Single 2-Input NAND Gate

The NLU1G00 MiniGate[™] is an advanced high-speed CMOS 2-input NAND gate in ultra-small footprint.

The NLU1G00 input and output structures provide protection when voltages up to 7.0 V are applied, regardless of the supply voltage.

Features

- High Speed: $t_{PD} = 3.5 \text{ ns} (Typ) @ V_{CC} = 5.0 \text{ V}$
- Low Power Dissipation: $I_{CC} = 1 \mu A$ (Max) at $T_A = 25^{\circ}C$
- Power Down Protection Provided on inputs
- Balanced Propagation Delays
- Overvoltage Tolerant (OVT) Input and Output Pins
- Ultra-Small Packages
- These are Pb-Free Devices

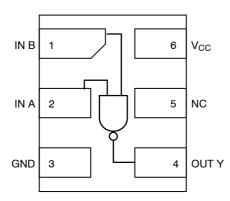
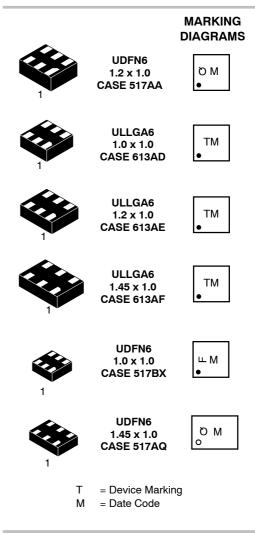


Figure 1. Pinout (Top View)

Figure 2. Logic Symbol

PIN ASSIGNMENT

1	IN B			
2	IN A			
3	GND			
4	OUT Y			
5	NC			
6	V _{CC}			


FUNCTION TABLE

Inp	out	Output
Α	В	Y
L	L	н
L	Н	н
н	L	н
Н	Н	L

ON Semiconductor®

http://onsemi.com

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 4 of this data sheet.

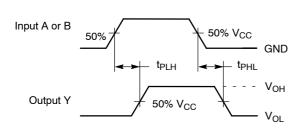
MAXIMUM RATINGS

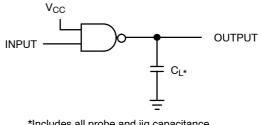
Symbol	Parameter	Value	Unit
V _{CC}	DC Supply Voltage	-0.5 to +7.0	V
V _{IN}	DC Input Voltage	-0.5 to +7.0	V
V _{OUT}	DC Output Voltage	-0.5 to +7.0	V
I _{IK}	DC Input Diode Current V _{IN} < GND	-20	mA
I _{OK}	DC Output Diode Current V _{OUT} < GND	±20	mA
Ι _Ο	DC Output Source/Sink Current	±12.5	mA
I _{CC}	DC Supply Current Per Supply Pin	±25	mA
I _{GND}	DC Ground Current per Ground Pin	±25	mA
T _{STG}	Storage Temperature Range	-65 to +150	°C
ΤL	Lead Temperature, 1 mm from Case for 10 Seconds	260	°C
TJ	Junction Temperature Under Bias	150	°C
MSL	Moisture Sensitivity	Level 1	
F _R	Flammability Rating Oxygen Index: 28 to 34	UL 94 V-0 @ 0.125 in	
I _{LATCHUP}	Latchup Performance Above V _{CC} and Below GND at 125°C (Note 2)	±500	mA

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.
 Measured with minimum pad spacing on an FR4 board, using 10 mm-by-1 inch, 2 ounce copper trace no air flow.
 Tested to EIA / JESD78.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Parameter			Unit
V _{CC}	Positive DC Supply Voltage	1.65	5.5	V	
V _{IN}	Digital Input Voltage		0	5.5	V
V _{OUT}	Output Voltage	0	5.5	V	
T _A	Operating Free-Air Temperature			+125	°C
$\Delta t/\Delta V$	Input Transition Rise or Fall Rate	$ \begin{array}{l} V_{CC} = 3.3 \; V \pm 0.3 \; V \\ V_{CC} = 5.0 \; V \pm 0.5 \; V \end{array} $	0 0	100 20	ns/V


