14-Bit, 4-Channel, Software-Programmable, Multiranging, Simultaneous-Sampling ADC

Abstract

General Description The MAX1338 14-bit, analog-to-digital converter (ADC) offers four simultaneously sampled, fully differential input channels, with independent track-and-hold (T/H) circuitry for each channel. The input channels are individually software programmable for input ranges of $\pm 10 \mathrm{~V}, \pm 5 \mathrm{~V}$, $\pm 2.5 \mathrm{~V}$, and $\pm 1.25 \mathrm{~V}$. The input channels feature fault tolerance to $\pm 17 \mathrm{~V}$. The internal T / H circuits have a 16 ns aperture delay and 100ps aperture-delay matching. A 14-bit parallel bus provides the conversion result with a maximum per-channel output rate of 150 ksps (600ksps for all four channels). The MAX1338 has an on-board oscillator and 2.5 V internal reference. An external clock and/or reference can also be used. The MAX1338 operates from a +5 V supply for analog inputs and digital core. The device operates from a +2.7 V to +5.25 V supply for the digital I/O lines. The MAX1338 features two power-saving modes: standby mode and shutdown mode. Standby mode allows rapid wake-up and reduces quiescent current to 4 mA (typ), and shutdown mode reduces sleep current to less than $10 \mu \mathrm{~A}$ (typ). The MAX1338 is available in an $8 \mathrm{~mm} \times 8 \mathrm{~mm} \times 0.8 \mathrm{~mm}$, 56-pin, thin QFN package. The device operates over the extended $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ temperature range.

Multiple-Channel Data Recorders
Vibration Analysis
Motor Control: 3-Phase Voltage, Current, and
Power Measurement
Optical Communication Equipment

Multiple-Channel Data Recorders
Vibration Analysis
Motor Control: 3-Phase Voltage, Current, and

Optical Communication Equipment
\qquad

- 150ksps Sample Rate per Channel
- All Four Input Channels Simultaneously Sampled

16ns Aperture Delay
100ps Aperture-Delay Matching

- Channel-Independent Software-Selectable Input

Range: $\pm 10 \mathrm{~V}, \pm 5 \mathrm{~V}, \pm 2.5 \mathrm{~V}, \pm 1.25 \mathrm{~V}$

- $\pm 17 \mathrm{~V}$ Fault-Tolerant Inputs
- Dynamic Performance at 10kHz Input

SNR: 77dB
SINAD: 76dB
SFDR: 98dBc
THD: -83dBc

- DC Performance

INL: ± 2 LSB
DNL: ± 1 LSB
Offset Error: ± 4 LSB
Gain Error: $\pm 0.1 \%$ FSR

- 14-Bit Parallel Interface
- Internal Clock and Reference Voltage
- +5V Analog and Digital Supplies
- +2.7V to +5.25V Digital I/O Supply
- 56-Pin Thin QFN Package ($8 \mathrm{~mm} \times 8 \mathrm{~mm} \times 0.8 \mathrm{~mm}$)

Ordering Information

PART	TEMP RANGE	PIN-PACKAGE
MAX1338ETN	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	56 Thin QFN-EP*

${ }^{*} E P=$ Exposed pad.

14-Bit, 4-Channel, Soft ware-Programmable, Multiranging, Simultaneous-Sampling ADC

ABSOLUTE MAXIMUM RATINGS

$\overline{\mathrm{CS}}, \overline{\mathrm{RD}}, \overline{\mathrm{WR}}, \mathrm{CONVST}$, to DRGND........-0.3V to (DRVDD +0.3 V) SHDN, STANDBY, CLK, EOC,
EOLC to DRGND ..
, EOC

-
-0.3 V to $\left(\mathrm{DRV}_{\mathrm{DD}}+0.3 \mathrm{~V}\right)$

Maximum Current into Any Pin .. $\pm 50 \mathrm{~mA}$
Continuous Power Dissipation $\left(\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}\right)$
56-Pin Thin QFN (derate $31.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$).... 2500 mW
Operating Temperature Range $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range $65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Maximum Junction Temperature
$+150^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10s)
$+300^{\circ} \mathrm{C}$
Junction to Ambient Thermal Resistance θ_{JA}................... $32^{\circ} \mathrm{C} / \mathrm{W}$
Junction to Case Thermal Resistance $\theta_{\mathrm{Jc}} . ~ 2 ~ 2 ~ C / W ~ N ~$

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

$\left(A V_{D D}=\mathrm{DV}_{\mathrm{DD}}=+5.0 \mathrm{~V}, \mathrm{DRV} \mathrm{DD}^{2}=+3.0 \mathrm{~V}, \mathrm{AGND}=\mathrm{DGND}=\mathrm{DRGND}=0, \mathrm{INTCLK} / \overline{\mathrm{EXTCLK}}=\mathrm{AGND}, \mathrm{f} C L K=5 \mathrm{MHz}\right.$, input range $=$ $\pm 10 \mathrm{~V}$, REFP2 $=$ REFP1, REFN2 $=$ REFN1, COM1 $=$ COM2, 1.0 nF from REFADC to AGND, $1.0 \mu \mathrm{~F}$ and $0.1 \mu \mathrm{~F}$ from COM1 to AGND, $0.1 \mu F$ from REFP1 to AGND, $0.1 \mu \mathrm{~F}$ from REFN1 to AGND, $1.0 \mu \mathrm{~F}$ from REFP1 to REFN1. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} . \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $T_{\text {MAX }}$, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
STATIC PERFORMANCE						
Resolution	N		14			Bits
Integral Nonlinearity	INL	(Note 1)		± 1	± 3	LSB
Differential Nonlinearity	DNL	No missing codes (Note 1)		± 0.25	± 1	LSB
Offset Error		(Note 1)		± 4	± 16	LSB
Offset-Error Temperature Coefficient				5		ppm/ ${ }^{\circ} \mathrm{C}$
Offset-Error Matching				± 10		LSB
Gain Error		Offset nulled (Notes 1, 2)		± 0.1	± 0.35	\%FSR
Channel Gain-Error Matching		Offset nulled		± 20		LSB
Gain-Error Temperature Coefficient		Offset nulled		10		ppm/ ${ }^{\circ} \mathrm{C}$
DYNAMIC PERFORMANCE (at $\mathrm{fIN}=10 \mathrm{kHz}, \mathrm{A}_{\text {IN }}=\mathbf{- 0 . 2 d B F S}$)						
Sampling Rate Per Channel		Simultaneous on all channels			150	ksps
Signal-to-Noise Ratio	SNR	(Note 1)	75	77		dB
Signal-to-Noise Plus Distortion	SINAD	(Note 1)	74	76		dB
Total Harmonic Distortion	THD	(Note 1)		-83	-80	dBc
Spurious-Free Dynamic Range	SFDR	Range 0 (Note 1)	85			dBc
Channel-to-Channel Isolation		(Note 1)	80			dB
ANALOG INPUTS (AIN_)						
Input Differential Voltage Range		Range set bits $=(0,0)$	-10		+10	V
		Range set bits $=(0,1)$	-5		+5	
		Range set bits = $(1,0)$	-2.5		+2.5	
		Range set bits $=(1,1)$	-1.25		+1.25	

14-Bit, 4-Channel, Software-Programmable, Multiranging, Simultaneous-Sampling ADC

ELECTRICAL CHARACTERISTICS (continued)

