General Purpose Sensitive Gate Silicon Controlled Rectifier

Reverse Blocking Thyristor

PNPN device designed for line-powered general purpose applications such as relay and lamp drivers, small motor controls, gate drivers for larger thyristors, and sensing and detection circuits. Supplied in a cost effective plastic TO-226AA package.

Features

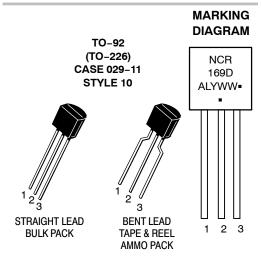
- Sensitive Gate Allows Direct Triggering by Microcontrollers and Other Logic Circuits
- On-State Current Rating of 0.8 Amperes RMS at 80°C
- Surge Current Capability 10 Amperes
- Immunity to dV/dt 20 V/µsec Minimum at 110°C
- Glass-Passivated Surface for Reliability and Uniformity
- This is a Pb-Free Device

MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

Rating	Symbol	Value	Unit
Peak Repetitive Off–State Voltage (Note 1.) (T _J = -40 to 110°C, Sine Wave, 50 to 60 Hz; Gate Open)	V _{DRM,} V _{RRM}	400	Volts
On-State RMS Current (T _C = 80°C) 180° Conduction Angles	I _{T(RMS)}	0.8	Amp
Peak Non-Repetitive Surge Current (1/2 Cycle, Sine Wave, 60 Hz, T _J = 25°C)	I _{TSM}	10	Amps
Circuit Fusing Consideration (t = 10 ms)	I ² t	0.415	A ² s
Forward Peak Gate Power $(T_A = 25^{\circ}C, \text{ Pulse Width } \leq 1.0 \mu\text{s})$	P _{GM}	0.1	Watt
Forward Average Gate Power (T _A = 25°C, t = 20 ms)	P _{G(AV)}	0.10	Watt
Forward Peak Gate Current (T _A = 25°C, Pulse Width ≤ 1.0 μs)	I _{GM}	1.0	Amp
Reverse Peak Gate Voltage $(T_A = 25^{\circ}C, \text{ Pulse Width } \leq 1.0 \mu\text{s})$	V_{GRM}	5.0	Volts
Operating Junction Temperature Range @ Rate V _{RRM} and V _{DRM}	TJ	-40 to 110	°C
Storage Temperature Range	T _{stg}	–40 to 150	°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

 V_{DRM} and V_{RRM} for all types can be applied on a continuous basis. Ratings apply for zero or negative gate voltage; however, positive gate voltage shall not be applied concurrent with negative potential on the anode. Blocking voltages shall not be tested with a constant current source such that the voltage ratings of the devices are exceeded.



ON Semiconductor®

http://onsemi.com

SCR 0.8 AMPERES RMS 400 VOLTS

A = Assembly Location

L = Wafer Lot

Y = Year

WW = Work Week

■ = Pb-Free Package

(*Note: Microdot may be in either location)

PIN ASSIGNMENT		
1 Cathode		
2	Gate	
3	Anode	

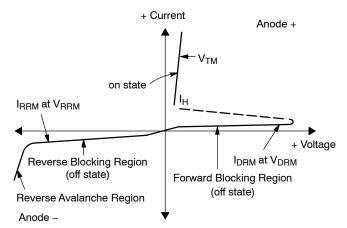
ORDERING INFORMATION

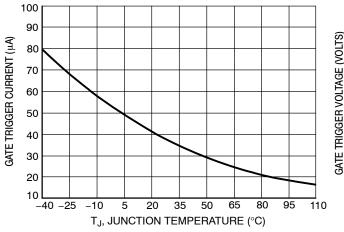
See detailed ordering and shipping information in the package dimensions section on page 5 of this data sheet.

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance – Junction to Case – Junction to Ambient	R _{θJC} R _{θJA}	75 200	°C/W
Lead Solder Temperature (<1/16" from case, 10 secs max)	TL	260	°C

ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted)

