Preferred Device

Sensitive Gate Triacs

Silicon Bidirectional Thyristors

Designed for industrial and consumer applications for full wave control of AC loads such as appliance controls, heater controls, motor controls, and other power switching applications.

Features

- Sensitive Gate allows Triggering by Microcontrollers and other Logic Circuits
- High Immunity to $dv/dt 25 V/\mu s$ minimum at 110°C
- High Commutating di/dt 8.0 A/ms minimum at 110°C
- Maximum Values of I_{GT}, V_{GT} and I_H Specified for Ease of Design
- On-State Current Rating of 15 Amperes RMS at 70°C
- High Surge Current Capability 120 Amperes
- Blocking Voltage to 800 Volts
- Rugged, Economical TO-220AB Package
- Uniform Gate Trigger Currents in Three Quadrants, Q1, Q2, and Q3
- Pb–Free Packages are Available*

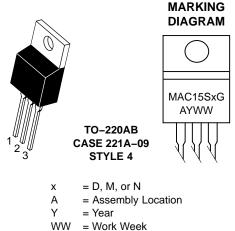
MAXIMUM RATINGS ($T_J = 25^{\circ}C$ unless otherwise noted)

Rating	Symbol	Value	Unit
$\begin{array}{l} \mbox{Peak Repetitive Off-State Voltage (Note 1)} \\ (T_J = -40 \mbox{ to } 110^\circ \mbox{C}, \mbox{Sine Wave}, \mbox{50 to} \\ 60 \mbox{ Hz}, \mbox{ Gate Open)} & \mbox{MAC15SD} \\ \mbox{MAC15SN} \\ \mbox{MAC15SN} \end{array}$	V _{DRM,} V _{RRM}	400 600 800	V
On–State RMS Current (Full Cycle Sine Wave, 60Hz, T _J = 70°C)	I _{T(RMS)}	15	A
Peak Non-repetitive Surge Current (One Full Cycle Sine Wave, 60 Hz, $T_J = 110^{\circ}$ C)	I _{TSM}	120	A
Circuit Fusing Consideration (t = 8.3 ms)	l ² t	60	A ² s
Peak Gate Power (Pulse Width \leq 1.0 μ s, T _C = 70°C)	P _{GM}	20	W
Average Gate Power (t = 8.3 ms, $T_C = 70^{\circ}C$)	P _{G(AV)}	0.5	W
Operating Junction Temperature Range	TJ	-40 to +110	°C
Storage Temperature Range	T _{stg}	-40 to +150	°C

Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected.

1. V_{DRM} and V_{RRM} for all types can be applied on a continuous basis. Blocking voltages shall not be tested with a constant current source such that the voltage ratings of the devices are exceeded.

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.



ON Semiconductor®

http://onsemi.com

TRIACS 15 AMPERES RMS 400 thru 800 VOLTS

G = Pb–Free Package

	PIN ASSIGNMENT
1	Main Terminal 1
2	Main Terminal 2
3	Gate
4	Main Terminal 2

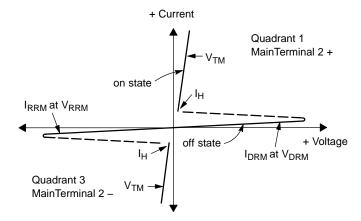
ORDERING INFORMATION

Device	Package	Shipping
MAC15SD	TO-220AB	50 Units / Rail
MAC15SDG	TO-220AB (Pb-Free)	50 Units / Rail
MAC15SM	TO-220AB	50 Units / Rail
MAC15SMG	TO-220AB (Pb-Free)	50 Units / Rail
MAC15SN	TO-220AB	50 Units / Rail
MAC15SNG	TO-220AB (Pb-Free)	50 Units / Rail

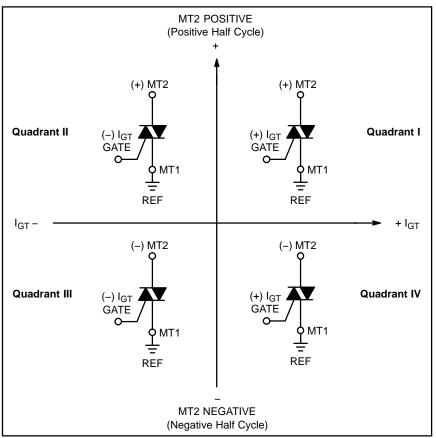
Preferred devices are recommended choices for future use and best overall value.