$\left(A V_{D D}=D V_{D D}=+5.0 V, D R V_{D D}=+3.0 \mathrm{~V}, \mathrm{AGND}=\mathrm{DGND}=\mathrm{DRGND}=0, \operatorname{INTCLK} / \overline{E X T C L K}=A G N D, f C L K=5 \mathrm{MHz}\right.$, input range $=$ $\pm 10 \mathrm{~V}$, REFP2 $=$ REFP1, REFN2 $=$ REFN1, COM1 $=$ COM2, 1.0 nF from REFADC to AGND, $1.0 \mu \mathrm{~F}$ and $0.1 \mu \mathrm{~F}$ from COM1 to AGND, 0.1μ F from REFP1 to AGND, $0.1 \mu F$ from REFN1 to AGND, 1.0 μ F from REFP1 to REFN1. Typical values are at $T_{A}=+25^{\circ} \mathrm{C} . \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to TMAX, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Input Common-Mode Range		Range set bits $=(0,0)$	-5		+5	V
		Range set bits $=(0,1)$	-2.5		+2.5	
		Range set bits $=(1,0)$	-1.25		+1.25	
		Range set bits $=(1,1)$	-0.625		+0.625	
Input Resistance		All settings		6.25		k Ω
Input Capacitance				15		pF
Small-Signal Bandwidth	SSBW	(Note 1)		1		MHz
Full-Power Bandwidth	FPBW	(Note 1)		75		kHz
INTERNAL REFERENCE (REFADC)						
Output Voltage			2.475	2.5	2.525	V
Differential Reference Voltage	$\begin{aligned} & \text { REFP- } \\ & \text { REFN } \end{aligned}$			2.5		V
Output-Voltage Temperature Coefficient				50		ppm/ ${ }^{\circ} \mathrm{C}$
Load Regulation				5		V / mA
EXTERNAL REFERENCE						
REFADC Voltage Input Range			2.0	2.5	3.0	V
REFADC Input Current		(Note 3)	-250		+250	$\mu \mathrm{A}$
REFADC Input Resistance	RREF			5		$\mathrm{k} \Omega$
REFADC Input Capacitance				15		pF
TRACK/HOLD (T/H)						
Aperture Delay	$t_{\text {AD }}$	(Note 1)		16		ns
Aperture-Delay Matching				100		ps
Aperture Jitter	tAJ	(Note 1)		50		pSRMS
CLOCK-SELECT INPUT (INTCLK/EXTCLK)						
Input-Voltage High	V_{IH}		$\begin{aligned} & 0.7 x \\ & A V_{D D} \end{aligned}$			V
Input-Voltage Low	VIL				$\begin{aligned} & 0.3 x \\ & A V_{D D} \end{aligned}$	V
DIGITAL INTERFACE AND CONTROL INPUTS ($\overline{\mathbf{C S}}, \overline{\mathrm{RD}}, \overline{\mathrm{WR}}$, CONVST, SHDN, CLK, STANDBY)						
Input-Voltage High	V_{IH}		$\begin{gathered} 0.7 \times \\ \text { DRVDD } \end{gathered}$			V
Input-Voltage Low	VIL				$\begin{gathered} 0.3 x \\ \text { DRVDD } \end{gathered}$	V
Input Hysteresis				50		mV
Input Capacitance	CIN			15		pF

14-Bit, 4-Channel, Soft ware-Programmable, Multiranging, Simultaneous-Sampling ADC

ELECTRICAL CHARACTERISTICS (continued)
$\left(A V_{D D}=D V_{D D}=+5.0 V, D R V_{D D}=+3.0 \mathrm{~V}, \mathrm{AGND}=\mathrm{DGND}=\mathrm{DRGND}=0, \operatorname{INTCLK} / \overline{E X T C L K}=A G N D, f C L K=5 \mathrm{MHz}\right.$, input range $=$ $\pm 10 \mathrm{~V}$, REFP2 $=$ REFP1, REFN2 $=$ REFN1, COM1 $=$ COM2, 1.0 nF from REFADC to AGND, $1.0 \mu \mathrm{~F}$ and $0.1 \mu \mathrm{~F}$ from COM1 to AGND, $0.1 \mu F$ from REFP1 to AGND, $0.1 \mu \mathrm{~F}$ from REFN1 to AGND, 1.0 $\mu \mathrm{F}$ from REFP1 to REFN1. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} . \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to TMAX, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS	MIN \quad TYP	MAX	UNITS
Input Current	$I_{I N}$	$V_{I N}=0$ or DRV	± 1	$\mu \mathrm{~A}$	

DIGITAL INTERFACE AND CONTROL OUTPUTS (EOC, EOLC)

Output-Voltage High	V_{OH}	Sourcing 0.8 mA	DRV DD	V
Output-Voltage Low	$\mathrm{V}_{\text {OL }}$	Sinking 1.6 mA		0.4

PARALLEL DIGITAL I/O (D0-D7)

Output-Voltage High	VOH	Sourcing 0.8mA	$\begin{gathered} \text { DRVDD - } \\ 0.6 \end{gathered}$	V
Output-Voltage Low	VOL	Sinking 1.6mA	0.4	V
Leakage Current			1	$\mu \mathrm{A}$
Tristate Output Capacitance		$\overline{\mathrm{RD}}=1$ or $\overline{\mathrm{CS}}=1$	15	pF
Input-Voltage High	V_{IH}		$\begin{gathered} 0.7 \times \\ \text { DRVDD }^{2} \end{gathered}$	V
Input-Voltage Low	VIL		$\begin{gathered} 0.3 \times \\ \text { DRV }_{\text {DD }} \end{gathered}$	V
Input Hysteresis			50	mV
Input Capacitance	$\mathrm{CIN}_{\text {IN }}$		15	pF
Input Current	IIN	$\mathrm{V}_{\text {IN }}=0$ or $\mathrm{DRV}_{\text {DD }}$	± 1	$\mu \mathrm{A}$

PARALLEL DIGITAL OUTPUTS (D8-D13)

Output-Voltage High	VOH	Sourcing 0.8mA	$\begin{gathered} \text { DRV }_{\text {DD }}- \\ 0.6 \end{gathered}$			V
Output-Voltage Low	VOL	Sinking 1.6mA			0.4	V
Leakage Current					1	$\mu \mathrm{A}$
Tristate Output Capacitance				15		pF
POWER SUPPLIES						
Analog Supply Voltage	AVDD		4.75	5	5.25	V
Digital Supply Voltage	DVDD		4.75	5	5.25	V
Parallel Digital I/O Supply Voltage	DRVDD		2.70		5.25	V
Analog Supply Current	AldD			41	60	mA
		SHDN = 1		0.005	0.1	
		STANDBY $=1, \mathrm{SHDN}=0$		4.2	5	
Digital Supply Current	DIDD				3	mA
		SHDN = 1		0.001	0.05	
		STANDBY $=1$, SHDN $=0$		0.001	0.05	
Digital Driver Supply Current	DRIDD				3	mA
		SHDN $=1$		0	0.05	
		STANDBY $=1, \mathrm{SHDN}=0$		0	0.05	
Analog Power-Supply Rejection		4.75V to 5.25V (Note 1)		75		dB

14-Bit, 4-Channel, Software-Programmable, Multiranging, Simultaneous-Sampling ADC

ELECTRICAL CHARACTERISTICS (continued)