DC ELECTRICAL CHARACTERISTICS


			V _{cc}		_A = 25 °	с	T _A = -	⊦85°C		55°C to 25°C	
Symbol	Parameter	Conditions	(V)	Min	Тур	Max	Min	Max	Min	Max	Unit
V _{IH}	Low-Level Input Voltage		1.65	0.75 x V _{CC}			0.75 x V _{CC}				V
			2.3 to 5.5	0.70 x V _{CC}			0.70 x V _{CC}				
V _{IL}	Low-Level Input Voltage		1.65			0.25 x V _{CC}		0.25 x V _{CC}		0.25 x V _{CC}	V
			2.3 to 5.5			0.30 x V _{CC}		0.30 x V _{CC}		0.30 x V _{CC}	
V _{OH}	High-Level Output Voltage	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $I_{OH} = -50 \ \mu A$	2.0 3.0 4.5	1.9 2.9 4.4	2.0 3.0 4.5		1.9 2.9 4.4		1.9 2.9 4.4		V
		$V_{IN} = V_{IH} \text{ or } V_{IL}$ $I_{OH} = -4 \text{ mA}$ $I_{OH} = -8 \text{ mA}$	3.0 4.5	2.58 3.94			2.48 3.80		2.34 3.66		V
V _{OL}	Low-Level Output Voltage	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $I_{OL} = 50 \ \mu\text{A}$	2.0 3.0 4.5		0 0 0	0.1 0.1 0.1		0.1 0.1 0.1		0.1 0.1 0.1	V
		$V_{IN} = V_{IH} \text{ or } V_{IL}$ $I_{OL} = 4 \text{ mA}$ $I_{OL} = 8 \text{ mA}$	3.0 4.5			0.36 0.36		0.44 0.44		0.52 0.52	
I _{IN}	Input Leakage Current	$0 \le V_{IN} \le 5.5 V$	0 to 5.5			±0.1		±1.0		±1.0	μΑ
I _{CC}	Quiescent Supply Current	V _{IN} = 5.5 V or GND	5.5			1.0		10		40	μΑ

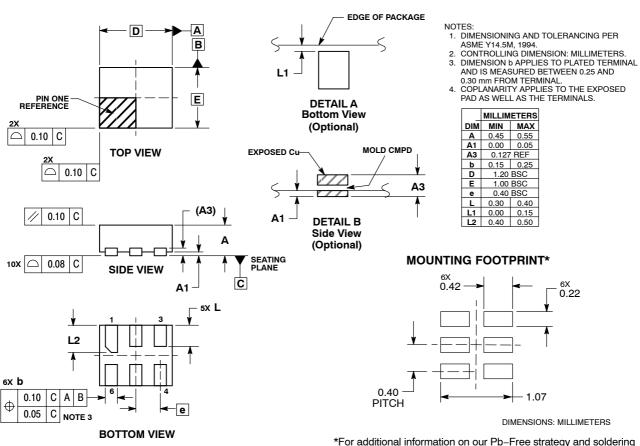
AC ELECTRICAL CHARACTERISTICS (Input $t_r = t_f = 3.0 \text{ nS}$)

		v _{cc}	Test	т	A = 25 °	с	TA = +	-85°C	T _A = -5 +12	5°C to 5°C	
Symbol	Parameter	(V)	Condition	Min	Тур	Max	Min	Max	Min	Max	Unit
t _{PLH} ,	Propagation Delay,	3.0 to	C _L = 15 pF		4.1	8.8		10.5		12.5	ns
t _{PHL}	Input A or B to Output Y	3.6	C _L = 50 pF		5.9	12.3		14		16.5	
		4.5 to	C _L = 15 pF		3.5	5.9		7.0		9.0	
		5.5	C _L = 50 pF		4.2	7.9		9.0		11	
C _{IN}	Input Capacitance				5.5	10		10		10	pF
C _{PD}	Power Dissipation Capacitance (Note 3)	5.0			11						pF

3. C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the dynamic operating current consumption without load. Average operating current can be obtained by the equation $I_{CC(OPR)} = C_{PD} \bullet V_{CC} \bullet f_{in} + I_{CC}$. C_{PD} is used to determine the no-load dynamic power consumption: $P_D = C_{PD} \bullet V_{CC}^2 \bullet f_{in} + I_{CC} \bullet V_{CC}$.

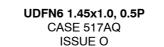
*Includes all probe and jig capacitance. A 1–MHz square input wave is recommended for propagation delay tests.

