SFH250 / SFH250V

Plastic Fiber Optic Photodiode Detector Plastic Connector Housing

Data Sheet

Description

The SFH250 is a low-cost 650nm receiver diode for simple optical data transmission with polymer optical fiber. It incorporates an analog photodiode and can be used for speeds up to 100MBd.

The transparent plastic package has an aperture where the the 2.2mm fiber end can be inserted and fixed with glue. This easy coupling method is extremely costeffective.

The V-housing allows easy coupling of unconnectorized 2.2mm plastic optical fiber by means of an axial locking screw.

Ordering Information

Туре	Ordering Code
SFH250	SP000063866
SFH250V	SP000063852

Features

- 2.2 mm Aperture holds Standard 1000 Micron Plastic Fiber
- No Fiber Stripping Required
- Fast Switching Time
- Good Linearity
- Sensitive in visible and near IR Range
- Molded Microlens for Efficient Coupling

Plastic Connector Housing

- Mounting Screw Attached to the Connector
- Interference Free Transmission from light-Tight Housing
- Transmitter and Receiver can be flexibly positioned
- No Cross Talk
- Auto insertable and Wave solderable
- Supplied in Tubes

Applications

- Household Electronics
- Power Electronics
- Optical Networks
- Light Barriers

Technical Data

Absolute Maximum Ratings

Parameter		Limit Values		
	Symbol	min.	max.	Unit
Operating Temperature Range	T _{OP}	-40	+85	°C
Storage Temperature Range	T _{STG}	-40	+100	°C
Junction Temperature	Tj		100	°C
Soldering Temperature (2mm from case bottom, $t \le 5$ s)	T _S		260	°C
Reverse Voltage	V_{R}		30	V
Power Dissipation	P _{TOT}		100	mW
Thermal Resistance, Junction/Air	R_{thJA}		750	K/W

Characteristics ($T_A = 25^{\circ}C$)

Parameter		Values			
	Symbol	Min	Тур	Max	Unit
Maximum Photosensitivity Wavelength	λ_{Smax}		850		nm
Photosensitivity Spectral Range ($S = 10\% S_{max}$)	λ	400		1100	nm
Dark Current ($V_R = 20 \text{ V}$)	I _R		1 (≤ 10)		nA
Capacitance (f = 1 MHz, V_R = 0 V)	Co		11		pF
Rise and Fall Times ofPhoto Current					μs
$(R_L = 50 \Omega, V_R = 30 V, \lambda = 880 nm)$ 10% to 90%	t _R		0.01		
90% to 10%	t _F		0.01		
Photo Current $(\Phi_{IN} = 10 \mu\text{W} \text{ coupled from the end of a plastic fiber, V}_R = 5 \text{V})$					μΑ
$\lambda = 660 \text{nm}$	lp		3 (≥ 1.6)		
$\lambda = 950 \text{ nm}$			4 (≥ 2.5)		
Temperature Coefficient I _P $\lambda = 560$ to 660 nm	TCI		-0.04		%/K
Temperature Coefficient I _P $\lambda = 830 \text{ nm}$			0.04		
Temperature Coefficient I _P $\lambda = 950 \text{ nm}$			0.2		

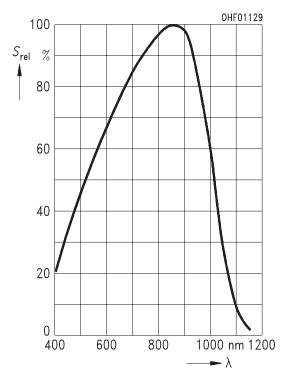


Figure 1. Relative Spectral Sensitivity $S_{rel} = f(\lambda)$

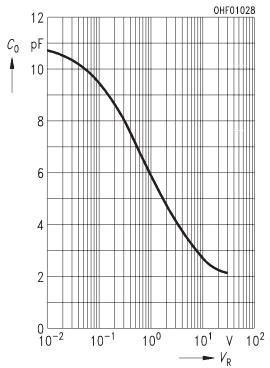


Figure 3. Capacitance $C_0 = f(V_R)$, f = 1 MHz, $E_V = 0$

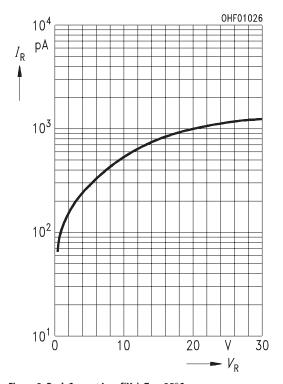


Figure 2. Dark Current $I_R = f(V_R)$, $T_A = 25^{\circ}C$

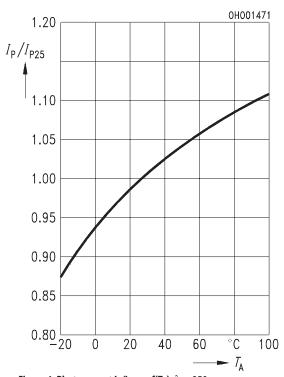
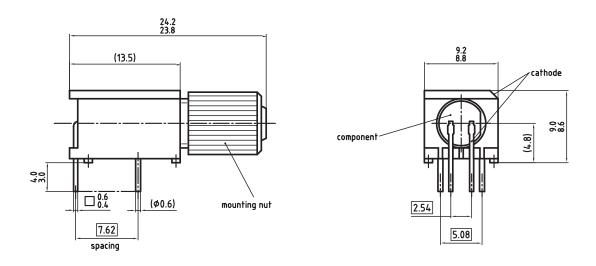



Figure 4. Photocurrent I_P/I_{P25} = f(T_A), λ = 950 nm

Package Outlines

Figure 5. SFH250

Dimensions in mm

Figure 6. SFH250V

Disclaimer

The information herein is given to describe certain components and shall not be considered as a guarantee of characteristics.

Terms of delivery and rights to technical change reserved. We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and charts stated herein.

Warnings

Due to technical requirements components may contain dangerous substances. For information on the types inquestion please contact your nearest Avago Technologies Office.

Avago Technologies Components may only be used in life-support devices or systems with the express written approval of Avago Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustainand/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons maybe endangered.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest Avago Technologies Office (www.avagotech.com).

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for avago manufacturer:

Other Similar products are found below:

ACPL-C790-500E PEX8724-CA RDK HCMS-2962 HCPL-0611-000E HEDM-5500#B02 HEDS-8937 HEDS-9731#A50 HFBR-5961ALZ HEDS-5505-A06 HCPL-2631-000E ACPL-K64L-060E AFBR-5803AZ PEX8747-CA RDK HCPL-5431 HFBR-2316TZ 409091B 5962-8957201XA 610861X 610962A 6N140A/883B 8302401EC HCPL-0731-500E HEDS-8949 ACSL-6410-00TE HLMP-2550 ACPL-K342-060E 4N46 PEX8747-CA80BC G HCNW4503-000E HFBR-1415TZ HCPL-0600-500E HCPL-0930-000E HEDL-5540-106 HCPL-5401 HLMP-1301-E00A1 HCPL-4503-520E HEDS-5540#I06 HEDS-6140#B09 HCMS-3906 HEDS-9700H52 HFBR-1515BZ ACPL-5631L HLMA-QL00 HSSR-7112 HDLS-1414 HFBR-RSD005Z HLMP-1540 055407X 5962-8876801PA HCMS-2922