$\left(A V_{D D}=D V_{D D}=+5.0 V, D R V_{D D}=+3.0 V, A G N D=D G N D=D R G N D=0, I N T C L K / \overline{E X T C L K}=A G N D, f C L K=5 M H z\right.$, input range $=$ $\pm 10 \mathrm{~V}$, REFP2 $=$ REFP1, REFN2 $=$ REFN1, COM1 $=$ COM2, 1.0 nF from REFADC to AGND, $1.0 \mu \mathrm{~F}$ and $0.1 \mu \mathrm{~F}$ from COM1 to AGND, $0.1 \mu F$ from REFP1 to AGND, $0.1 \mu \mathrm{~F}$ from REFN1 to AGND, 1.0 $\mu \mathrm{F}$ from REFP1 to REFN1. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} . \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
TIMING CHARACTERISTICS (Figures 4, 5, and 6)						
Time to First Conversion Result	tEOC1	Internal clock	2.9	3.2	3.5	$\mu \mathrm{s}$
		External clock		16		CLK Cycles
Time to Subsequent Conversions	$t_{\text {NEXT }}$	Internal clock		600		ns
		External clock		3		CLK Cycles
CONVST Pulse-Width Low	tconvst	Internal clock	0.2			$\mu \mathrm{s}$
		External clock	0.1			
$\overline{\mathrm{CS}}$ Pulse Width	tcs		30			ns
$\overline{\mathrm{RD}}$ Pulse-Width Low	trDL		30			ns
$\overline{\mathrm{RD}}$ Pulse-Width High	trDH		30			ns
$\overline{\text { WR Pulse-Width Low }}$	tWRL		30			ns
$\overline{\overline{C S}}$ to $\overline{\mathrm{WR}}$ Setup Time	tCTW		0			ns
$\overline{\mathrm{WR}}$ to $\overline{\mathrm{CS}}$ Hold Time	twTC		0			ns
$\overline{\overline{C S}}$ to $\overline{\mathrm{RD}}$ Setup Time	tCTR		0			ns
$\overline{\mathrm{RD}}$ to $\overline{\mathrm{CS}}$ Hold Time	tRTC		0			ns
Data Access Time ($\overline{\mathrm{RD}}$ Low to Valid Data)	tACC	Figure 1			30	ns
Bus Relinquish Time ($\overline{R D}$ High to D_ High-Z)	treQ	Figure 1	5		30	ns
CLK Rise to End-of-Conversion (EOC) Rise/Fall Delay	tEOCD			20		ns
CLK Rise to End-of-LastConversion ($\overline{\mathrm{EOLC}}$) Fall Delay	teolci			20		ns
CONVST Rise to $\overline{\text { EOLC }}$ Fall Delay	tcveolcd			20		ns
$\overline{\text { EOC }}$ Pulse-Width Low	teoc	Internal clock	180	200		ns
		External clock		1		CLK Cycle
Wake-Up Time From Standby				7		$\mu \mathrm{s}$
Wake-Up Time From Shutdown		All bypass capacitors discharged		5		ns

14-Bit, 4-Channel, Soft ware-Programmable, Multiranging, Simultaneous-Sampling ADC

ELECTRICAL CHARACTERISTICS (continued)
$\left(A V_{D D}=D V_{D D}=+5.0 V, D R V_{D D}=+3.0 V, A G N D=D G N D=D R G N D=0, I N T C L K / \overline{E X T C L K}=A G N D, f C L K=5 M H z\right.$, input range $=$ $\pm 10 \mathrm{~V}$, REFP2 $=$ REFP1, REFN2 $=$ REFN1, COM1 $=$ COM2, 1.0 nF from REFADC to AGND, $1.0 \mu \mathrm{~F}$ and $0.1 \mu \mathrm{~F}$ from COM1 to AGND, $0.1 \mu F$ from REFP1 to AGND, $0.1 \mu \mathrm{~F}$ from REFN1 to AGND, 1.0 $\mu \mathrm{F}$ from REFP1 to REFN1. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} . \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to TMAX, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP
$\overline{\text { EOC Fall to } \overline{\mathrm{RD}} \text { Fall Setup Time }}$	tEOCRD		0	MNITS
$\overline{\mathrm{EOLC}}$ Fall to $\overline{\mathrm{RD}}$ Fall Setup Time	tEOLCRD		0	ns
Input Data Setup Time	tDTW		10	ns
Input Data Hold Time	twTD		10	ns
External CLK Period	tCLK		166	ns
External CLK High Period	tCLKH	Logic sensitive to rising edges	60	ns
External CLK Low Period	tCLKL	Logic sensitive to rising edges	60	ns
External Clock Frequency	fCLK	(Note 4)	1	ns
Internal Clock Frequency	fINT		5.0	5.25
CONVST High to CLK Edge	tCNTC		30	5.5
Quiet Time	tQUIET		600	MHz

Note 1: See definition for this parameter in the Definitions section.
Note 2: Differential reference voltage (REFP-REFN) error nulled.
Note 3: This is the load the MAX1338 presents to an external reference at REFADC.
Note 4: Minimum CLK frequency is limited only by the internal T/H droop rate. Limit the time between the rising edge of CONVST to the falling edge of $\overline{E O L C}$ to a maximum of 0.25 ms .

Figure 1. Load Circuit for Data Access Time and BusRelinquish Time

14-Bit, 4-Channel, Software-Programmable, Multiranging, Simultaneous-Sampling ADC

Typical Operating Characteristics
$\left(A V_{D D}=\mathrm{DV} \mathrm{DD}^{2}=+5.0 \mathrm{~V}, \mathrm{DRV} V_{D D}=+3.0 \mathrm{~V}, \mathrm{AGND}=\mathrm{DGND}=\mathrm{DRGND}=0, \operatorname{INTCLK} / \overline{E X T C L K}=\mathrm{AGND}, \mathrm{f} C L K=5 \mathrm{MHz}\right.$, input range $=$ $\pm 10 \mathrm{~V}$, REFP2 $=$ REFP1, REFN2 $=$ REFN1, COM1 = COM2, 1.0 nF from REFADC to AGND, $1.0 \mu \mathrm{~F}$ and $0.1 \mu \mathrm{~F}$ from COM1 to AGND, $0.1 \mu \mathrm{~F}$ from REFP1 to $A G N D, 0.1 \mu \mathrm{~F}$ from REFN1 to AGND, $1.0 \mu \mathrm{~F}$ from REFP1 to REFN1.)

14-Bit, 4-Channel, Soft ware-Programmable, Multiranging, Simultaneous-Sampling ADC

Typical Operating Characteristics (continued)

$\left(A V_{D D}=D V_{D D}=+5.0 \mathrm{~V}, D R V_{D D}=+3.0 \mathrm{~V}, \mathrm{AGND}=\mathrm{DGND}=\mathrm{DRGND}=0, \mathrm{INTCLK} / \overline{E X T C L K}=A G N D, f C L K=5 \mathrm{MHz}\right.$, input range $=$ $\pm 10 \mathrm{~V}, \mathrm{REFP} 2=$ REFP1, REFN2 $=$ REFN1, COM1 $=$ COM2, 1.0 nF from REFADC to AGND, $1.0 \mu \mathrm{~F}$ and $0.1 \mu \mathrm{~F}$ from COM1 to AGND, $0.1 \mu F$ from REFP1 to AGND, $0.1 \mu F$ from REFN1 to AGND, 1.0 μ from REFP1 to REFN1.)

