Notice for TAIYO YUDEN Products

Please read this notice before using the TAIYO YUDEN products.

!\ REMINDERS

Product information in this catalog is as of October 2017. All of the contents specified herein are subject to change without notice due to technical improvements, etc. Therefore, please check for the latest information carefully before practical application or use of our products.

Please note that TAIYO YUDEN shall not be in any way responsible for any damages and defects in products or equipment incorporating our products, which are caused under the conditions other than those specified in this catalog or individual product specification sheets.

- Please contact TAIYO YUDEN for further details of product specifications as the individual product specification sheets are available.
- Please conduct validation and verification of our products in actual condition of mounting and operating environment before using our products.
- The products listed in this catalog are intended for use in general electronic equipment (e.g., AV equipment, OA equipment, home electric appliances, office equipment, information and communication equipment including, without limitation, mobile phone, and PC) and medical equipment classified as Class I or II by IMDRF. Please be sure to contact TAIYO YUDEN for further information before using the products for any equipment which may directly cause loss of human life or bodily injury (e.g., transportation equipment including, without limitation, automotive powertrain control system, train control system, and ship control system, traffic signal equipment, disaster prevention equipment, medical equipment classified as Class III by IMDRF, highly public information network equipment including, without limitation, telephone exchange, and base station).

Please do not incorporate our products into any equipment requiring high levels of safety and/or reliability (e.g., aerospace equipment, aviation equipment*, medical equipment classified as Class IV by IMDRF, nuclear control equipment, undersea equipment, military equipment).

*Note: There is a possibility that our products can be used only for aviation equipment that does not directly affect the safe operation of aircraft (e.g., in-flight entertainment, cabin light, electric seat, cooking equipment) if such use meets requirements specified separately by TAIYO YUDEN. Please be sure to contact TAIYO YUDEN for further information before using our products for such aviation equipment.

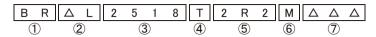
When our products are used even for high safety and/or reliability-required devices or circuits of general electronic equipment, it is strongly recommended to perform a thorough safety evaluation prior to use of our products and to install a protection circuit as necessary.

Please note that unless you obtain prior written consent of TAIYO YUDEN, TAIYO YUDEN shall not be in any way responsible for any damages incurred by you or third parties arising from use of the products listed in this catalog for any equipment requiring inquiry to TAIYO YUDEN or prohibited for use by TAIYO YUDEN as described above.

- Information contained in this catalog is intended to convey examples of typical performances and/or applications of our products and is not intended to make any warranty with respect to the intellectual property rights or any other related rights of TAIYO YUDEN or any third parties nor grant any license under such rights.
- Please note that the scope of warranty for our products is limited to the delivered our products themselves and TAIYO YUDEN shall not be in any way responsible for any damages resulting from a fault or defect in our products. Notwithstanding the foregoing, if there is a written agreement (e.g., supply and purchase agreement, quality assurance agreement) signed by TAIYO YUDEN and your company, TAIYO YUDEN will warrant our products in accordance with such agreement.
- The contents of this catalog are applicable to our products which are purchased from our sales offices or authorized distributors (hereinafter "TAIYO YUDEN's official sales channel"). Please note that the contents of this catalog are not applicable to our products purchased from any seller other than TAIYO YUDEN's official sales channel.
- Caution for Export

Some of our products listed in this catalog may require specific procedures for export according to "U.S. Export Administration Regulations", "Foreign Exchange and Foreign Trade Control Law" of Japan, and other applicable regulations. Should you have any questions on this matter, please contact our sales staff.

WIRE-WOUND CHIP POWER INDUCTORS(BR SERIES)



REFLOW

■PARTS NUMBER

* Operating Temp.:-40~+105°C (Including self-generated heat)

△=Blank space

1)Series r	name
------------	------

Code	Series name
BR	Wire-Wound chip power inductor

2Characteristics

Code	Characteristics					
FL						
ΔL	Low profile					
HL						
ΔC	High current					

3Dimensions (L × W)

© Billionologio (E	55 menerale (2 · 11)								
Code	Type (inch)	Dimensions (L×W)[mm]							
1608	1608 (0603)	1.6 × 0.8							
2012	2012 (0805)	2.0 × 1.25							
2016	2016 (0806)	2.0 × 1.6							
2518	2518(1007)	2.5 × 1.8							
3225	3225(1210)	3.2 × 2.5							

4 Packaging

Code	Packaging
Т	Taping

⑤Nominal inductance

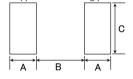
Code (example)	Nominal inductance[μ H]
R20	0.2
1R0	1.0
100	10
101	100

※R=Decimal point

6 Inductance tolerance

Code	Inductance tolerance
K	±10%
М	±20%

7Internal code


■STANDARD EXTERNAL DIMENSIONS / STANDARD QUANTITY

Recommended Land Patterns

Surface Mounting

•Mounting and soldering conditions should be checked beforehand.

*Applicable soldering process to these products is reflow soldering only.

Type	Α	В	С
1608	0.55	0.70	1.00
2012	0.60	1.00	1.45
2016	0.60	1.00	1.80
2518	0.60	1.50	2.00
3225	0.85	1.70	2.70

