

ND431825

Powerex, Inc., 173 Pavilion Lane, Youngwood, Pennsylvania 15697 (724) 925-7272 www.pwrx.com

POW-R-BLOK[™] Dual SCR Isolated Module 250 Amperes / 1800 Volts

ND43 Outline Dimensions

Dimension	Inches	Millimeters			
A	4.57	116			
В	3.66	93			
С	3.15	80.0			
D	2.17	55.1			
E	2.06	52.3			
F	2.07	52.0			
G	1.97	50.0			
Н	1.90	48.3			
J	1.50	38.1			
К	1.38	35.0			
L	1.26	32.0			
М	1.122	28.5			
N	.71	18.0			
Р	.57	14.5			
Q	.625	15.9			
R	.394	10.00			
S	.350	8.9			
Т	M8 Metric	M8			
U	.250 Dia.	6.35 Dia.			
V	.110 x .032	2.8 x 0.8			
W	.12	3.0			
Note: Dimensions are for reference only.					

ND431825 Dual SCR Isolated POW-R-BLOK[™] Module 250 Amperes / 1800 Volts

Ordering Information:

Select the complete eight digit module part number from the table below.

Example: ND431825 is a 1800Volt, 250 Ampere Dual SCR Isolated *POW-R-BLOKTM* Module

Туре	Voltage Volts (x100)	Current Amperes (x 10)
ND43	18	25

Description:

Powerex Dual SCR Modules are designed for use in applications requiring phase control and isolated packaging. The modules are isolated for easy mounting with other components on a common heatsink. POW-R- $BLOK^{TM}$ has been tested and recognized by the Underwriters Laboratories.

Features:

- Electrically Isolated Heatsinking
- Aluminum Nitride Insulator
- Compression Bonded Elements
- Metal Baseplate
- Low Thermal Impedance for Improved Current Capability
- Quick Connect Gate Terminal with Provision for Keyed Mating Plug
- UL Recognized

Benefits:

- No Additional Insulation Components Required
- Easy Installation
- No Clamping Components Required
- Reduce Engineering Time

Applications:

- Bridge Circuits
- AC & DC Motor Drives
- Battery Supplies
- Power Supplies
- Large IGBT Circuit Front Ends

ND431825

Powerex, Inc., 173 Pavilion Lane, Youngwood, Pennsylvania 15697 (724) 925-7272 www.pwrx.com

POW-R-BLOK[™] Dual SCR Isolated Module 250 Amperes / 1800 Volts

Absolute Maximum Ratings

Characteristics	Conditions	Symbol		Units
Repetitive Peak Forward and Reverse Blocking Voltage		V _{DRM} & V _{RRM}	1800	V
Non-Repetitive Peak Reverse Blocking Voltage (t < 5 msec)		V_{RSM}	1900	V
RMS Forward Current	180° Conduction, T _C =84°C	I _{T(RMS)}	393	А
Average Forward Current	180° Conduction, T _C =84°C	I _{T(AV)}	250	А
Peak One Cycle Surge Current, Non-Repetitive	60 Hz, 100% V_{RRM} reapplied	I _{TSM}	8800	А
Peak Three Cycle Surge Current, Non-Repetitive	60 Hz, 100%V _{RRM} reapplied	I _{TSM}	4685	А
Peak Ten Cycle Surge Current, Non-Repetitive	60 Hz, 100% V_{RRM} reapplied	I _{TSM}	4040	А
I ² t for Fusing for One Cycle, 8.3 milliseconds		l ² t	322,000	A ² sec
Maximum Rate-of-Rise of On-State Current, (Non-Repetitive)	T_j =25°C, I _G =500mA, V _D =0.67 V _{DRM (Rated)} , I _{TM} = $\pi I_{T(AV)}$, T _r < 0.5µS, t _p > 6µs	di/dt	800	A/µs
Peak Gate Power Dissipation		P _{GM}	16	W
Average Gate Power Dissipation		P _{G(AV)}	3	W
Peak Forward Gate Current		I _{GFM}	4	А
Peak Forward Gate Voltage		V_{GFM}	10	V
Peak Reverse Gate Voltage		V _{GRM}	5	V
Operating Temperature		TJ	-40 to +130	°C
Storage Temperature		T _{stg}	-40 to +150	°C
Max. Mounting Torque, M6 Mounting Screw			45 5	inLb. Nm
Max. Mounting Torque, M8 Terminal Screw			110 12	inLb. Nm
Module Weight, Typical			840 1.85	g Ib
V Isolation @ 25C		Vrms	2500	V

ND431825

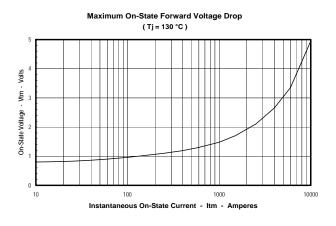
Powerex, Inc., 173 Pavilion Lane, Youngwood, Pennsylvania 15697 (724) 925-7272 www.pwrx.com

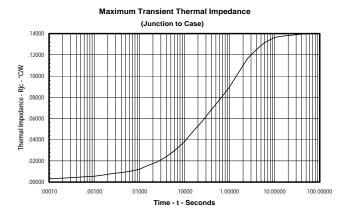
POW-R-BLOK[™] Dual SCR Isolated Module 250 Amperes / 1800 Volts