14-Bit, 4-Channel, Software-Programmable, Multiranging, Simultaneous-Sampling ADC

Typical Operating Characteristics (continued)

$\left(A V_{D D}=D V_{D D}=+5.0 V, D R V_{D D}=+3.0 V, A G N D=D G N D=D R G N D=0, I N T C L K / \overline{E X T C L K}=A G N D, f C L K=5 M H z\right.$, input range $=$ $\pm 10 \mathrm{~V}$, REFP2 $=$ REFP1, REFN2 $=$ REFN1, COM1 $=$ COM2, 1.0 nF from REFADC to AGND, $1.0 \mu \mathrm{~F}$ and $0.1 \mu \mathrm{~F}$ from COM1 to AGND, $0.1 \mu F$ from REFP1 to AGND, $0.1 \mu \mathrm{~F}$ from REFN1 to AGND, $1.0 \mu \mathrm{~F}$ from REFP1 to REFN1.)

14-Bit, 4-Channel, Soft ware-Programmable, Multiranging, Simultaneous-Sampling ADC

Typical Operating Characteristics (continued)

$\left(A V_{D D}=D V_{D D}=+5.0 V, D R V_{D D}=+3.0 V, A G N D=D G N D=D R G N D=0, I N T C L K / \overline{E X T C L K}=A G N D, f C L K=5 M H z\right.$, input range $=$ $\pm 10 \mathrm{~V}, \mathrm{REFP} 2=$ REFP1, REFN2 $=$ REFN1, COM1 $=$ COM2, 1.0 nF from REFADC to AGND, $1.0 \mu \mathrm{~F}$ and $0.1 \mu \mathrm{~F}$ from COM1 to AGND, $0.1 \mu F$ from REFP1 to AGND, $0.1 \mu \mathrm{~F}$ from REFN1 to AGND, $1.0 \mu \mathrm{~F}$ from REFP1 to REFN1.)

STANDBY CURRENT
vs. TEMPERATURE

CONVERSION TIME
vs. TEMPERATURE

STANDBY CURRENT
vs. SUPPLY VOLTAGE

CONVERSION TIME
vs. SUPPLY VOLTAGE

ANALOG INPUT CURRENT
vs. ANALOG INPUT VOLTAGE

14-Bit, 4-Channel, Software-Programmable, Multiranging, Simultaneous-Sampling ADC

Pin Description

PIN	NAME	FUNCTION
$\begin{gathered} 1,7,9,17 \\ 19 \end{gathered}$	$A V_{D D}$	Analog Power Input. $A V_{D D}$ is the power input for the analog section of the converter. Connect a +4.75 V to +5.25 V power supply to AV DD. Bypass each $A V_{D D}$ to AGND with a $0.1 \mu \mathrm{~F}$ capacitor very close to the device. Bypass AVDD to AGND with a bulk capacitor of at least $4.7 \mu \mathrm{~F}$ where power enters the board. Connect all $A V_{D D}$ pins to the same potential.
2	AINO+	Channel 0 Differential Analog Input
3	AlNO-	Channel 0 Differential Analog Input
4	AlN1+	Channel 1 Differential Analog Input
5	AlN1-	Channel 1 Differential Analog Input
$\begin{gathered} 6,8,14,16 \\ 18,20,28 \end{gathered}$	AGND	Analog Ground. AGND is the power return for AVDD. Connect all AGNDs to the same potential.
10	AIN2+	Channel 2 Differential Analog Input
11	AIN2-	Channel 2 Differential Analog Input
12	AIN3+	Channel 3 Differential Analog Input
13	AlN3-	Channel 3 Differential Analog Input
15	$\frac{\text { INTCLK/ }}{\text { EXTCLK }}$	Clock-Select Input. Force INTCLK/EXTCLK high for internal clock mode. Force INTCLK/EXTCLK Iow for external clock mode.
21	REFADC	ADC Reference Bypass or Input. REFADC is the bypass point for an internally generated reference voltage. Bypass REFADC with a 1.0 nF capacitor to AGND. REFADC can be driven externally by a precision external voltage reference. See the Reference section and the Typical Operating Circuit.
22	REFP1	Positive Differential Reference Bypass Point 1. Connect REFP1 to REFP2.
23	REFP2	Positive Differential Reference Bypass Point 2. Connect REFP2 to REFP1. Bypass REFP2 with a $0.1 \mu F$ capacitor to AGND. Also bypass REFP2 to REFN2 with a $0.1 \mu \mathrm{~F}$ capacitor.
24	COM1	Common-Mode Voltage Bypass Point 1. Connect COM1 to COM2.
25	COM2	Common-Mode Voltage Bypass Point 2. Connect COM2 to COM1. Connect a 1.0 HF capacitor from COM2 to AGND.
26	REFN1	Negative Differential Reference Bypass Point 1. Connect REFN1 to REFN2.
27	REFN2	Negative Differential Reference Bypass Point 2. Connect REFN2 to REFN1. Bypass REFN2 with a $0.1 \mu \mathrm{~F}$ capacitor to AGND. Also bypass REFN2 to REFP2 with a $0.1 \mu \mathrm{~F}$ capacitor.
29	D0	Data Input/Output Bit 0 (LSB)
30	D1	Data Input/Output Bit 1
31	D2	Data Input/Output Bit 2
32	D3	Data Input/Output Bit 3
33	D4	Data Input/Output Bit 4
34	D5	Data Input/Output Bit 5
35	D6	Data Input/Output Bit 6
36	D7	Data Input/Output Bit 7
37	D8	Data Output Bit 8
38	D9	Data Output Bit 9
39	D10	Data Output Bit 10
40	D11	Data Output Bit 11

14-Bit, 4-Channel, Software-Programmable, Multiranging, Simultaneous-Sampling ADC

Pin Description (continued)

PIN	NAME	FUNCTION
41	D12	Data Output Bit 12
42	D13	Data Output Bit 13 (MSB)
43	DRV ${ }_{\text {DD }}$	Digital I/O Power-Supply Input. DRVDD is the power input for the digital I/O buffers and drivers. Connect a +2.7 V to +5.25 V power supply to DRV DD. Bypass DRV DD to DRGND with a $0.1 \mu \mathrm{~F}$ capacitor very close to the device.
44	DRGND	Driver Ground. DRGND is the power-supply return for DRV ${ }_{\text {DD }}$.
45	EOC	End-of-Conversion Output. $\overline{\text { EOC }}$ goes low to indicate the end of a conversion. $\overline{\text { EOC }}$ returns high after one clock period.
46	$\overline{\text { EOLC }}$	End-of-Last-Conversion Output. $\overline{\text { EOLC }}$ goes low to indicate the end of the last conversion. $\overline{\mathrm{EOLC}}$ returns high when CONVST goes low for the next conversion sequence.
47	$\overline{\mathrm{RD}}$	Read Input. Forcing $\overline{R D}$ low initiates a read command of the parallel data bus, D0-D13. D0-D13 are high impedance while either $\overline{\mathrm{RD}}$ or $\overline{\mathrm{CS}}$ is high.
48	$\overline{\mathrm{WR}}$	Write Input. Forcing $\overline{\mathrm{WR}}$ low initiates a write command for configuring the device through D0-D7.
49	$\overline{\mathrm{CS}}$	Chip-Select Input. Forcing $\overline{\mathrm{CS}}$ low activates the digital interface. D0-D13 are high impedance while either $\overline{\mathrm{CS}}$ or $\overline{\mathrm{RD}}$ is high.
50	CONVST	Convert Start Input. CONVST initiates the conversion process. The analog inputs are sampled on the rising edge of CONVST.
51	CLK	External-Clock Input. CLK accepts a 1 MHz to 6 MHz external clock signal. For externally clocked conversions, apply the clock signal to CLK and force INTCLK/EXTCLK low. For internally clocked conversions, connect CLK to DGND and force INTCLK/EXTCLK high.
52	STANDBY	Standby-Control Input. Forcing STANDBY high partially powers down the device but leaves all the reference-related circuitry alive. Use STANDBY instead of SHDN when quick wake-up is required.
53	SHDN	Shutdown-Control Input. Force SHDN high to place the device into full shutdown. When in full shutdown, all circuitry within the device is powered down and all reference capacitors are allowed to discharge. Allow 1 ms for wake-up from full shutdown before starting a conversion.
54	DV ${ }_{\text {DD }}$	Digital Power-Supply Input. DVDD is the power input for the digital circuitry. Connect a +4.75 V to +5.25 V power supply to DVDD. Bypass DVDD to DGND with a 0.1μ F capacitor very close to the device.
55, 56	DGND	Digital Ground. Power return for DVDD.
-	EP	Exposed Pad. Connect to AGND.