Unit:mm

Т		W	Т	_	Standard qu	uantity[pcs]	
Type	L	VV		е	Paper tape	Embossed tape	
BR L1608	1.6±0.2	0.8 ± 0.2	0.7 max	0.45±0.15	_	3000	
DK L1000	(0.063 ± 0.008)	(0.031 ± 0.008)	(0.028 max)	(0.016±0.006)		3000	
BR C1608	1.6±0.2	0.8 ± 0.2	0.8 ± 0.2	0.45 ± 0.15	_	3000	
BIX 01000	(0.063 ± 0.008)	(0.031 ± 0.008)	(0.031 ± 0.008)	(0.016 ± 0.006)		3000	
BR L2012	2.0 ± 0.2	1.25±0.2	1.0 max			3000	
DK LZ01Z	(0.079 ± 0.008)	(0.049 ± 0.008)	(0.040 max)	(0.020 ± 0.008)		3000	
BR C2012	2.0±0.2	1.25±0.2	1.4 max	0.5±0.2	_	2000	
BK 02012	(0.079 ± 0.008)	(0.049 ± 0.008)	(0.056 max)	(0.020 ± 0.008)		2000	
BR C2016	2.0 ± 0.2	1.6 ± 0.2	1.6 ± 0.2	0.5 ± 0.2	_	2000	
	(0.079 ± 0.008)	(0.063 ± 0.008)	(0.063 ± 0.008)	(0.020 ± 0.008)	_	2000	
BRFL2518	2.5±0.2	1.8±0.2	1.0 max	0.5±0.2	_	3000	
DRI LZ310	(0.098 ± 0.008)	(0.071 ± 0.008)	(0.040 max)	(0.020 ± 0.008)		3000	
BR L2518	2.5 ± 0.2	1.8 ± 0.2	1.2 max	0.5 ± 0.2	_	3000	
DK LZ310	(0.098 ± 0.008)	(0.071 ± 0.008)	(0.048 max)	(0.020 ± 0.008)	_	3000	
DDUI 2510	2.5±0.2	1.8±0.2	1.5 max	0.5±0.2	_	2000	
BRHL2518	(0.098 ± 0.008)	(0.071 ± 0.008)	(0.060 max)	(0.020 ± 0.008)	_	2000	
BR C2518	2.5±0.2	1.8±0.2	1.8±0.2	0.5±0.2	_	2000	
DR 02316	(0.098 ± 0.008)	(0.071 ± 0.008)	(0.071 ± 0.008)	(0.020 ± 0.008)	_	2000	
BR L3225	3.2±0.2	2.5±0.2	1.7 max	0.75±0.2	_	2000	
DR L3ZZ3	(0.126 ± 0.008)	(0.098 ± 0.008)	(0.068 max)	(0.03 ± 0.008)		2000	
		<u> </u>	<u> </u>			Unit:mm(inch)	

[▶] This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our product specification sheets. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our website (http://www.ty-top.com/).

●1608(0603)TYPE

	N-	Nominal inductance		Self-resonant	DC Resistance	Rated current ※) [mA]		Management
Parts number	EHS	[μ H]	Inductance tolerance	frequency [MHz] (min.)	[Ω](±30%)	Saturation current Idc1	Temperature rise current Idc2	Measuring frequency[MHz]
BR L1608T1R0M	RoHS	1.0	±20%	700	0.230	510	650	1.0
BR L1608T1R5M	RoHS	1.5	±20%	600	0.280	440	590	1.0
BR L1608T2R2M	RoHS	2.2	±20%	400	0.400	360	500	1.0
BR L1608T3R3M	RoHS	3.3	±20%	300	0.650	290	390	1.0
BR L1608T4R7M	RoHS	4.7	±20%	150	1.00	240	310	1.0
BR L1608T6R8M	RoHS	6.8	±20%	100	1.64	200	250	1.0
BR L1608T100M	RoHS	10	±20%	45	2.00	170	220	1.0
BR L1608T150M	RoHS	15	±20%	32	2.56	150	200	1.0

	New	Nominal inductance		Self-resonant	DC Resistance	Rated curren	Measuring	
Parts number	EHS	[μ H]	Inductance tolerance	frequency [MHz] (min.)	$[\Omega](\pm 30\%)$	Saturation current Idc1	Temperature rise current Idc2	frequency[MHz]
BR C1608TR43M 6	RoHS	0.43	±20%	740	0.082	1,400	1,100	6.0
BR C1608TR50M 6	RoHS	0.50	±20%	710	0.090	1,200	1,050	6.0
BR C1608TR60M 6	RoHS	0.60	±20%	630	0.099	1,100	940	6.0
BR C1608TR72M 6	RoHS	0.72	±20%	600	0.144	1,000	810	6.0
BR C1608TR82M 6	RoHS	0.82	±20%	560	0.176	950	730	6.0
BR C1608T1R0M 6	RoHS	1.0	±20%	550	0.188	890	680	6.0

		Nominal inductance $[\mu H]$ Inductance tolerance $[MHz]$ Min. $[L]$ DC Resistance $[\Omega]$ ($\pm 30\%$)	Inductance Inductance tolerance freque	Self-resonant	DC Basistanas	Rated curren	Measuring	
Parts number	EHS			Saturation current Idc1	Temperature rise current Idc2			
BR C1608TR20M	RoHS	0.20	±20%	400	0.060	1,750	980	7.96
BR C1608TR35M	RoHS	0.35	±20%	300	0.080	1,400	810	7.96
BR C1608TR45M	RoHS	0.45	±20%	200	0.090	1,250	800	7.96
BR C1608TR56M	RoHS	0.56	±20%	170	0.095	1,150	760	7.96
BR C1608TR77M	RoHS	0.77	±20%	150	0.110	1,000	660	7.96
BR C1608T1R0M	RoHS	1.0	±20%	140	0.180	850	520	7.96
BR C1608T1R5M	RoHS	1.5	±20%	120	0.300	700	410	7.96
BR C1608T2R2M	RoHS	2.2	±20%	100	0.550	550	280	7.96

2012(0805)TYPE

		Nominal inductance		Self-resonant	DC Resistance	Rated curren	t ※)[mA]	Measuring
Parts number	EHS	[μ H]	Inductance tolerance	frequency [MHz] (min.)	$[\Omega](\pm 30\%)$	Saturation current Idc1	Temperature rise current Idc2	
BR L2012TR47M 6	RoHS	0.47	±20%	500	0.048	1,500	1,900	6.0
BR L2012T1R0M 6	RoHS	1.0	±20%	400	0.108	1,050	1,230	6.0
BR L2012T2R2MD6	RoHS	2.2	±20%	250	0.184	680	950	6.0