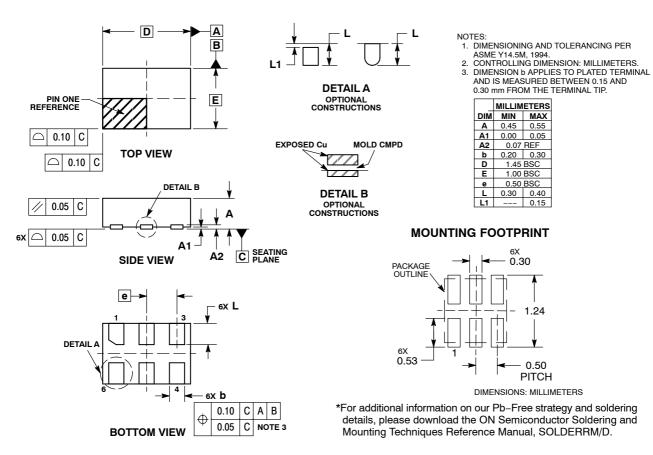
Figure 3. Switching Waveforms


ORDERING INFORMATION

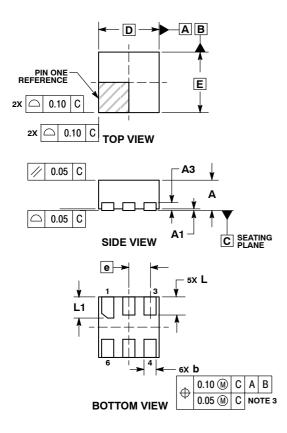
Device	Package	Shipping [†]
NLU1G00MUTCG (In Development)	UDFN6, 1.2 x 1.0, 0.4P (Pb–Free)	3000 / Tape & Reel
NLU1G00AMX1TCG	ULLGA6, 1.45 x 1.0 (Pb–Free)	3000 / Tape & Reel
NLU1G00BMX1TCG	ULLGA6, 1.2 x 1.0 (Pb–Free)	3000 / Tape & Reel
NLU1G00CMX1TCG	ULLGA6, 1.0 x 1.0 (Pb–Free)	3000 / Tape & Reel
NLU1G00AMUTCG (In Development)	UDFN6, 1.45 x 1.0, 0.5P (Pb–Free)	3000 / Tape & Reel
NLU1G00CMUTCG (In Development)	UDFN6, 1.0 x 1.0, 0.35P (Pb-Free)	3000 / Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

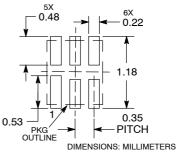

PACKAGE DIMENSIONS


UDFN6, 1.2x1.0, 0.4P CASE 517AA ISSUE C

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

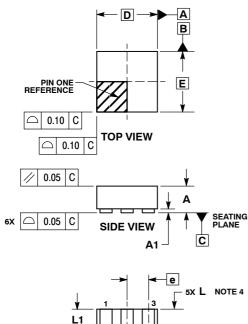

PACKAGE DIMENSIONS

PACKAGE DIMENSIONS


UDFN6 1.0x1.0, 0.35P CASE 517BX ISSUE O

- NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 2. CONTROLLING DIMENSION: MILLIMETERS. 3. DIMENSION & APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.15 AND 0.20 MM FROM TERMINAL TIP. 4. PACKAGE DIMENSIONS EXCLUSIVE OF BURRS AND MOLD FLASH.

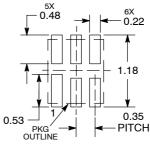
	MILLIMETERS				
DIM	MIN	MAX			
Α	0.45	0.55			
A1	0.00	0.05			
A3	0.13	0.13 REF			
b	0.12	0.22			
D	1.00	BSC			
Е	1.00	BSC			
е	0.35	BSC			
L	0.25	0.35			
L1	0.30	0.40			


RECOMMENDED SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

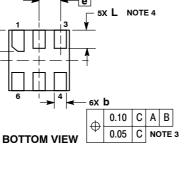
PACKAGE DIMENSIONS

ULLGA6 1.0x1.0, 0.35P CASE 613AD **ISSUE A**

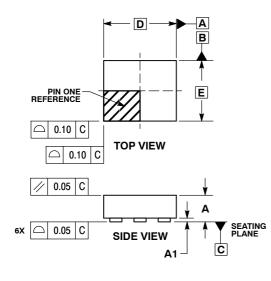

Ā

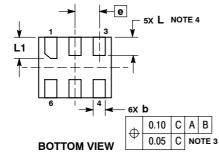
NOTES:

- AND IS MEASON THE TERMINAL TIP. A MAXIMUM OF 0.05 PULL BACK OF THE PLATED TERMINAL FROM THE EDGE OF THE PACKAGE IS ALLOWED. 4.