Detailed Description

The MAX1338 simultaneously samples four differential analog inputs with internal T/H circuits, and sequentially converts them to a digital code with a 14-bit ADC. Output data is provided by a 14-bit parallel interface. At power-up, all channels default to a $\pm 10 \mathrm{~V}$ input range. Program different input ranges ($\pm 10 \mathrm{~V}, \pm 5 \mathrm{~V}, \pm 2.5 \mathrm{~V}$, or $\pm 1.25 \mathrm{~V}$) using the configuration register. Different input ranges between $\pm 12 \mathrm{~V}$ and $\pm 1.0 \mathrm{~V}$ are realized using an
external reference. All channels offer input protection to $\pm 17 \mathrm{~V}$, independent of the selected input range.
The internal clock operates the ADC at 5 MHz , or uses an external conversion clock from 1 MHz to 6 MHz . EOC goes low when the result of each conversion is available, and EOLC goes low when the last conversion result is available. Standby and shutdown modes, selectable through logic-control inputs, save power between conversions. Figure 2 shows a block diagram of the MAX1338.

14-Bit, 4-Channel, Software-Programmable, Multiranging, Simultaneous-Sampling ADC

Figure 2. Functional Diagram

Power-Supply Inputs
Three separate power supplies power the MAX1338. A +5 V analog supply, AV DD, powers the analog input and converter sections. A +5 V digital supply, DVDD, powers the internal logic circuitry, and a +2.7 V to +5 V digital supply ($\mathrm{DRV} V_{D D}$), powers the parallel I/O and the control I/O (see the Typical Operating Circuit). Bypass the power supplies as indicated in the Layout, Grounding, and Bypassing section. Power-supply sequencing is not required for the MAX1338.

Analog Inputs

Software-Selectable Input Range
The MAX1338 provides four independent, softwareselectable, analog input voltage ranges for each channel. The selectable input ranges are $\pm V_{\text {REF }} \times 4$ (the power-up default condition), $\pm \mathrm{V}_{\text {REF }} \times 2, \pm \mathrm{V}_{\text {REF }}$, and \pm VREF $\times 0.5$. Using the 2.5 V internal reference, the selectable input ranges are $\pm 10 \mathrm{~V}$ (power-up default), $\pm 5 \mathrm{~V}, \pm 2.5 \mathrm{~V}$, and $\pm 1.25 \mathrm{~V}$. Program the analog input ranges with the configuration register through the
parallel I/O. See the Configuration Register section for programming details.

Input Protection
Protection at the analog inputs provides $\pm 17 \mathrm{~V}$ fault immunity for the MAX1338. This protection circuit limits the current at the analog inputs to less than $\pm 2 \mathrm{~mA}$. Input fault protection is active in standby, in shutdown, during normal operation, and over all input ranges.

Track and Hold (T/H)
To preserve relative phase information between input channels, each input channel has a dedicated T/H amplifier. The rising edge of CONVST represents the sampling instant for all channels. All samples are taken within an aperture delay (t_{AD}) of 16 ns . The aperture delay of all channels is matched to within 100ps.

14-Bit, 4-Channel, Software-Programmable, Multiranging, Simultaneous-Sampling ADC

Figure 3 shows the equivalent analog input T/H circuit for one analog input.
As conversion begins, the T / H circuits hold the analog signals. After the 12th clock cycle (or $2.4 \mu \mathrm{~s}$ in internal clock mode) into the conversion process, the last analog input sample begins shifting through the converter, and the T/H circuits begin to track the analog inputs again in preparation for the next CONVST rising edge.
Due to the resistive load presented by the analog inputs, any significant analog input source resistance, Rsource, increases gain error. Limit Rsource to a maximum of 20Ω to limit the effect to less than 0.1%. Drive the input with a wideband buffer ($>1 \mathrm{MHz}$) that can drive the ADC's input impedance.

Selecting an Input Buffer

Most applications require an input buffer to achieve 14bit accuracy. Although slew rate and bandwidth are important, the most critical specification is output impedance. Use a low-noise, low-distortion amplifier with low output impedance, for best gain-accuracy performance.

Input Bandwidth

The input-tracking circuitry has a 1 MHz small-signal bandwidth. To avoid high-frequency signals being aliased into the frequency band of interest, anti-alias filtering is recommended.

Data Throughput

The data throughput (fTH) of the MAX1338 is a function of the clock speed (fCLK). The MAX1338 operates from a 5 MHz internal clock or an external clock between 1 MHz and 6 MHz . For fastest throughput, read the conversion result during conversion (Figure 5), and calculate data throughput using:

$$
f_{\text {TH }}=\frac{1}{t_{\text {QUIET }}+\frac{26}{f_{\text {CLK }}}}
$$

where tQUIET is the period of bus inactivity before the rising edge of CONVST.

Clock Modes
The MAX1338 provides an internal clock of 5 MHz . Alternatively, use an external clock of 1 MHz to 6 MHz .

Figure 3. Simplified Typical Input Circuit

Figure 4. Write Timing
Internal Clock
Internal clock mode frees the microprocessor from the burden of running the ADC conversion clock. For inter-nal-clock operation, connect INTCLK/EXTCLK to AVDD and CLK to DRGND. Note that INTCLK/EXTCLK is referenced to the analog power supply, AVDD. Total conversion time for all four channels using the internal clock is $6 \mu \mathrm{~s}$ (typ).

14-Bit, 4-Channel, Software-Programmable, Multiranging, Simultaneous-Sampling ADC

Abstract

External Clock For external clock operation, force INTCLK/EXTCLK low and connect an external clock source to CLK. Use an external clock frequency from 1 MHz to 6 MHz with a duty cycle between 40% and 60%. Choose a minimum clock frequency of 1 MHz to prevent linearity errors caused by excessive droop in the T/H circuits.

Applications Sections

Power-On Reset

At power-up, all channels default to $\mathrm{a} \pm 10 \mathrm{~V}$ input range. After applying power, allow a 1 ms wake-up time to elapse and perform one dummy conversion before initiating first conversion.