		N		Self-resonant	DOD ::	Rated curren	t ※)[mA]	
Parts number	EHS	Nominal inductance [μ H]	Inductance tolerance	frequency [MHz] (min.)	DC Resistance [Ω](±30%)	Saturation current Idc1	Temperature rise current Idc2	Measuring frequency[MHz]
BR L2012TR47M	RoHS	0.47	±20%	350	0.090	1,100	1,050	7.96
BR L2012T1R0M	RoHS	1.0	±20%	300	0.135	850	850	7.96
BR L2012T1R5M	RoHS	1.5	±20%	250	0.180	700	750	7.96
BR L2012T2R2M	RoHS	2.2	±20%	200	0.300	600	550	7.96
BR L2012T3R3M	RoHS	3.3	±20%	190	0.500	490	440	7.96
BR L2012T4R7M	RoHS	4.7	±20%	150	0.550	340	400	7.96
BR L2012T6R8M	RoHS	6.8	±20%	60	0.750	290	350	7.96
BR L2012T100M	RoHS	10	±20%	30	0.850	270	330	2.52
BR L2012T150M	RoHS	15	±20%	15	1.00	220	300	2.52
BR L2012T220M	RoHS	22	±20%	13	1.30	190	270	2.52
BR L2012T330M	RoHS	33	±20%	8.0	2.00	150	220	2.52
BR L2012T470M	RoHS	47	±20%	7.0	3.50	125	160	2.52
BR L2012T680M	RoHS	68	±20%	6.5	5.80	100	110	2.52
BR L2012T101M	RoHS	100	±20%	6.0	7.70	85	85	0.796

		Nominal inductance		Self-resonant	DC Resistance	Rated curren	t ※)[mA]	Managara
Parts number	EHS	[μ H]	Inductance tolerance	frequency [MHz] (min.)	$[\Omega](\pm 30\%)$	Saturation current Idc1	Temperature rise current Idc2	Measuring frequency[MHz]
BR C2012T1R0M	RoHS	1.0	±20%	490	0.060	1,500	1,400	1.0
BR C2012T1R5MD	RoHS	1.5	±20%	390	0.090	1,200	1,100	1.0
BR C2012T2R2MD	RoHS	2.2	±20%	350	0.110	1,100	1,000	1.0
BR C2012T3R3MD	RoHS	3.3	±20%	300	0.170	800	870	1.0
BR C2012T4R7MD	RoHS	4.7	±20%	250	0.265	700	600	1.0

 $[\]mbox{\%}$) The saturation current value (Idc1) is the DC current value having inductance decrease down to 30%. (at 20°C)

 $[\]frak{\%}\)$ The temperature rise current value (Idc2) is the DC current value having temperature increase by 40°C. (at 20°C)

 $[\]frak{\%}\)$ The rated current value is following either Idc1 or Idc2, which is the lower one.

[▶] This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our product specification sheets. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our website (http://www.ty-top.com/).

2016 (0806) TYPE

		Nominal inductance		Self-resonant	DC Resistance	Rated curren	t ※)[mA]	Measuring
Parts number	EHS	[μ H]	Inductance tolerance	frequency [MHz] (min.)	$[\Omega](\pm 30\%)$	Saturation current Idc1	Temperature rise current Idc2	frequency[MHz]
BR C2016T1R0M	RoHS	1.0	±20%	450	0.085	1,350	1,100	0.10
BR C2016T1R5M	RoHS	1.5	±20%	370	0.150	1,100	820	0.10
BR C2016T2R2M	RoHS	2.2	±20%	250	0.180	910	760	0.10
BR C2016T3R3M	RoHS	3.3	±20%	140	0.220	740	680	0.10
BR C2016T4R7M	RoHS	4.7	±20%	78	0.270	660	610	0.10
BR C2016T6R8M	RoHS	6.8	±20%	39	0.330	550	560	0.10
BR C2016T100[]	RoHS	10	±10%, ±20%	35	0.400	450	520	0.10
BR C2016T150[]	RoHS	15	±10%, ±20%	28	0.600	400	410	0.10
BR C2016T220□	RoHS	22	±10%, ±20%	24	1.00	310	310	0.10
BR C2016T330□	RoHS	33	±10%, ±20%	13	1.70	270	240	0.10
BR C2016T470[]	RoHS	47	±10%, ±20%	11	2.20	210	210	0.10
BR C2016T680[]	RoHS	68	±10%, ±20%	8	2.80	200	190	0.10
BR C2016T101[]	RoHS	100	±10%, ±20%	7	3.40	140	170	0.10

2518(1007)TYPE

		Nominal inductance		Self-resonant	DC Resistance	Rated curren	t ※)[mA]	Measuring
Parts number	EHS	[μ H]	Inductance tolerance	frequency [MHz] (min.)	$[\Omega](\pm 30\%)$	Saturation current Idc1	Temperature rise current Idc2	
BRFL2518T1R0M	RoHS	1.0	±20%	130	0.090	1,200	1,200	1.0
BRFL2518T1R5M	RoHS	1.5	±20%	100	0.110	1,100	1,000	1.0
BRFL2518T2R2M	RoHS	2.2	±20%	80	0.130	850	950	1.0
BRFL2518T3R3M	RoHS	3.3	±20%	70	0.220	700	700	1.0
BRFL2518T4R7M	RoHS	4.7	±20%	60	0.330	650	650	1.0

		Nominal inductance		Self-resonant	DC Resistance	Rated curren	t ※)[mA]	Managed
Parts number	EHS	[μ H]	Inductance tolerance	frequency [MHz] (min.)	$[\Omega](\pm 30\%)$	Saturation current Idc1	Temperature rise current Idc2	Measuring frequency[MHz]
BR L2518T1R0M	RoHS	1.0	±20%	130	0.080	1,600	1,000	7.96
BR L2518T1R5M	RoHS	1.5	±20%	100	0.100	1,200	920	7.96
BR L2518T2R2M	RoHS	2.2	±20%	80	0.135	1,000	850	7.96
BR L2518T3R3M	RoHS	3.3	±20%	70	0.300	800	580	7.96
BR L2518T4R7M	RoHS	4.7	±20%	60	0.400	700	470	7.96

		Nominal inductance		Self-resonant	DC Resistance	Rated curren	t ※)[mA]	Management
Parts number	EHS	[μ H]	Inductance tolerance	frequency [MHz] (min.)	$[\Omega](\pm 30\%)$	Saturation current Idc1	Temperature rise current Idc2	Measuring frequency[MHz]
BRHL2518T1R0M	RoHS	1.0	±20%	400	0.055	2,000	1,400	1.0
BRHL2518T1R5M	RoHS	1.5	±20%	350	0.085	1,700	1,100	1.0
BRHL2518T2R2M	RoHS	2.2	±20%	300	0.115	1,500	1,000	1.0
BRHL2518T3R3MD	RoHS	3.3	±20%	200	0.165	1,200	800	1.0
BRHL2518T4R7MD	RoHS	4.7	±20%	150	0.245	1,100	750	1.0