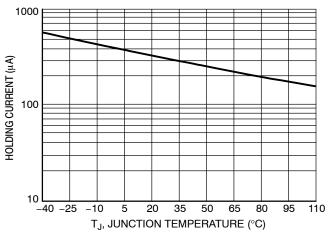

Characteristic		Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS		•	1	1 "		<u>I</u> .
Peak Repetitive Forward or Reverse Blocking Current (Note 1.) (V _D = Rated V _{DRM} and V _{RRM} ; R _{GK} = 1.0 kΩ) ON CHARACTERISTICS	T _C = 25°C T _C = 110°C	I _{DRM} , I _{RRM}		- -	10 0.1	μA mA
Peak Forward On–State Voltage ^(*) (I _{TM} = 1.0 Amp Peak @ T _A = 25°C)		V_{TM}	-	_	1.7	Volts
Gate Trigger Current (Continuous dc) (Note 2.) (V _{AK} = 12 V, R _L = 100 Ohms)	T _C = 25°C	I _{GT}	-	40	200	μА
Holding Current (Note 2.) (V _{AK} = 12 V, I _{GT} = 0.5 mA)	$T_C = 25^{\circ}C$ $T_C = -40^{\circ}C$	I _H	- -	0.5 -	5.0 10	mA
Latch Current (V _{AK} = 12 V, I _{GT} = 0.5 mA, R _{GK} = 1.0 k)	$T_C = 25^{\circ}C$ $T_C = -40^{\circ}C$	ΙL	- -	0.6 -	10 15	mA
Gate Trigger Voltage (Continuous dc) (Note 2.) (V _{AK} = 12 V, R _L = 100 Ohms, I _{GT} = 10 mA)	$T_C = 25^{\circ}C$ $T_C = -40^{\circ}C$	V _{GT}	- -	0.62 -	0.8 1.2	Volts
DYNAMIC CHARACTERISTICS						
Critical Rate of Rise of Off–State Voltage $(V_D = Rated\ V_{DRM},\ Exponential\ Waveform,\ R_{GK} = 1$ $T_J = 110^{\circ}C)$	1000 Ohms,	dV/dt	20	35	_	V/μs
Critical Rate of Rise of On–State Current (I _{PK} = 20 A; Pw = 10 μsec; diG/dt = 1.0 A/μsec, Igt = 20 mA)		di/dt	_	-	50	A/μs


^{*}Indicates Pulse Test: Pulse Width ≤ 1.0 ms, Duty Cycle ≤ 1%.

- 1. $R_{GK} = 1000$ Ohms included in measurement.
- 2. Does not include R_{GK} in measurement.

Voltage Current Characteristic of SCR

Symbol	Parameter
V _{DRM}	Peak Repetitive Off State Forward Voltage
I _{DRM}	Peak Forward Blocking Current
V _{RRM}	Peak Repetitive Off State Reverse Voltage
I _{RRM}	Peak Reverse Blocking Current
V_{TM}	Peak on State Voltage
I _H	Holding Current



1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 40 –25 50 80 95 110 -10 20 35 65 T_J, JUNCTION TEMPERATURE (°C)

Figure 1. Typical Gate Trigger Current versus
Junction Temperature

Figure 2. Typical Gate Trigger Voltage versus
Junction Temperature

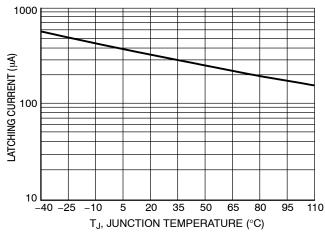
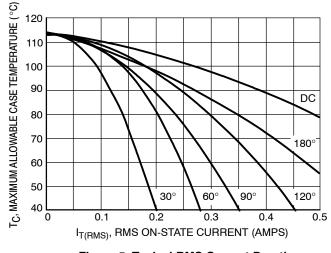



Figure 3. Typical Holding Current versus Junction Temperature

Figure 4. Typical Latching Current versus Junction Temperature

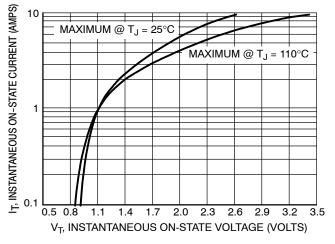


Figure 5. Typical RMS Current Derating

Figure 6. Typical On-State Characteristics

TO-92 EIA RADIAL TAPE IN FAN FOLD BOX OR ON REEL

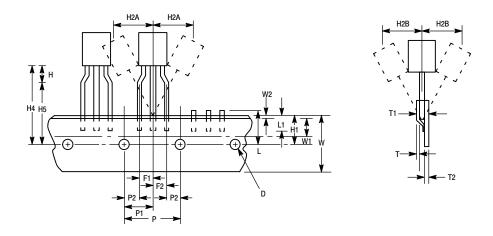
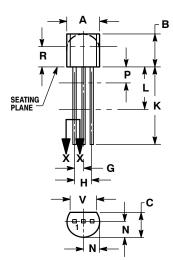


Figure 7. Device Positioning on Tape

	S _I			Specification	
		Inches Millime		neter	
Symbol	Item	Min	Max	Min	Max
D	Tape Feedhole Diameter	0.1496	0.1653	3.8	4.2
D2	Component Lead Thickness Dimension	0.015	0.020	0.38	0.51
F1, F2	Component Lead Pitch	0.0945	0.110	2.4	2.8
Н	Bottom of Component to Seating Plane	.059	.156	1.5	4.0
H1	Feedhole Location	0.3346	0.3741	8.5	9.5
H2A	Deflection Left or Right	0	0.039	0	1.0
H2B	Deflection Front or Rear	0	0.051	0	1.0
H4	Feedhole to Bottom of Component	0.7086	0.768	18	19.5
H5	Feedhole to Seating Plane	0.610	0.649	15.5	16.5
L	Defective Unit Clipped Dimension	0.3346	0.433	8.5	11
L1	Lead Wire Enclosure	0.09842	-	2.5	-
Р	Feedhole Pitch	0.4921	0.5079	12.5	12.9
P1	Feedhole Center to Center Lead	0.2342	0.2658	5.95	6.75
P2	First Lead Spacing Dimension	0.1397	0.1556	3.55	3.95
T	Adhesive Tape Thickness	0.06	0.08	0.15	0.20
T1	Overall Taped Package Thickness	-	0.0567	-	1.44
T2	Carrier Strip Thickness	0.014	0.027	0.35	0.65
W	Carrier Strip Width	0.6889	0.7481	17.5	19
W1	Adhesive Tape Width	0.2165	0.2841	5.5	6.3
W2	Adhesive Tape Position	.0059	0.01968	.15	0.5