Power Saving
Full Shutdown
During shutdown, the analog and digital circuits in the MAX1338 power down and the device draws less than 0.06 mA from $A V_{D D}$, and less than $10 \mu \mathrm{~A}$ from $\mathrm{DV}_{D D}$. Select shutdown mode using the SHDN input. Force SHDN high to enter shutdown mode. When coming out of shutdown, allow the 1 ms wake-up and then perform one dummy conversion before making the first conversion.

Standby

Standby is similar to shutdown but the reference circuits remain powered up, allowing faster wake-up. Enter standby by forcing STANDBY high. After coming out of standby, perform a dummy conversion before making the first conversion.

Digital Interface

The digital interface consists of two sections: a control I/O section and a parallel I/O section. The control I/O section includes the following control signals: chip select $(\overline{\mathrm{CS}})$, read ($\overline{\mathrm{RD}})$, write ($\overline{\mathrm{WR}) \text {, end of conversion }}$ ($\overline{\mathrm{EOC}}$), end of last conversion ($\overline{\mathrm{EOLC}}$), convert start (CONVST), power-down (SHDN), standby (STANDBY), and external-clock input (CLK).
The bidirectional parallel I/O section sets the 8-bit input range configuration register using D0-D7 (see the Configuration Register section) and outputs the 14-bit conversion result using D0-D13. The I/O operations are controlled by the control I/O signals $\overline{\mathrm{RD}}, \overline{\mathrm{WR}}$, and $\overline{\mathrm{CS}}$. All parallel I/O bits are high impedance when either $\overline{\mathrm{RD}}=1$ or $\overline{\mathrm{CS}}=1$. Figures 4, 5, and 6 and the Timing Characteristics section detail the operation of the digital interface.

Table 1. Configuration Register

I/O LINE	REGISTER NAME	FUNCTION
D0	CHOR0	Channel 0 input range setting bit 0
D1	CH0R1	Channel 0 input range setting bit 1
D2	CH1R0	Channel 1 input range setting bit 0
D3	CH1R1	Channel 1 input range setting bit 1
D4	CH2R0	Channel 2 input range setting bit 0
D5	CH2R1	Channel 2 input range setting bit 1
D6	CH3R0	Channel 3 input range setting bit 0
D7	CH3R1	Channel 3 input range setting bit 1

Table 2. Input-Range Register Settings

REGISTER SETTING		SELECTED INPUT RANGE	ALLOWABLE COMMON-MODE RANGE
CH_RO	CH_R1		$\pm 5 \mathrm{~V}$
0	0	-10 V to +10 V	$\pm 2.5 \mathrm{~V}$
0	1	-5 V to +5 V	$\pm 1.25 \mathrm{~V}$
1	0	-2.5 V to +2.5 V	$\pm .625 \mathrm{~V}$
1	1	-1.25 V to +1.25 V	\pm

Configuration Register

The MAX1338 uses an 8-bit configuration word to set the input range for each channel. Table 1 and Table 2 describe the configuration word and the input-range settings.
Write to the configuration register by forcing $\overline{\mathrm{CS}}$ and $\overline{W R}$ low, loading bits D0-D7 onto the parallel bus, and then forcing $\overline{W R}$ high. The configuration bits are latched on the rising edge of $\overline{W R}$ (Figure 4). It is possible to write to the configuration register at any point during the conversion sequence. However, it will not be active until the next convert-start signal. At power-up, the configuration register contains all zeros, making all channels default to the maximum input range, -10 V to +10 V . Shutdown and standby do not change the configuration register, but the configuration register can be programmed while the MAX1338 is in shutdown or standby modes.

14-Bit, 4-Channel, Soft ware-Programmable, Multiranging, Simultaneous-Sampling ADC

Figure 5. Reading During a Conversion-Internal or External Clock

Starting a Conversion Internal Clock

 For internal clock operation, force INTCLK/EXTCLK high. To start a conversion using internal clock mode, pull CONVST low for at least tconvst. The T/H acquires the signal while CONVST is low. An EOC signal pulses low when the first result becomes available, and for each subsequent result until the end of the conversion cycle. The EOLC signal goes low when the last conversion result becomes available (Figure 6).
External Clock

For external clock operation, force INTCLK/EXTCLK low. To start a conversion using external clock mode, pull CONVST low for at least tCONVST. The T/H circuits track the input signal while CONVST is low. Conversion begins on the rising edge of CONVST. Apply an external clock to CLK. To avoid T/H droop degrading the sampled analog input signals, the first CLK pulse must occur within $10 \mu \mathrm{~s}$ after the rising edge of CONVST and have a minimum 1 MHz clock frequency. The first conversion result is available for read on the rising edge of the 17th clock cycle, and subsequent conversions on every 3rd clock cycle thereafter, as indicated by EOC and EOLC.

Reading a Conversion Result

Reading During a Conversion

Figure 5 shows the interface signals to initiate a read operation during a conversion cycle. $\overline{\mathrm{CS}}$ can be held low permanently, low during the RD cycles, or it can be the same as $\overline{\mathrm{RD}}$. After initiating a conversion by bringing CONVST high, wait for $\overline{E O C}$ to go low (about $3.4 \mu \mathrm{~s}$ in internal clock mode) or 17 clock cycles (external clock mode) before reading the first conversion result. Read the conversion result by bringing $\overline{\mathrm{RD}}$ low, which latches the data to the parallel digital output bus. Bring $\overline{\mathrm{RD}}$ high to release the digital bus. Wait for the next falling edge of EOC (about 600ns in internal clock mode or three clock cycles in external clock mode) before reading the next result. When the last result is available, EOLC goes low, along with EOC. Wait three clock cycles, tQuIET, before starting the next conversion cycle.

Reading After a Conversion Figure 6 shows the interface signals for a read operation after a conversion using an external clock. At the falling of $\overline{\mathrm{EOLC}}$, on the 26th clock pulse after the initiation of a conversion, driving $\overline{\mathrm{CS}}$ and $\overline{\mathrm{RD}}$ low places the first conversion result onto the parallel I/O bus. Read the conversion result on the rising edge of $\overline{R D}$. Successive low pulses of $\overline{\mathrm{RD}}$ place the successive conversion results

14-Bit, 4-Channel, Software-Programmable, Multiranging, Simultaneous-Sampling ADC

Figure 6. Reading After a Conversion-External Clock
onto the bus. After reading all four channels, bring $\overline{\mathrm{CS}}$ high to release the parallel I/O. After waiting tQUIET, pulse CONVST low to initiate the next conversion.

Reference

Bypass the reference inputs as indicated in Table 3.

Internal Reference

The internal reference supports all input ranges for the MAX1338.

External Reference

Implement external-reference operation by overdriving the internal reference voltage. Override the internal reference voltage by connecting a 2.0 V to 3.0 V external reference at REF. The REF input impedance is typically $5 \mathrm{k} \Omega$. For more information about using an external reference, see the Transfer Functions section.

Table 3. Reference Bypass Capacitors

LOCATION	BYPASS CAPACITORS	
REFADC bypass capacitor to AGND	1 nF	
REFP1 bypass capacitor to AGND	$0.1 \mu \mathrm{~F}$	
REFN1 bypass capacitor to AGND	$0.1 \mu \mathrm{~F}$	
REFP1 to REFN1 capacitor	$1.0 \mu \mathrm{~F}$	
COM1 bypass capacitor to AGND	$1.0 \mu \mathrm{~F} \\| 0.1 \mu \mathrm{~F}$	

Transfer Functions

Digital Correction
Factory trim procedures digitally shift the transfer function to reduce bipolar zero-code offset to less than ± 4 LSBs (typ). Depending on initial conditions, the transfer function is shifted up or down, as required. The maximum shift that any transfer function experiences is 64 codes, which can have a small effect at the extremes of the transfer function, as shown in Figure 7.