Electrical Characteristics, T_J=25°C unless otherwise specified

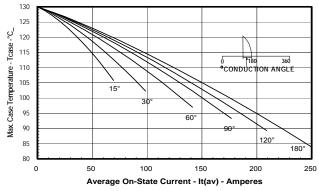
Characteristics	Symbol	Test Conditions	Min.	Max.	Units
Repetitive Peak Forward Leakage Current	I _{DRM}	1800V, T _J =130°C		50	mA
Repetitive Peak Reverse Leakage Current	I _{RRM}	1800V, T _J =130°C		50	mA
Peak On-State Voltage	V _{FM}	I _{TM} =625A		1.40	V
Threshold Voltage, Low-level Slope Resistance, Low-level	V _{(TO)1} r _{T1}	$T_{\rm J}$ = 130°C, I = 15%I_{T(AV)} to $\pi I_{T(AV)}$		0.877 0.731	V m Ω
Threshold Voltage, High-level Slope Resistance, High-level	V _{(TO)2} r _{T2}	T_J = 130°C, I = $\pi I_{T(AV)}$ to I_{TSM}		1.125 0.377	V m Ω
V _{TM} Coefficients, Full Range		T _J = 130°C, I = 15%I _{T(AV)} to I _{TSM} V _{TM} = A+ B Ln I +C I + D Sqrt I	A = B = C = D =	0.695 4.272E-02 2.951E-04 8.766E-03	
Minimum dV/dt	dV/dt	Exponential to 2/3 V_{DRM} T _j =130°C, Gate Open	500		V/µs
Turn-On Time (Typical)	t _{on}	I _{TM} = 100A, V _D = 100V	7	(Typical)	μs
Turn-Off Time (Typical)	t _{off}	T _J = 130°C, I _T = 250A Re-Applied dV/dt = 20V/μs Linear to 0.8 V _{DRM}	150	(Typical)	μs
Gate Trigger Current	I _{GT}	$T_j=25^{\circ}C, V_D=12V$		150	mA
Gate Trigger Voltage	V _{GT}	T _j =25°C, V _D =12V		3.0	Volts
Non-Triggering Gate Voltage	V_{GDM}	T_j =130°C, V_D = ½ V_{DRM}		0.15	Volts

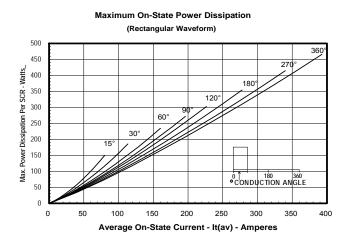
Thermal Characteristics

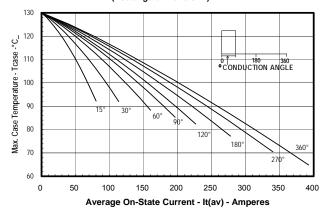

Characteristics	Symbol			Max.	Units
Thermal Resistance, Junction to Case	$R_{\Theta J-C}$	Per Module, both conducting Per Junction both conducting		0.07 0.14	°C/W °C/W
Thermal Impedance Coefficients	Z _{ΘJ-C}	Z _{ΘJ-C} = K ₁ (1-exp(-t/τ ₁))	K ₁ = 5.27E-3	τ ₁ = 1.69E-4	
		+ K ₂ (1-exp(-t/τ ₂))	K ₂ = 1.17E-2	τ ₂ = 2.07E-2	
		+ K ₃ (1-exp(-t/τ ₃))	K ₃ = 5.26E-2	τ ₃ = 2.37E-1	
		+ K ₄ (1-exp(-t/τ ₄))	K ₄ = 6.97E-2	τ ₄ = 2.46	
Thermal Resistance, Case to Sink Lubricated	$R_{\Theta C-S}$	Per Module		0.03	°C/W



Powerex, Inc., 173 Pavilion Lane, Youngwood, Pennsylvania 15697 (724) 925-7272 www.pwrx.com


POW-R-BLOK[™] **Dual SCR Isolated Module** 250 Amperes / 1800 Volts




Maximum On-State Power Dissipation (Sinusoidal Waveform) 350 300 Max. Power Dissipation Per SCR - Watts_ 180 90 250 200 30 15° 150 100 360 CONDUCTION ANGLE 50 0 0 250 50 100 150 200 Average On-State Current - It(av) - Amperes

Maximum Allowable Case Temperature (Sinusoidal Waveform)

Maximum Allowable Case Temperature (Rectangular Waveform)

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for powerex manufacturer:

Other Similar products are found below :

 R7013003XXUA
 R9G01212XX
 VLA541-01R
 QRD0630T30
 CM400DY-24NF
 CM100TX-24S1
 CM600HA-24A
 NLD422PB

 PSM03S93E5-A
 BP2B-V
 ND431625
 R5031213LSWS
 BG2B
 BG2C-5015
 ND431825
 T9G0121203DH
 CD611616C
 BG1A-PX

 TCS4402802DH
 CD421690C
 PM600DVA060
 CD411899C
 CD631615B
 C601PB
 R5021213LSWS
 BG2A-NFH
 C180PB
 CD431690B

 NLR425CM
 HARDWARE KIT 50
 CD410899C
 CM400HA-24A
 CD411699C
 LEAD KIT #NK
 HARDWARE KIT 49
 VLA500-01

 HARDWARE KIT 87
 VLA502-01
 VLA106-24154
 VLA106-15242