		M 1 11 1 1		Self-resonant	DO D	Rated curren	t ※)[mA]	
Parts number	EHS	Nominal inductance [μ H]	Inductance tolerance	frequency [MHz] (min.)	DC Resistance [Ω](±30%)	Saturation current Idc1	Temperature rise current Idc2	Measuring frequency[MHz]
BR C2518T1R0M	RoHS	1.0	±20%	280	0.050	2,550	1,650	1.0
BR C2518T1R5M	RoHS	1.5	±20%	230	0.080	2,100	1,300	1.0
BR C2518T2R2M	RoHS	2.2	±20%	200	0.120	1,800	1,000	1.0
BR C2518T3R3M	RoHS	3.3	±20%	150	0.175	1,450	860	1.0
BR C2518T4R7M	RoHS	4.7	±20%	100	0.230	1,250	750	1.0
BR C2518T6R8M	RoHS	6.8	±20%	45	0.280	1,050	680	1.0
BR C2518T100[]	RoHS	10	±10%, ±20%	20	0.350	890	610	1.0
BR C2518T150[]	RoHS	15	±10%, ±20%	13	0.430	760	550	1.0
BR C2518T220[]	RoHS	22	±10%, ±20%	10	0.560	640	490	1.0
BR C2518T330[]	RoHS	33	±10%, ±20%	8	0.850	560	390	1.0
BR C2518T470[]	RoHS	47	±10%, ±20%	6.5	1.45	410	300	1.0
BR C2518T680[]	RoHS	68	±10%, ±20%	5.5	2.40	340	230	1.0
BR C2518T101[]	RoHS	100	±10%, ±20%	4.5	3.60	300	190	1.0

^{• ☐} Please specify the inductance tolerance code. (M or K)

[%]) The saturation current value (Idc1) is the DC current value having inductance decrease down to 30%. (at 20°C)

 $[\]stackrel{\frown}{\otimes}$) The temperature rise current value (Idc2) is the DC current value having temperature increase by 40°C. (at 20°C)

 $[\]ensuremath{\mbox{\%}}\xspace) The rated current value is following either Idc1 or Idc2, which is the lower one.$

[▶] This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our product specification sheets. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our website (http://www.ty-top.com/).

3225(1210)TYPE

		N		Self-resonant	DC Resistance	Rated curren	t ※)[mA]	Managada
Parts number	EHS	Nominal inductance [μ H]	Inductance tolerance	frequency [MHz] (min.)	$[\Omega](\pm 30\%)$	Saturation current Idc1	Temperature rise current Idc2	Measuring frequency[MHz]
BR L3225TR27M	RoHS	0.27	±20%	390	0.022	4,500	2,850	7.96
BR L3225TR36M	RoHS	0.36	±20%	350	0.025	4,300	2,750	7.96
BR L3225TR51M	RoHS	0.51	±20%	270	0.029	3,600	2,550	7.96

		M 1 1 1 1 1		Self-resonant	DOD ::	Rated curren	t ※)[mA]	
Parts number	EHS	Nominal inductance [μ H]	Inductance tolerance	frequency [MHz] (min.)	DC Resistance [Ω](±20%)	Saturation current Idc1	Temperature rise current Idc2	Measuring frequency[MHz]
BR L3225T1R0M	RoHS	1.0	±20%	220	0.043	2,400	2,200	0.1
BR L3225T1R5M	RoHS	1.5	±20%	170	0.045	2,200	1,750	0.1
BR L3225T2R2M	RoHS	2.2	±20%	150	0.065	1,850	1,600	0.1
BR L3225T3R3M	RoHS	3.3	±20%	140	0.120	1,450	1,200	0.1
BR L3225T4R7M	RoHS	4.7	±20%	120	0.180	1,300	1,000	0.1
BR L3225T6R8M	RoHS	6.8	±20%	90	0.270	1,050	770	0.1
BR L3225T100[]	RoHS	10	±10%, ±20%	70	0.350	900	700	0.1
BR L3225T150[]	RoHS	15	±10%, ±20%	20	0.570	700	530	0.1
BR L3225T220[]	RoHS	22	±10%, ±20%	13	0.690	550	470	0.1
BR L3225T330[]	RoHS	33	±10%, ±20%	9	0.840	470	420	0.1
BR L3225T470[]	RoHS	47	±10%, ±20%	7	1.00	420	390	0.1
BR L3225T680[]	RoHS	68	±10%, ±20%	6	1.40	330	300	0.1
BR L3225T101[]	RoHS	100	±10%, ±20%	5	2.50	270	250	0.1

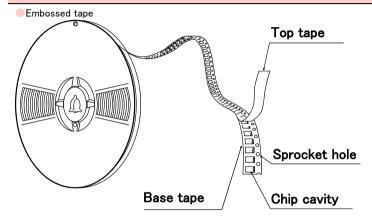
^{• ☐} Please specify the inductance tolerance code. (M or K)

 $[\]frak{\%}$) The saturation current value (Idc1) is the DC current value having inductance decrease down to 30%. (at 20°C)

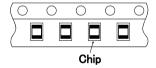
 $[\]frak{\%}\)$ The temperature rise current value (Idc2) is the DC current value having temperature increase by 40°C. (at 20°C)

^{*)} The rated current value is following either Idc1 or Idc2, which is the lower one.

[▶] This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our product specification sheets. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our website (http://www.ty-top.com/).

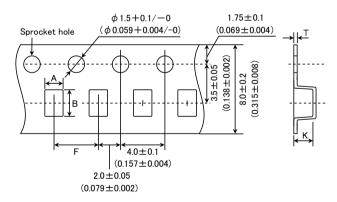

WIRE-WOUND CHIP POWER INDUCTORS (BR SERIES)

PACKAGING


1 Minimum Quantity

Tura	Standard Qu	uantity [pcs]
Type	Paper Tape	Embossed Tape
BR C1608	_	3,000
BR L1608	-	3,000
BR L2012	-	3,000
BR C2012	-	2,000
BR C2016	_	2,000
BR C2518	_	2,000
BRHL2518	_	2,000
BR L2518	_	3,000
BRFL2518	_	3,000
BR L3225	_	2,000

2 Tape Material

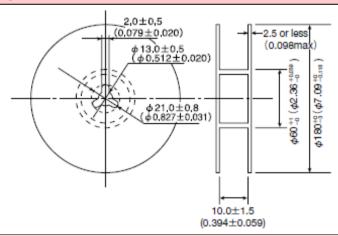


Chip Filled

3 Taping dimensions

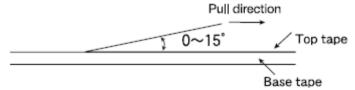
Embossed Tape 8mm wide (0.315 inches wide)

This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).