14-Bit, 4-Channel, Soft ware-Programmable, Multiranging, Simultaneous-Sampling ADC

Figure 7. Example of Digitally Adjusted Transfer FunctionShifted Down to Minimize Zero-Code Offset

Input Range Settings
Table 4 shows the two's complement output for a selection of inputs.
The full-scale input range (FSR) depends on the selected range, and the voltage at REF, as shown in Table 5. Also shown in Table 5 are the allowable common-mode ranges for the differential inputs.
Calculate the LSB size using:

$$
1 \mathrm{LSB}=\frac{\mathrm{A} \times \mathrm{V}_{\mathrm{REFADC}}}{2^{14}}
$$

where $A=$ gain multiplier for the selected input range, from Table 6.
Determine the input voltage as a function of $V_{\text {REF }}$, and the output code using:

$$
\mathrm{V}_{\text {AIN_+ }}-\mathrm{V}_{\text {AIN_-- }}=\mathrm{V}_{\text {REFADC }} \times \mathrm{A} \times \frac{\mathrm{CODE}}{2^{14}}
$$

where $A=$ gain multiplier for the selected input range, from Table 6.
Figures 8, 9, 10, and 11 show the transfer functions for the four selectable input ranges.

Figure 8. $\pm 10 \mathrm{~V}$ Transfer Function

Applications Information

Layout, Grounding, and Bypassing
For best performance, the board layout must follow some simple guidelines. Separate the control I/O and parallel I/O signals from the analog signals, and run the clock signals separate from everything. Do not run analog and digital (especially clock) lines parallel to one another, or digital lines underneath the ADC package. Run the parallel I/O signals together as a bundle.
The MAX1338 has an exposed underside pad for a low-inductance ground connection and low thermal resistance. Connect the exposed pad to the circuit board ground plane. Figure 12 shows the recommended system ground connections. Establish an analog ground point at AGND and a digital ground point at DGND. Connect all analog grounds to the analog ground point. Connect all digital grounds to the digital ground point. For lowest noise operation, make the power-supply ground returns as low impedance and as short as possible. Connect the analog ground point to the digital ground point at one location.
High-frequency noise in the power supplies degrades the ADC's performance. Bypass AVDD to AGND with a parallel combination of $0.1 \mu \mathrm{~F}$ and $2.2 \mu \mathrm{~F}$ capacitors, bypass DVDD to DGND with a parallel combination of $0.1 \mu \mathrm{~F}$ and $2.2 \mu \mathrm{~F}$ capacitors, and bypass DRVDD to DRGND with a parallel combination of $0.1 \mu \mathrm{~F}$ and $2.2 \mu \mathrm{~F}$ capacitors. If the supply is very noisy use a ferrite bead as a lowpass filter, as shown in Figure 12.

14-Bit, 4-Channel, Software-Programmable, Multiranging, Simultaneous-Sampling ADC

Table 4. Code Table with VREF $=2.500 \mathrm{~V}$

INPUT VOLTAGE (V)				DECIMAL EQUIVALENT OUTPUT $\left(\mathrm{CODE}_{10}\right)$	TWO'S COMPLEMENT BINARY OUTPUT CODE
$\pm 10 \mathrm{~V}$ INPUT RANGE SELECTED	$\pm 5 \mathrm{~V}$ INPUT RANGE SELECTED	$\pm 2.5 \mathrm{~V}$ INPUT RANGE SELECTED	$\begin{aligned} & \pm 1.25 \mathrm{~V} \text { INPUT } \\ & \text { RANGE } \\ & \text { SELECTED } \end{aligned}$		
9.9988	4.9994	2.4998	1.2499	8191	$01111111111111 \rightarrow 0 \times 1$ FFF
9.9976	4.9988	2.4997	1.2498	8190	$01111111111110 \rightarrow 0 \times 1$ FFE
0.0012	0.0006	0.0002	0.0001	1	$00000000000001 \rightarrow 0 \times 0001$
0	0	0	0	0	$00000000000000 \rightarrow 0 \times 0000$
-0.0012	-0.0006	-0.0002	-0.0001	-1	$11111111111111 \rightarrow 0 \times 3 F F F$
-9.9988	-4.9994	-2.4998	-1.2499	-8191	$10000000000001 \rightarrow 0 \times 2001$
-10.0000	-5.0000	-2.5000	-1.2500	-8192	$10000000000000 \rightarrow 0 \times 2000$

Definitions

Integral Nonlinearity (INL)

Integral nonlinearity is the deviation of the values on an actual transfer function from a straight line. For these devices, this straight line is a line drawn between the endpoints of the transfer function, once offset and gain errors have been nulled.

Differential Nonlinearity (DNL)

Differential nonlinearity is the difference between an actual step width and the ideal value of 1 LSB. For these devices, the DNL of each digital output code is measured and the worst-case value is reported in the Electrical Characteristics table. A DNL error specification of less than ± 1 LSB guarantees no missing codes and a monotonic transfer function.

Offset Error

Offset error indicates how well the actual transfer function matches the ideal transfer function at a single point. Typically, the point at which the offset error is specified is at or near the zero scale of the transfer function or at or near the midscale of the transfer function.
For the MAX1338, the ideal zero-scale digital output transition from 0×3 FFF to 0×0000 occurs with an analog input voltage of zero. Offset error is the amount of analog input-voltage deviation between the measured input voltage and the calculated input voltage at the zeroscale transition.

Table 5. Input Ranges

SELECTED INPUT RANGE (V)	VREFADC (V)	FULL-SCALE INPUT RANGE (V)	ALLOWABLE COMMON-MODE RANGE (V)
± 10	2.0	± 8	± 5
	2.5	± 10	± 5
	3.0	± 12	± 5
± 5	2.0	± 4	± 2.5
	2.5	± 5	± 2.5
	3.0	± 6	± 2.5
± 2.5	2.0	± 2	± 1.25
	2.5	± 2.5	± 1.25
	3.0	± 3	± 1.25
± 1.25	2.0	± 1	± 0.625
	2.5	± 1.25	± 0.625
	3.0	± 1.5	± 0.625

Table 6. LSB Size with $\mathrm{V}_{\mathrm{REF}}=2.500 \mathrm{~V}$

SELECTED INPUT RANGE (V)	GAIN MULTIPLIER $(\mathbf{A)}$	LSB SIZE (mV)
± 10	8	1.2207
± 5	4	0.6104
± 2.5	2	0.1526
± 1.25	1	0.0736

14-Bit, 4-Channel, Software-Programmable, Multiranging, Simultaneous-Sampling ADC

Figure 9. $\pm 5 \mathrm{~V}$ Transfer Function

Figure 11. $\pm 1.25 \mathrm{~V}$ Transfer Function
Gain Error
Gain error indicates how well the slope of the actual transfer function matches the slope of the ideal transfer function. For the MAX1338, the gain error is the difference between the measured positive full-scale and negative full-scale transition points minus the difference between the ideal positive full-scale and negative fullscale bipolar transition points.