THERMAL CHARACTERISTICS

Characteristic		Symbol	Value	Unit
Thermal Resistance,	Junction-to-Case Junction-to-Ambient	$\begin{array}{c} R_{\thetaJC} \\ R_{\thetaJA} \end{array}$	2.0 62.5	°C/W
Maximum Lead Temperature for S	oldering Purposes 1/8" from Case for 10 Seconds	TL	260	°C

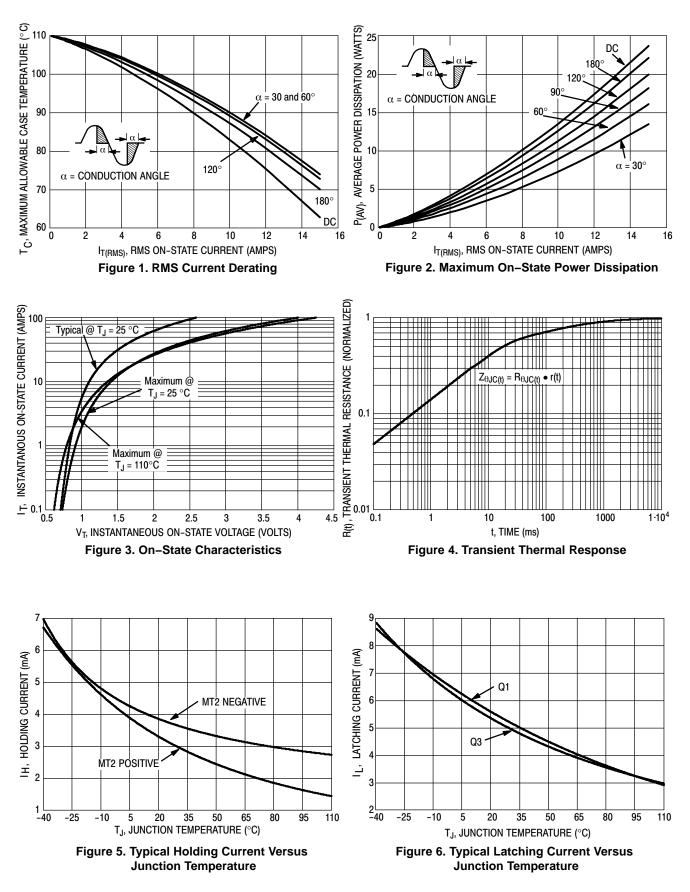

ELECTRICAL CHARACTERISTICS ($T_J = 25^{\circ}C$ unless otherwise noted; Electricals apply in both directions)