T	Chip	cavity	Insertion pitch	Tape th	ickness
Туре	Α	В	F	T	K
DD 1 1600	1.1±0.1	1.9±0.1	4.0±0.1	0.2 ± 0.05	0.9 max
BR L1608	(0.043 ± 0.004)	(0.075 ± 0.004)	(0.157 ± 0.004)	(0.008 ± 0.002)	(0.035 max)
BR C1608	1.1±0.1	1.9±0.1	4.0±0.1	0.25±0.05	1.2 max
BK C1008	(0.043 ± 0.004)	(0.075 ± 0.004)	(0.157 ± 0.004)	(0.010 ± 0.002)	(0.047 max)
BR L2012	1.45±0.1	2.2±0.1	4.0±0.1	0.25±0.05	1.2 max
DR LZUIZ	(0.057 ± 0.004)	(0.087 ± 0.004)	(0.157 ± 0.004)	(0.010 ± 0.002)	(0.047 max)
BR C2012	1.45±0.1	2.37±0.1	4.0±0.1	0.25 ± 0.05	1.59 max
DR CZUIZ	(0.057 ± 0.004)	(0.093 ± 0.004)	(0.157 ± 0.004)	(0.010 ± 0.002)	(0.063 max)
BR C2016	1.75±0.1	2.1±0.1	4.0±0.1	0.3 ± 0.05	1.9 max
DR 02010	(0.069 ± 0.004)	(0.083 ± 0.004)	(0.157 ± 0.004)	(0.012 ± 0.002)	(0.075 max)
BRFL2518	2.3±0.1	2.8±0.1	4.0±0.1	0.25±0.05	1.3 max
DRFLZ010	(0.091 ± 0.004)	(0.110 ± 0.004)	(0.157 ± 0.004)	(0.010 ± 0.002)	(0.051 max)
BR L2518	2.3±0.1	2.8±0.1	4.0±0.1	0.3 ± 0.05	1.45 max
DR LZ310	(0.091 ± 0.004)	(0.110 ± 0.004)	(0.157 ± 0.004)	(0.012 ± 0.002)	(0.057 max)
BRHL2518	2.1±0.1	2.8±0.1	4.0±0.1	0.3±0.05	1.7 max
BKHL2318	(0.083 ± 0.004)	(0.110 ± 0.004)	(0.157 ± 0.004)	(0.012 ± 0.002)	(0.067 max)
BR C2518	2.15±0.1	2.7±0.1	4.0±0.1	0.3±0.05	2.2 max
DK 02010	(0.085 ± 0.004)	(0.106 ± 0.004)	(0.157 ± 0.004)	(0.012 ± 0.002)	(0.087 max)
BR L3225	2.8±0.1	3.5±0.1	4.0±0.1	0.25 ± 0.05	1.9 max
DR L3220	(0.110 ± 0.004)	(0.138 ± 0.004)	(0.157 ± 0.004)	(0.010 ± 0.002)	(0.075 max)

Unit:mm(inch)

4 Leader and Blank portion



5Reel size

6Top Tape Strength

The top tape requires a peel-off force of 0.2 to 0.7N in the direction of the arrow as illustrated below.

This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).

WIRE-WOUND CHIP POWER INDUCTORS (BR SERIES)

■RELIABILITY DATA

1. Operating Tempe	rature Range		
Specified Value	BR series	-40~+105°C	
Test Methods and Remarks	Including self-generated heat		
	_		
	ture Range (after soldering)		
Specified Value	BR series	-40~+85°C	
Test Methods and Remarks	Please refer the term of "7.Storage conditions" in Precautions.		
3. Rated current			
Specified Value	BR series	Within the specified tolerance	
4. Inductance			
Specified Value	BR series	Within the specified tolerance	
Test Methods and Remarks	Measuring equipment : LCR Meter (H Measuring frequency : Specified frequency	HP 4285A or equivalent)	
Romano	measuring inequency . openined inequ	autioy	
5. DC Resistance			
Specified Value	BR series	Within the specified tolerance	
Test Methods and Remarks		(HIOKI 3227 or equivalent)	
6. Self resonance fr Specified Value Test Methods and Remarks	BR series Measuring equipment : Impedance and	Within the specified tolerance alyzer/material analyzer equivalent HP4191A, 4192A or equivalent)	
Remarks	(111 42317 01 1	equivalent IIF 4131A, 4132A of equivalent/	
7. Temperature cha	racteristic		
Specified Value	BR series	Inductance change : Within ±15%	
Test Methods and Remarks	Based on the inductance at 20°C and Measured at the ambient of $-40^{\circ}\text{C} \sim +85^{\circ}\text{C}$.		
Remarks			
8. Resistance to the	e bendability		
Specified Value	BR series	No damage.	
Test Methods and Remarks	Dimension of the board : 100 ×	d then the back side of the board is pushed until it bends 2mm like the figure. $40 \times 1.0 \text{mm}$ (0.8mm thickness for 1608(0603) inductors) epoxy-resin m	

This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).