Figure 10. $\pm 2.5 \mathrm{~V}$ Transfer Function

Figure 12. Power-Supply Grounding and Bypassing
Signal-to-Noise Ratio (SNR)
SNR is a measure of the converter's noise characteristics. For a waveform perfectly reconstructed from digital samples, SNR is the ratio of the full-scale analog input (RMS value) to the RMS quantization error (residual error). The ideal, theoretical minimum analog-to-digital noise is caused by quantization noise error only and results directly from the ADC's resolution (N bits):

14-Bit, 4-Channel, Software-Programmable, Multiranging, Simultaneous-Sampling ADC

$$
\text { SNR }=(6.02 \times N+1.76) \mathrm{dB}
$$

where $N=14$ bits. In reality, there are other noise sources such as thermal noise, reference noise, and clock jitter. SNR is computed by taking the ratio of the RMS signal to the RMS noise. RMS noise includes all spectral components to the Nyquist frequency excluding the fundamental, the first five harmonics, and the DC offset.

Signal-to-Noise Plus Distortion (SINAD)

SINAD indicates the converter's noise and distortion performance.
SINAD is computed by taking the ratio of the RMS signal to the RMS noise plus distortion. RMS noise plus distortion includes all spectral components to the Nyquist frequency excluding the fundamental and the DC offset.

$$
\operatorname{SINAD}(\mathrm{dB})=20 \times \log \left[\frac{\text { SIGNAL }_{\mathrm{RMS}}}{(\text { NOISE }+ \text { DISTORTION })_{\mathrm{RMS}}}\right]
$$

Effective Number of Bits (ENOB) ENOB specifies the global accuracy of an ADC at a specific input frequency and sampling rate. An ideal ADC's error consists of quantization noise only. ENOB for a fullscale sinusoidal input waveform is computed from:

$$
\mathrm{ENOB}=\frac{\text { SINAD }-1.76}{6.02}
$$

Total Harmonic Distortion (THD)

THD is a dynamic indication of how much harmonic distortion the converter adds to the signal.
THD is the ratio of the RMS sum of the first five harmonics of the fundamental signal to the fundamental itself. This is expressed as:

$$
\mathrm{THD}=20 \times \log \left(\frac{\sqrt{V_{2}{ }^{2}+{V_{3}}^{2}+{V_{4}}^{2}+V_{5}{ }^{2}+V_{6}^{2}}}{V_{1}}\right)
$$

where V_{1} is the fundamental amplitude and $\mathrm{V}_{2}-\mathrm{V}_{6}$ are the amplitudes of the $2 n d$ - through 6th-order harmonics.

Spurious-Free Dynamic Range (SFDR)

SFDR is the ratio of the RMS amplitude of the fundamental (maximum signal component) to the RMS value of the next largest spurious component, excluding DC offset. SFDR is specified in decibels relative to the carrier (dBc).

Aperture Delay
Aperture delay (t_{AD}) is the time delay from the sampling clock edge to the instant when an actual sample is taken.

Aperture Jitter

Aperture jitter ($\mathrm{t}_{\mathrm{A} J}$) is the sample-to-sample variation in aperture delay.

Channel-to-Channel Isolation
Channel-to-channel isolation indicates how well each analog input is isolated from the others. The channel-tochannel isolation for the MAX1338 is measured by applying a DC -0.5 dBFS sine wave to the ON channel while a high frequency $10 \mathrm{kHz}-0.5 \mathrm{dBFS}$ sine wave is applied to all OFF channels. An FFT is taken for the ON channel. From the FFT data, channel-to-channel crosstalk is expressed in dB as the power ratio of the DC signal applied to the ON channel and the high-frequency crosstalk signal from the OFF channels.

Power-Supply Rejection (PSRR)

PSRR is defined as the shift in gain error when the analog power supply is changed from 4.75 V to 5.25 V .

Small-Signal Bandwidth

A -20dBFS sine wave is applied to the MAX1338 input. The frequency is increased until the amplitude of the digitized conversion result decreases 3dB.

Full-Power Bandwidth
A -0.5 dBFS sine wave is applied to the MAX1338 input. The frequency is increased until the amplitude of the digitized conversion result decreases 3dB.

14-Bit, 4-Channel, Soft ware-Programmable, Multiranging, Simultaneous-Sampling ADC

14-Bit, 4-Channel, Software-Programmable, Multiranging, Simultaneous-Sampling ADC

Pin Configuration

TRANSISTOR COUNT: 27,000
PROCESS: BiCMOS
EXPOSED PAD: Connect to AGND

14-Bit, 4-Channel, Soft ware-Programmable, Multiranging, Simultaneous-Sampling ADC

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

NOTES:

1. DiE Thickness allowable is 0.225 mm maximum (0.009 inches maximum)
2. DIMENSIONING \& TOLERANCES CONFORN TO ASME Y14.5N. - 1994.
3. N IS THE numeer of terunnals.

No IS THE NUMER OF HERMMLIS \mathbb{N} Y-DIRECTINN.

4. THE PIN \#1 IENTHER HUST BE LOCAIED ON THE TOP SURFACE Of THE

PITHER AN INDENTATION MARK OR INK/LASER MARK IS ACCEPTABLE.
6. ALL DIMENSIONS ARE IN MILLIMETERS
7. PACKAGE WARPAGE MAX 0.01 mm .
8. Appurs to exposed pad ano temannals.

	$56 \mathrm{~L} 8 \times 8$			
	MIN.	NOM.	MAX.	${ }^{\circ}{ }_{\text {T }}$
A	0.70	0.75	0.80	
b	0.20	0.25	0.30	4
D	7.90	8.00	8.10	
E	7.90	8.00	8.10	
因	0.50 BSC			
N	56			3
Nd	14			3
Ne	14			3
L	0.30	0.40	0.50	
A1	0.00	0.02	0.05	
A2	0.20 REF			
k	0.25	--	--	

EXCLUDES INTERNAL DIMENSION OF EXPOSED PAD.
9. MEETS JEDEC MO22O.

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Analog to Digital Converters - ADC category:

Click to view products by Maxim manufacturer:

Other Similar products are found below :
017539FB 020296DB ADC0820CNEN AD7916BRMZ-RL7 AD9257TCPZ-65-EP ADC0804LCD ADC0808 MCP37211-200I/TE 512761G AD9695BCPZ-625 AD9695BCPZ-1300 MX574AKEQI MAX15511TGTL+ MAX11156ETC+T MAX1111EEE/V+ AD7175-8BCPZ-RL7 AD9530BCPZ MAX1436BECQ+D MAX16924GGM/VY+ MAX11108AVB+T MAX11647EUA+T MCP33141-10T-E/MS MCP33141D-05T-E/MS MCP33151D-05T-E/MS MCP3202T-CI/MS MAX11137ATI+T MAX11136ATI+T MAX11612EUA+T MAX11212AEUB+T MAX11101EUB+T AD4001BCPZ-RL7 MAX14002AAP+T MCP33141-05T-E/MS MAX11636EEE+T MCP33141D-10T-E/MS MCP33151-05T-E/MS MCP33151-10T-E/MS MCP33151D-10T-E/MS MAX11259AWX+T AD7091R-5BRUZ-RL7 ADE1201ACCZ ADE1202ACCZ LTC1864CS8\#PBF LTC2418CGNPBF LTC2433-1IMS\#PBF LTC2442CGPBF LTC2400CS8\#PBF LTC2414CGNPBF TC7109ACKW TC7109CLW