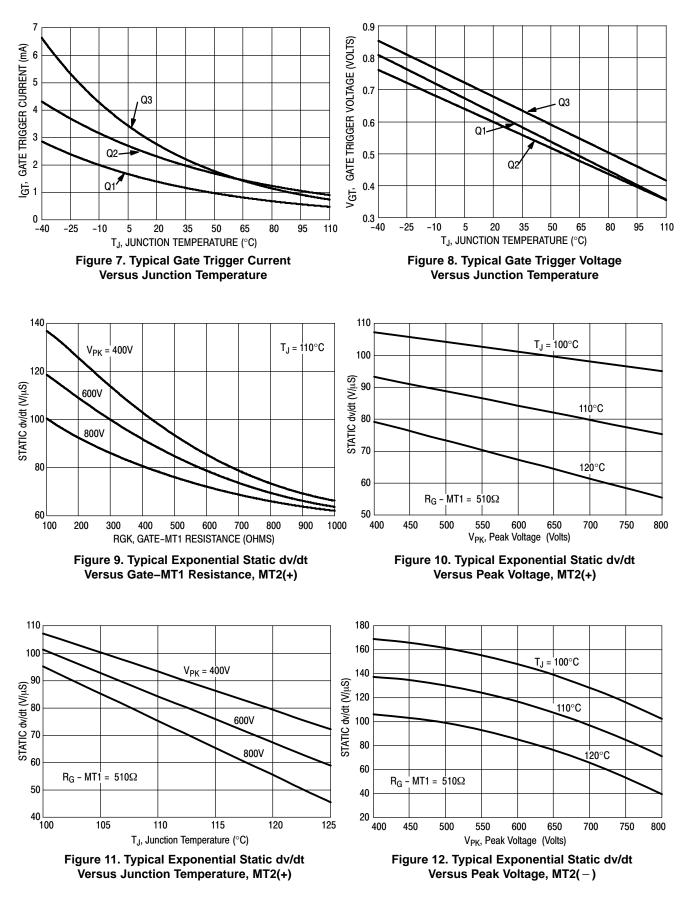
Characteristic			Min	Тур	Max	Unit
OFF CHARACTERISTICS		•	•			
	⁻」= 25°C ⁻」= 110°C	I _{DRM} , I _{RRM}			0.01 2.0	mA
ON CHARACTERISTICS						
Peak On-State Voltage (Note 2) (I _{TM} = ±21A)		V _{TM}	-	-	1.8	V
Gate Trigger Current (Continuous dc) ($V_D = 12 V$, $R_L = 100\Omega$) MT2(+), G(+) MT2(+), G(-) MT2(-), G(-)		I _{GT}		2.0 3.0 3.0	5.0 5.0 5.0	mA
Hold Current (V_D = 12 V, Gate Open, Initiating Current = ±150mA)		Ι _Η	-	3.0	10	mA
Latching Current ($V_D = 24V$, $I_G = 5mA$) MT2(+), G(+) MT2(+), G(-) MT2(-), G(-)		ι _L	_ _ _	5.0 10 5.0	15 20 15	mA
Gate Trigger Voltage (Continuous dc) ($V_D = 12 V$, $R_L = 100\Omega$) MT2(+), G(+) MT2(+), G(-) MT2(-), G(-)	V _{GT}	0.45 0.45 0.45	0.62 0.60 0.65	1.5 1.5 1.5	V	
DYNAMIC CHARACTERISTICS				•	•	
Rate of Change of Commutating Current (V _D = 400V, I _{TM} = 3.5A, Commutating dv/dt = 10V μ /sec, Gate Open, T _J = 110°C, f= 500Hz, Snubber: C _S = 0.01 μ F, R _S =15 Ω , see	Figure 15)	(di/dt)c	8.0	10	-	A/ms
Critical Rate of Rise of Off-State Voltage (V_D = Rate V_{DRM} , Exponential Waveform, R_{GK} = 510 Ω , T_J = 110°C)		dv/dt	25	75	-	V/μs

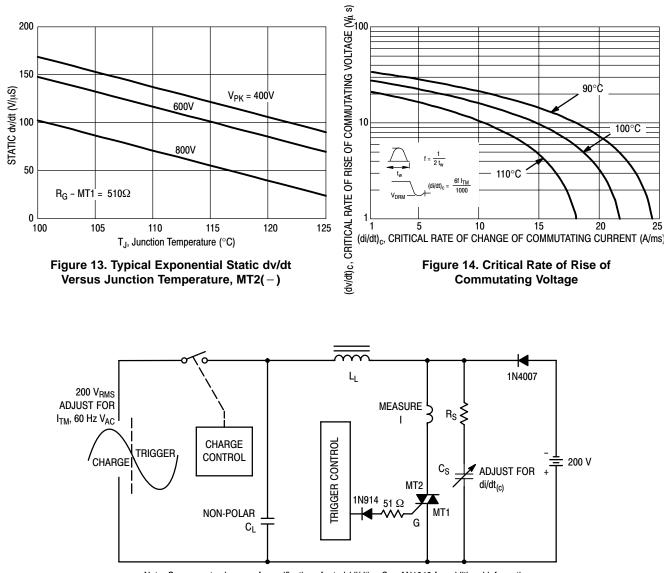

2. Pulse Test: Pulse Width \leq 2.0 ms, Duty Cycle \leq 2%.

Voltage Current Characteristic of Triacs (Bidirectional Device)