9. Body strength						
Specified Value	BR series		No damage.			
Test Methods and	2012~		no damago.			
Remarks	Applied orce 10N					
romano	Duration : 10sec.					
	1608 size					
	Applied force : 5N					
	Duration : 10sec.					
10. Adhesion of term	ninal electrodes					
Specified Value	BR series		Not to removed from the board.			
Test Methods and	The given sample is soldered	to the board an	and then it is kept for 5sec with 10N stress (5N for 1608(0603) inductors) like the figure.			
Remarks						
	■ 10N (5N fo	■ 10N (5N for 1608(0603) inductors				
11. Resistance to vi	bration					
0 '6 1)(1	DD :		Inductance change : Within ±10%			
Specified Value	BR series		No significant abnormality in appearance.			
Test Methods and	The given sample is soldered	to the board an	and then it is tested depending on the conditions of the following table.			
Remarks	Vibration Frequency	10∼55Hz				
	Total Amplitude	_	y not exceed acceleration 196m/s2)			
	Sweeping Method		Hz to 10Hz for 1min.			
	T:	X	For O harman and V. V. and 7 and			
	Time	Z	For 2 hours on each X, Y, and Z axis.			
	Recovery : At least 2hrs of		der the standard condition after the test, followed by the measurement within 48hrs.			
	·					
12. Solderability						
Specified Value	BR series		At least 90% area of the electrodes is covered by new solder.			
Specified Value Test Methods and	BR series Test Method and Remarks		At least 90% area of the electrodes is covered by new solder.			
Specified Value Test Methods and Remarks	Test Method and Remarks]	to the flux and t	At least 90% area of the electrodes is covered by new solder. d then it is tested depending on the conditions of the following table.			
Test Methods and	Test Method and Remarks]		d then it is tested depending on the conditions of the following table.			
Test Methods and	Test Method and Remarks] The given sample is dipped into	ining rosin 25%. 245±5°C	d then it is tested depending on the conditions of the following table.			
Test Methods and	Test Method and Remarks] The given sample is dipped int Flux: Methanol solution conta	ining rosin 25%.	d then it is tested depending on the conditions of the following table.			
Test Methods and	Test Method and Remarks] The given sample is dipped int Flux: Methanol solution conta Solder Temperature	ining rosin 25%. 245±5°C	d then it is tested depending on the conditions of the following table.			
Test Methods and	Test Method and Remarks] The given sample is dipped int Flux: Methanol solution conta Solder Temperature Time	ining rosin 25%. 245±5°C	d then it is tested depending on the conditions of the following table.			
Test Methods and Remarks 13. Resistance to so	Test Method and Remarks] The given sample is dipped int Flux: Methanol solution conta Solder Temperature Time	ining rosin 25%. 245±5°C	d then it is tested depending on the conditions of the following table.			
Test Methods and Remarks	Test Method and Remarks] The given sample is dipped int Flux: Methanol solution conta Solder Temperature Time	ining rosin 25%. 245±5°C	d then it is tested depending on the conditions of the following table. %.			
Test Methods and Remarks 13. Resistance to so	Test Method and Remarks] The given sample is dipped interpretation contains and the solution con	ining rosin 25%. 245±5°C 5±0.5 sec.	d then it is tested depending on the conditions of the following table. %. Inductance change: Within ±10%			
Test Methods and Remarks 13. Resistance to so Specified Value	Test Method and Remarks The given sample is dipped int Flux: Methanol solution conta Solder Temperature Time Oldering heat BR series 3 times reflow having the tem Test board thickness : 1.0	ining rosin 25%. 245±5°C 5±0.5 sec. perature profile	Inductance change: Within ±10% No significant abnormality in appearance. Tile of 5sec of 260+0/-5 °C and 40sec of more than 230°C.			
Test Methods and Remarks 13. Resistance to so Specified Value Test Methods and	Test Method and Remarks The given sample is dipped int Flux: Methanol solution conta Solder Temperature Time Oldering heat BR series 3 times reflow having the tem Test board thickness : 1.0 Test board material : Gla	perature profile mm ss epoxy-resin	d then it is tested depending on the conditions of the following table. Sw.			
Test Methods and Remarks 13. Resistance to so Specified Value Test Methods and	Test Method and Remarks The given sample is dipped int Flux: Methanol solution conta Solder Temperature Time Oldering heat BR series 3 times reflow having the tem Test board thickness : 1.0 Test board material : Gla	perature profile mm ss epoxy-resin	Inductance change: Within ±10% No significant abnormality in appearance. Tile of 5sec of 260+0/-5 °C and 40sec of more than 230°C.			
Test Methods and Remarks 13. Resistance to so Specified Value Test Methods and Remarks	Test Method and Remarks The given sample is dipped int Flux: Methanol solution conta Solder Temperature Time Oldering heat BR series 3 times reflow having the tem Test board thickness : 1.0 Test board material : Gla	perature profile mm ss epoxy-resin	d then it is tested depending on the conditions of the following table. Sw.			
Test Methods and Remarks 13. Resistance to so Specified Value Test Methods and	Test Method and Remarks The given sample is dipped int Flux: Methanol solution conta Solder Temperature Time Oldering heat BR series 3 times reflow having the tem Test board thickness : 1.0 Test board material : Gla	perature profile mm ss epoxy-resin	d then it is tested depending on the conditions of the following table. Main			
Test Methods and Remarks 13. Resistance to so Specified Value Test Methods and Remarks	Test Method and Remarks The given sample is dipped int Flux: Methanol solution conta Solder Temperature Time Oldering heat BR series 3 times reflow having the tem Test board thickness : 1.0 Test board material : Gla	perature profile mm ss epoxy-resin	d then it is tested depending on the conditions of the following table. Mainter			
Test Methods and Remarks 13. Resistance to so Specified Value Test Methods and Remarks 14. Thermal shock Specified Value	Test Method and Remarks] The given sample is dipped int Flux: Methanol solution contate Solder Temperature Time Soldering heat BR series 3 times reflow having the tem Test board thickness : 1.0 Test board material : Gla Recovery : At least 2hrs of	perature profile mm ss epoxy-resin	d then it is tested depending on the conditions of the following table. Main			