NOTES:

- 1. Maximum alignment deviation between leads not to be greater than 0.2 mm.
- 2. Defective components shall be clipped from the carrier tape such that the remaining protrusion (L) does not exceed a maximum of 11 mm.
- 3. Component lead to tape adhesion must meet the pull test requirements.
- 4. Maximum non-cumulative variation between tape feed holes shall not exceed 1 mm in 20 pitches.
- 5. Holddown tape not to extend beyond the edge(s) of carrier tape and there shall be no exposure of adhesive.
- 6. No more than 1 consecutive missing component is permitted.
- 7. A tape trailer and leader, having at least three feed holes is required before the first and after the last component.
- 8. Splices will not interfere with the sprocket feed holes.

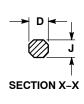

ORDERING & SHIPPING INFORMATION: MCR100 Series packaging options, Device Suffix

Device	Description of TO92 Tape Orientation	Shipping
NCR169DG	N/A, Bulk	Bulk in Box (5K/Box) (Pb-Free)
NCR169DRLRAG	Round side of TO92 and adhesive tape visible	Radial Tape and Reel (2K/Reel) (Pb-Free)

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

PACKAGE DIMENSIONS

TO-92 (TO-226) CASE 029-11 ISSUE AM



В

STRAIGHT LEAD **BULK PACK**

BENT LEAD TAPE & REEL AMMO PACK

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 2. CONTROLLING DIMENSION: INCH.
- CONTOUR OF PACKAGE BEYOND DIMENSION R IS UNCONTROLLED.
- LEAD DIMENSION IS UNCONTROLLED IN P AND BEYOND DIMENSION K MINIMUM.

	INCHES MILLIMETER		IETERS	
DIM	MIN	MAX	MIN	MAX
Α	0.175	0.205	4.45	5.20
В	0.170	0.210	4.32	5.33
С	0.125	0.165	3.18	4.19
D	0.016	0.021	0.407	0.533
G	0.045	0.055	1.15	1.39
Н	0.095	0.105	2.42	2.66
7	0.015	0.020	0.39	0.50
K	0.500		12.70	
L	0.250		6.35	
N	0.080	0.105	2.04	2.66
P		0.100		2.54
R	0.115		2.93	
٧	0.135		3.43	

STYLE 10:

PIN 1. CATHODE

- GATE
- ANODE

NOTES:

- NOTES.

 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.

 2. CONTROLLING DIMENSION: MILLIMETERS.

 3. CONTOUR OF PACKAGE BEYOND
- DIMENSION R IS UNCONTROLLED. LEAD DIMENSION IS UNCONTROLLED IN P
- AND BEYOND DIMENSION K MINIMUM

	MILLIMETERS		
DIM	MIN	MAX	
Α	4.45	5.20	
В	4.32	5.33	
С	3.18	4.19	
D	0.40	0.54	
G	2.40	2.80	
J	0.39	0.50	
K	12.70		
N	2.04	2.66	
P	1.50	4.00	
R	2.93		
٧	3.43		

ON Semiconductor and un are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, ON Semiconductor and was registered trademarks of Semiconductor Components Industries, LLC (SCILC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, super shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity

PUBLICATION ORDERING INFORMATION

Т SEATING PLANE

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada

Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center

Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for SCRs category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below:

NTE5428 NTE5448 NTE5457 NTE5511 T1500N16TOF VT T720N18TOF T880N14TOF T880N16TOF TS110-7UF TT104N12KOF-A
TT104N12KOF-K TT162N16KOF-A TT162N16KOF-K TT330N16AOF VS-16RIA100 VS-22RIA20 VS-2N5206 VS-2N685 VS40TPS08A-M3 VS-ST230S12P1VPBF 057219R CLB30I1200HB T1190N16TOF VT T1220N22TOF VT T201N70TOH T830N18TOF
TD92N16KOF-A TT250N12KOF-K VS-2N692 VS-2N689 VS-25RIA40 VS-16RIA120 VS-10RIA120 VS-30TPS08PBF NTE5427
NTE5442 VS-2N690 VS-ST300S20P0PBF TT251N16KOF-K VS-22RIA100 VS-16RIA40 CR02AM-8#F00 VS-ST110S12P0VPBF
TD250N16KOF-A VS-ST110S16P0 VS-10RIA10 VS-16TTS08-M3 TS110-7A1-AP T930N36TOF VT T2160N24TOF VT