P L Z} \\ & V_{1}=\text { OPEN for } t_{\text {PHZ }} \end{aligned}$	$\begin{gathered} \text { Figures } \\ 1,2 \end{gathered}$

Resistance of the switch and the 50 pF load capacitance, when driven by an ideal voltage source (zero output impedance).
Capacitance (Note 10)

Symbol	Parameter	Typ	Max	Units	Conditions
C_{IN}	Control Pin Input Capacitance	3		pF	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$
$\mathrm{C}_{\mathrm{I} / \mathrm{O}}$	Input/Output Capacitance	6		pF	$\mathrm{V}_{\mathrm{CC}}, \overline{\mathrm{OE}}=5.0 \mathrm{~V}$

AC Loading and Waveforms

Note: Input driven by 50Ω source terminated in 50Ω
Note: C_{L} includes load and stray capacitance
Note: Input PRR $=1.0 \mathrm{MHz}, \mathrm{t}_{\mathrm{W}}=500 \mathrm{~ns}$
FIGURE 1. AC Test Circuit

FIGURE 2. AC Waveforms

Technology Description

The Fairchild Switch family derives from and embodies Fairchild's proven switch technology used for several years in its 74LVX3L384 (FST3384) bus switch product.

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
www.fairchildsemi.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Digital Bus Switch ICs category:
Click to view products by ON Semiconductor manufacturer:
Other Similar products are found below :
MT8986AE1 MT90812AP1 MT90869AG2 CA91L8260B-100CEV TC7MPB9307FT(EL) MT8986AP1 72V8985JG8 732757E
ZL50020QCG1 ZL50012QCG1 PI3C32X384BE PI5C3861QEX ZL50023GAG2 MT8986AL1 MT8981DP1 PI3VT3245-ALE
ZL50016GAG2 TC7MBL3257CFT(EL) PI3CH800QE MT90823AB1 ZL50075GAG2 PI5C32X245BEX PI5C3126QEX PI5C3125QEX
PI3VT3245-AQE PI3CH800QEX PI3C3384QE PI3C3305UEX PI3B3861QEX PI3B3861QE PI3B32X245BEX PI3B3245QEX PI3B3245QE PI3CH800ZHEX PI3CH1000LE PI3CH400ZBEX 728981JG8 TC7MBL3257CFK(EL) 728985JG8 PI3CH401LE PI3CH401LEX FST3126DR2G QS34X245Q3G8 QS3VH125S1G8 TC7WBL3305CFK(5L,F 74CB3Q3125DBQRE4 74FST6800PGG8 74CB3Q3244DBQRE4 74CBTLV3125PGG8 TC7MBL3125CFT(EL)