Test Methods and Remarks 13. Resistance to so Specified Value Test Methods and Remarks 14. Thermal shock Specified Value Test Methods and	Test Method and Remarks The given sample is dipped int Flux: Methanol solution conta Solder Temperature Time Soldering heat BR series 3 times reflow having the tem Test board thickness : 1.0 Test board material : Gla Recovery : At least 2hrs of BR series The given sample is soldered	perature profile mm ss epoxy-resin recovery under	d then it is tested depending on the conditions of the following table. Most			
Test Methods and Remarks 13. Resistance to so Specified Value Test Methods and Remarks 14. Thermal shock Specified Value	Test Method and Remarks The given sample is dipped int Flux: Methanol solution conta Solder Temperature Time Soldering heat BR series 3 times reflow having the tem Test board thickness : 1.0 Test board material : Gla Recovery : At least 2hrs of BR series The given sample is soldered in Condition in the sample is soldered in the	perature profile mm ss epoxy-resin recovery under	d then it is tested depending on the conditions of the following table. Most in the condition of the following table. Inductance change: Within ±10%			
Test Methods and Remarks 13. Resistance to so Specified Value Test Methods and Remarks 14. Thermal shock Specified Value Test Methods and	Test Method and Remarks The given sample is dipped int Flux: Methanol solution conta Solder Temperature Time Soldering heat BR series 3 times reflow having the tem Test board thickness : 1.0 Test board material : Gla Recovery : At least 2hrs of BR series The given sample is soldered Condit Step Temperature (**	perature profile mm ss epoxy-resin recovery under	d then it is tested depending on the conditions of the following table. Most indicated the condition of the following table.			
Test Methods and Remarks 13. Resistance to so Specified Value Test Methods and Remarks 14. Thermal shock Specified Value Test Methods and	Test Method and Remarks The given sample is dipped int Flux: Methanol solution conta Solder Temperature Time Soldering heat BR series 3 times reflow having the tem Test board thickness : 1.0 Test board material : Gla Recovery : At least 2hrs of BR series The given sample is soldered Condit Step Temperature (Canal Step Temperature (Cana	perature profile mm ss epoxy-resin recovery under	Inductance change: Within ±10% No significant abnormality in appearance. Sile of 5sec of 260+0/-5 °C and 40sec of more than 230°C. Sin der the standard condition after the test, followed by the measurement within 48hrs. Inductance change: Within ±10% No significant abnormality in appearance. Inductance change: Within ±10% No significant abnormality in appearance. and then its Inductance is measured after 100cycles of the following conditions. Inductance change: Within ±10% No significant abnormality in appearance.			
Test Methods and Remarks 13. Resistance to so Specified Value Test Methods and Remarks 14. Thermal shock Specified Value Test Methods and	Test Method and Remarks] The given sample is dipped int Flux: Methanol solution contate Solder Temperature Time Soldering heat BR series 3 times reflow having the tem Test board thickness : 1.0 Test board material : Gla Recovery : At least 2hrs of Series BR series The given sample is soldered Condite Step Temperature (Condite Step Temperature (Condi	perature profile mm ss epoxy-resin recovery under	Inductance change: Within ±10% No significant abnormality in appearance. Sile of 5sec of 260+0/-5 °C and 40sec of more than 230°C. Sin der the standard condition after the test, followed by the measurement within 48hrs. Inductance change: Within ±10% No significant abnormality in appearance. and then its Inductance is measured after 100cycles of the following conditions. Sile Duration (min) 30±3 Within 3			
Test Methods and Remarks 13. Resistance to so Specified Value Test Methods and Remarks 14. Thermal shock Specified Value Test Methods and	Test Method and Remarks The given sample is dipped int Flux: Methanol solution conta Solder Temperature Time Soldering heat BR series 3 times reflow having the tem Test board thickness : 1.0 Test board material : Gla Recovery : At least 2hrs of BR series The given sample is soldered Condit Step Temperature (Canal Step Temperature (Cana	perature profile mm ss epoxy-resin recovery under to the board ancions of 1 cycle C)	Inductance change: Within ±10% No significant abnormality in appearance. Sile of 5sec of 260+0/-5 °C and 40sec of more than 230°C. Sin der the standard condition after the test, followed by the measurement within 48hrs. Inductance change: Within ±10% No significant abnormality in appearance. Inductance change: Within ±10% No significant abnormality in appearance. and then its Inductance is measured after 100cycles of the following conditions. Inductance change: Within ±10% No significant abnormality in appearance.			
Test Methods and Remarks 13. Resistance to so Specified Value Test Methods and Remarks 14. Thermal shock Specified Value Test Methods and	Test Method and Remarks] The given sample is dipped int Flux: Methanol solution conta Solder Temperature Time Soldering heat BR series 3 times reflow having the tem Test board thickness : 1.0 Test board material : Gla Recovery : At least 2hrs of BR series The given sample is soldered Condit Step Temperature (** 1	perature profile mm ss epoxy-resin recovery under to the board ancions of 1 cycle C)	Inductance change: Within ±10% No significant abnormality in appearance. Sile of 5sec of 260+0/-5 °C and 40sec of more than 230°C. Inductance change: Within ±10% No significant abnormality in appearance. Inductance change: Within ±10% No significant abnormality in appearance. Inductance change: Within ±10% No significant abnormality in appearance. and then its Inductance is measured after 100cycles of the following conditions. Inductance change: Within ±10% No significant abnormality in appearance. Inductance change: Within ±10% No significant abnormality in appearance. Inductance change: Within ±10% No significant abnormality in appearance. Inductance change: Within ±10% No significant abnormality in appearance. Inductance change: Within ±10% No significant abnormality in appearance. Inductance change: Within ±10% No significant abnormality in appearance. Inductance change: Within ±10% Inductance change: Within ±10% No significant abnormality in appearance. Inductance change: Within ±10% Induct			