Symbol	Parameter
V _{DRM}	Peak Repetitive Forward Off State Voltage
I _{DRM}	Peak Forward Blocking Current
V _{RRM}	Peak Repetitive Reverse Off State Voltage
I _{RRM}	Peak Reverse Blocking Current
V _{TM}	Maximum On State Voltage
Ι _Η	Holding Current

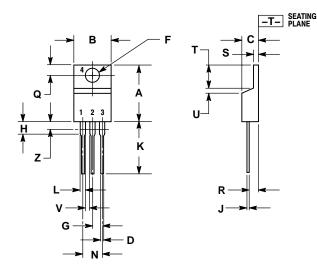



Quadrant Definitions for a Triac



All polarities are referenced to MT1.

With in-phase signals (using standard AC lines) quadrants I and III are used.



Note: Component values are for verification of rated (di/dt)c. See AN1048 for additional information.

Figure 15. Simplified Test Circuit to Measure the Critical Rate of Rise of Commutating Current (di/dt)_c

PACKAGE DIMENSIONS

TO-220AB CASE 221A-09 **ISSUE AA**

NOTES:

DIMENSIONING AND TOLERANCING PER ANSI 1. Y14.5M, 1982.

CONTROLLING DIMENSION: INCH. DIMENSION Z DEFINES A ZONE WHERE ALL 2 3. BODY AND LEAD IRREGULARITIES ARE ALLOWED.

	INCHES		MILLIN	ETERS	
DIM	MIN	MAX	MIN	MAX	
Α	0.570	0.620	14.48	15.75	
В	0.380	0.405	9.66	10.28	
c	0.160	0.190	4.07	4.82	
D	0.025	0.035	0.64	0.88	
F	0.142	0.147	3.61	3.73	
G	0.095	0.105	2.42	2.66	
Н	0.110	0.155	2.80	3.93	
J	0.018	0.025	0.46	0.64	
K	0.500	0.562	12.70	14.27	
L	0.045	0.060	1.15	1.52	
Ν	0.190	0.210	4.83	5.33	
Q	0.100	0.120	2.54	3.04	
R	0.080	0.110	2.04	2.79	
S	0.045	0.055	1.15	1.39	
Т	0.235	0.255	5.97	6.47	
U	0.000	0.050	0.00	1.27	
۷	0.045		1.15		
Ζ		0.080		2.04	

MAIN TERMINAL 2

2. 3. GATE MAIN TERMINAL 2

4.

ON Semiconductor and 💷 are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications Intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor P.O. Box 61312, Phoenix, Arizona 85082-1312 USA Phone: 480-829-7710 or 800-344-3860 Toll Free USA/Canada Fax: 480-829-7709 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Japan: ON Semiconductor, Japan Customer Focus Center 2-9-1 Kamimeguro, Meguro-ku, Tokyo, Japan 153-0051 Phone: 81-3-5773-3850

ON Semiconductor Website: http://onsemi.com

Order Literature: http://www.onsemi.com/litorder

For additional information, please contact your local Sales Representative.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Triacs category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below :

 T2035H-6G
 BT137-600-0Q
 Z0409MF0AA2
 Z0109NA 2AL2
 ACST1635T-8FP
 BCR20RM-30LA#B00
 CMA60MT1600NHR
 NTE5611

 NTE5612
 NTE5613
 NTE5623
 NTE5629
 NTE5638-08
 NTE5688
 NTE5690
 T1235T-8I
 BTA312-600CT.127
 T1210T

 8G-TR
 Z0109NN0,135
 T2535T-8I
 T2535T-8T
 TN4050-12WL
 MAC4DLM-1G
 BT137-600E,127
 BT137X-600D
 BT148W-600R,115

 BT258-500R,127
 BTA08-800BW3G
 BTA140-800,127
 BTA30-600CW3G
 BTB08-800BW3G
 BTB16-600CW3G

 BTB16-600CW3G
 Z0410MF0AA2
 Z0109MN,135
 T825T-6I
 T1635T-6I
 T1220T-6I
 NTE5638
 TYN612MRG
 TYN1225RG
 TPDV840RG

 ACST1235-8FP
 ACS302-6T3-TR
 BT134-600D,127
 BT134-600G,127
 BT136X-600E,127