	MILLIMETERS				
DIM	MIN	MAX			
Α		0.40			
A1	0.00	0.05			
b	0.12	0.22			
D	1.00	BSC			
E	1.00	BSC			
е	0.35	0.35 BSC			
L	0.25	0.35			
L1	0.30	0.40			

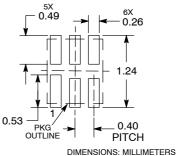
MOUNTING FOOTPRINT SOLDERMASK DEFINED*


DIMENSIONS: MILLIMETERS


*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

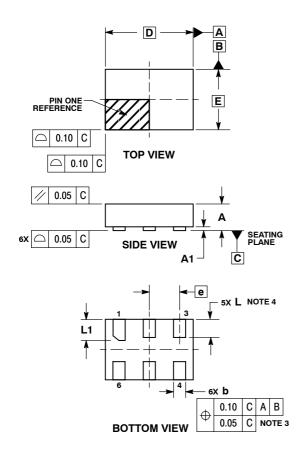
PACKAGE DIMENSIONS

ULLGA6 1.2x1.0, 0.4P CASE 613AE **ISSUE A**



- NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 2. CONTROLLING DIMENSION: MILLIMETERS. 3. DIMENSION & APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.15 AND 0.30 mm FROM THE TERMINAL TIP. 4. A MAXIMUM OF 0.05 PULL BACK OF THE PLATED TERMINAL FROM THE EDGE OF THE PACKAGE IS ALL OWED.
 - PACKAGE IS ALLOWED.

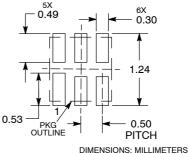
	MILLIMETERS				
DIM	MIN	MAX			
Α		0.40			
A1	0.00	0.05			
b	0.15	0.25			
D	1.20	BSC			
E	1.00	BSC			
е	0.40	BSC			
L	0.25	0.35			
L1	0.35	0.45			


MOUNTING FOOTPRINT SOLDERMASK DEFINED*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

PACKAGE DIMENSIONS

ULLGA6 1.45x1.0, 0.5P CASE 613AF ISSUE A



NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
- CONTROLLING DIMENSION: MILLIMETERS.
 DIMENSION b APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.15 AND
- a.30 mm FROM THE TERMINAL TIP.
 A MAXIMUM OF 0.05 PULL BACK OF THE PLATED TERMINAL FROM THE EDGE OF THE PACKAGE IS ALLOWED.

.	MILLIMETERS				
DIM	MIN	MAX			
Α		0.40			
A1	0.00	0.05			
b	0.15	0.25			
D	1.45	BSC			
E	1.00	BSC			
е	0.50	BSC			
L	0.25	0.35			
L1	0.30	0.40			

MOUNTING FOOTPRINT SOLDERMASK DEFINED*

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

MiniGate is a trademark of Semiconductor Components Industries, LLC (SCILLC).

ON Semiconductor and **W** are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended to surgord or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use,

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Logic Gates category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below :

5962-8769901BCA 74HC85N NL17SG08P5T5G NL17SG32DFT2G NLU1G32AMUTCG NLV7SZ58DFT2G NLVHC1G08DFT1G NLVVHC1G14DTT1G NLX2G08DMUTCG NLX2G08MUTCG MC74HCT20ADR2G 091992B 091993X 093560G 634701C 634921A NL17SG32P5T5G NL17SG86DFT2G NLU1G32CMUTCG NLV14001UBDR2G NLVVHC1G132DTT1G NLVVHC1G86DTT1G NLX1G11AMUTCG NLX1G97MUTCG 746427X 74AUP1G17FW5-7 74LS38 74LVC1G08Z-7 74LVC32ADTR2G 74LVC1G125FW4-7 74LVC08ADTR2G MC74HCT20ADTR2G NLU1G08CMX1TCG NLV14093BDTR2G NLV17SZ00DFT2G NLV17SZ02DFT2G NLV17SZ126DFT2G NLV27WZ17DFT2G NLV74HC02ADR2G NLV74HC08ADR2G NLVVHC1GT32DFT1G 74HC32S14-13 74LS133 74LVC1G32Z-7 M38510/30402BDA 74LVC1G86Z-7 74LVC2G08RA3-7 M38510/06202BFA NLV74HC08ADTR2G NLV74HC14ADR2G