This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).

15. Damp heat						
Specified Value	BR series		Inductance change : Within ±10%			
Specified value			No significant abnormality in appearance.			
Test Methods and	The given sample is s	soldered to the board an	d then it is kept at the following conditions.			
Remarks	Temperature	60±2°C				
	Humidity	90∼95%RH				
	Time	1000 hours.				
	Recovery : At leas	t 2hrs of recovery under	r the standard condition after the test, followed by the measurement within 48 hrs.			
16. Loading under damp heat						
Specified Value	BR series		Inductance change : Within ±10%			
Specified value			No significant abnormality in appearance.			
Test Methods and	The given sample is s	soldered to the board an	d then it is kept at the following conditions.			
Remarks	Temperature	60±2°C				
	Humidity	90~95%RH				
	Applied current	Rated current				
	Time	1000hours.				
	Recovery : At leas	t 2hrs of recovery under	r the standard condition after the test, followed by the measurement within 48 hrs.			
17. Low temperatur	e life test					
C:f: \/-	BR series		Inductance change : Within ±10%			
Specified Value			No significant abnormality in appearance.			
Test Methods and	The given sample is soldered to the board an		d then it is kept at the following conditions.			
Remarks	Temperature	-40±2°C				
	Duration	1000hours				
	Recovery : At leas	t 2hrs of recovery under	r the standard condition after the test, followed by the measurement within 48 hrs.			
18. High temperatur	e life test					
To. Trigit competatal			T. I			
Specified Value	BR series		Inductance change: Within ±10%			
			No significant abnormality in appearance.			
Test Methods and	The given sample is soldered to the board and the		d then it is kept at the following conditions.			
Remarks	Temperature	85±2℃				
	Duration	1000hours	<u></u>			
	Recovery : At leas	t 2hrs of recovery under	the standard condition after the test, followed by the measurement within 48 hrs.			
19. Standard condit	ions					
			Standard test condition :			
	BR series		Unless otherwise specified, temperature is $20\pm15^{\circ}\mathrm{C}$ and $65\pm20\%$ of relative humidity.			
Specified Value			When there is any question concerning measurement result: In order to provide			
opecinieu value			correlation data, the test shall be condition of $20\pm2^{\circ}C$ of temperature, $65\pm5\%$ relative			
			humidity.			
			Inductance is in accordance with our measured value.			

This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).

WIRE-WOUND CHIP POWER INDUCTORS (BR SERIES)

■ PRECAUTIONS

1. Circuit Design

Precautions

♦ Operating Ambient

The products are premised on the usage for the general equipments like the office supply equipment, the telecommunications systems, the measuring equipment, the household equipment and so on.

Please ask to TAIYO YUDEN's sales person in advance, if you need to apply them to the equipments or the systems which might have any influences for the human body, the property, like the traffic systems, the safety equipment, the aerospace systems, the nuclear control systems, the medical equipment and soon.

2. PCB Design

Precautions

- ◆Land pattern design
- 1. Please refer to a recommended land pattern.

Technical considerations

◆Land pattern design Surface Mounting

- 1. The conditions of the picking and placing should be checked in advance.
- 2. The products are only for reflow soldering.

3. Considerations for automatic placement

Precautions

- Adjustment of mounting machine
 - 1. Excessive physical impact should not be imposed on the products for picking and placing onto the PC boards.
 - 2. Mounting and soldering conditions should be checked in advance.

Technical considerations

◆Adjustment of mounting machine

The products might be broken if too much stress is given for the picking and placing.

4. Soldering

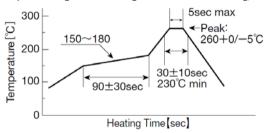
◆Reflow soldering

- 1. Please apply our recommended soldering conditions on the specification as much as possible.
- 2. The products are only for reflow soldering.

Precautions

- 3. Please do not give any stress to a product until it returns in room temperature after reflow soldering.
- ◆Recommended conditions for using a soldering iron. (Excluding 1608 type)

Touch a soldering iron to the land pattern not to the product directly.


The temperature of a soldering iron is less than 350degC.

The soldering is for 3 seconds or less.

◆Reflow soldering

1. The product might break or might make the tombstoning, if the soldering conditions are too far from our recommended conditions.

5. Cleaning

Precautions

- ◆Cleaning conditions
- 1. Please don't wash by the ultra-sonic waves.

Technical considerations

♦Cleaning conditions

1. Washing by the ultra-sonic waves might break the product.

This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).

6. Handling		
Precautions	 ♦ Handling 1. Keep the product away from any magnets. ♦ Cutting the PC boards 1. Please don't give any stress of the bending or the twisting for the cutting process of PC boards. 2. Please don't give any shock and stress to the products in transportation. ♦ Mechanical considerations 1. Please don't give too much shock to the product. 2. Please don't give any shock and stress to the products in transportation. ♦ The stress for picking and placing 1. Please don't give any shock into an exposed ferrite core. ♦ Packing 1. Please don't pile the packing boxes up as much as possible. 	
Technical considerations	 ◆Handling 1. There is a case that a characteristic varies with magnetic influence. ◆Cutting the PC boards 1. Please don't give the bending stress or the twisting stress to the products because they might break in such cases. ◆Mechanical considerations 1. The mechanical shock might break the products 	

7. Storage conditions			
Precautions	 ♦ Storage 1. To maintain the solderability of terminal electrodes and to keep the packing material in good condition, temperature and humidity in the storage area should be controlled. • Recommended conditions Ambient temperature : 0~40°C Humidity : Below 70% RH • The ambient temperature must be kept below 30°C. Even under ideal storage conditions, solderability of products electrodes may decrease as time passes. For this reason, product should be used within 6 months from the time of delivery. In case of storage over 6 months, solderability shall be checked before actual usage. 		
Technical considerations	◆Storage 1. The ambient of high temperature or high humidity might accelerate to make the solderability and the tape worse.		

This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Fixed Inductors category:

Click to view products by Taiyo Yuden manufacturer:

Other Similar products are found below:

MLZ1608M6R8WTD25 MLZ1608N6R8LT000 MLZ1608N3R3LTD25 MLZ1608N3R3LTD00 MLZ1608N150LT000 MLZ1608N150WTD05 MLZ1608M3R3WTD25 MLZ1608M3R3WT000 MLZ1608M150WT000 MLZ1608A1R5WT000 MLZ1608N1R5LT000 B82432C1333K000 PCMB053T-1R0MS PCMB053T-1R5MS PCMB104T-1R5MS CR32NP-100KC CR32NP-151KC CR32NP-180KC CR32NP-181KC CR32NP-1R5MC CR32NP-390KC CR32NP-390KC CR32NP-680KC CR32NP-820KC CR32NP-8R2MC CR43NP-390KC CR43NP-560KC CR43NP-680KC CR54NP-181KC CR54NP-470LC CR54NP-820KC CR54NP-8R5MC MGDQ4-00004-P MGDU1-00016-P MHL1ECTTP18NJ MHL1JCTTD12NJ PE-51506NL PE-53601NL PE-53630NL PE-53824SNLT PE-62892NL PE-92100NL PG0434.801NLT PG0936.113NLT PM06-2N7 PM06-39NJ HC2LP-R47-R HC2-R47-R HC3-2R2-R HC8-1R2-R