



# NPN MEDIUM POWER SILICON TRANSISTOR

Qualified per MIL-PRF-19500/349

Qualified Levels: JAN, JANTX and JANTXV

#### **DESCRIPTION**

This family of 2N3506 through 2N3507A high-frequency, epitaxial planar transistors feature low saturation voltage. These devices are also available in TO-5 and low profile U4 packaging. Microsemi also offers numerous other transistor products to meet higher and lower power ratings with various switching speed requirements in both through-hole and surface-mount packages.

Important: For the latest information, visit our website http://www.microsemi.com.

#### **FEATURES**

- JEDEC registered 2N3506 through 2N3507A series.
- · RoHS compliant versions available (commercial grade only).
- $V_{CR(sat)} = 0.5 \text{ V} @ I_C = 500 \text{ mA}.$
- Rise time  $t_r = 30 \text{ ns max } @ I_C = 1.5 \text{ A}, I_{B1} = 150 \text{ mA}.$
- Fall time  $t_f = 35$  ns max @  $I_C = 1.5$  A,  $I_{B1} = I_{B2} = 150$  mA.

## **APPLICATIONS / BENEFITS**

- General purpose transistors for medium power applications requiring high frequency switching and low package profile.
- Military and other high-reliability applications.



TO-39 (TO-205AD) Package

Also available in:

TO-5 package (long-leaded) 2N3506L - 2N3507AL

U4 package



(surface mount) 2N3506U4 - 2N3507AU4

## **MAXIMUM RATINGS**

| Parameters / Test Conditions                   | Symbol           | 2N3506      | 2N3507 | Unit |
|------------------------------------------------|------------------|-------------|--------|------|
| Collector-Emitter Voltage                      | $V_{CEO}$        | 40          | 50     | V    |
| Collector-Base Voltage                         | $V_{CBO}$        | 60          | 80     | V    |
| Emitter-Base Voltage                           | $V_{EBO}$        | 5.0         |        | V    |
| Thermal Resistance Junction-to-Ambient         | $R_{\Theta JA}$  | 175         |        | °C/W |
| Thermal Resistance Junction-to-Case            | R <sub>eJC</sub> | 18          |        | °C/W |
| Collector Current                              | Ic               | 3.0         |        | Α    |
| Total Power Dissipation                        | P <sub>D</sub>   | 1.0<br>5.0  |        | W    |
| Operating & Storage Junction Temperature Range | $T_J, T_{stg}$   | -65 to +200 |        | °C   |

**Notes:** 1. Derate linearly 5.71 mW/°C for  $T_A > +25$  °C.

2. Derate linearly 55.5 mW/°C for  $T_C > +110$  °C.

## MSC - Lawrence

6 Lake Street, Lawrence, MA 01841 Tel: 1-800-446-1158 or (978) 620-2600

Fax: (978) 689-0803

#### MSC - Ireland

Gort Road Business Park, Ennis, Co. Clare, Ireland Tel: +353 (0) 65 6840044 Fax: +353 (0) 65 6822298

Website:

www.microsemi.com



## **MECHANICAL and PACKAGING**

- CASE: Hermetically sealed, kovar base, nickel cap.
- TERMINALS: Leads are kovar, nickel plated, and finish is solder dip (Sn63/Pb37). Can be RoHS compliant (commercial grade only) with pure matte-tin (commercial grade only).
- MARKING: Part number, date code, manufacturer's ID.
- POLARITY: NPN (see package outline).
- WEIGHT: Approximately 1.064 grams.
- See <u>Package Dimensions</u> on last page.

## **PART NOMENCLATURE**



| SYMBOLS & DEFINITIONS |                                                             |  |  |  |
|-----------------------|-------------------------------------------------------------|--|--|--|
| Symbol                | Definition                                                  |  |  |  |
| $C_obo$               | Common-base open-circuit output capacitance.                |  |  |  |
| I <sub>CEO</sub>      | Collector cutoff current, base open.                        |  |  |  |
| I <sub>CEX</sub>      | Collector cutoff current, circuit between base and emitter. |  |  |  |
| I <sub>EBO</sub>      | Emitter cutoff current, collector open.                     |  |  |  |
| h <sub>FE</sub>       | Common-emitter static forward current transfer ratio.       |  |  |  |
| $V_{CEO}$             | Collector-emitter voltage, base open.                       |  |  |  |
| $V_{CBO}$             | Collector-emitter voltage, emitter open.                    |  |  |  |
| $V_{EBO}$             | Emitter-base voltage, collector open.                       |  |  |  |



## **ELECTRICAL CHARACTERISTICS** (T<sub>A</sub> = +25°C, unless otherwise noted)

## **OFF CHARACTERISTICS**

| Parameters / Test Conditions                    |        | Symbol               | Min. | Max. | Unit |
|-------------------------------------------------|--------|----------------------|------|------|------|
| Collector-Emitter Breakdown Voltage             |        |                      |      |      |      |
| I <sub>C</sub> = 10 mA                          | 2N3506 | $V_{(BR)CEO}$        | 40   |      | V    |
|                                                 | 2N3507 |                      | 50   |      |      |
| Collector-Emitter Cutoff Current                |        |                      |      |      |      |
| $V_{CE} = 40 \text{ V}; V_{EB} = 4 \text{ V}$   | 2N3506 | I <sub>CEX</sub>     |      | 1.0  | μΑ   |
| $V_{CE} = 60 \text{ V}; V_{EB} = 4 \text{ V}$   | 2N3507 |                      |      | 1.0  |      |
| Collector-Base Breakdown Voltage                | 2N3506 | V                    | 60   |      | V    |
| I <sub>C</sub> = 100 μA                         | 2N3507 | V <sub>(BR)CBO</sub> | 80   |      | V    |
| Emitter-Base Breakdown Voltage $I_E = 10 \mu A$ |        | V <sub>(BR)EBO</sub> | 5    |      | V    |

## ON CHARACTERISTICS (1)

| Parameters / Test Conditions                                                             |                    | Symbol               | Min.     | Max.       | Unit |
|------------------------------------------------------------------------------------------|--------------------|----------------------|----------|------------|------|
| Forward-Current Transfer Ratio $I_C = 500$ mA, $V_{CE} = 1$ V                            | 2N3506<br>2N3507   | h <sub>FE</sub>      | 50<br>35 | 250<br>175 |      |
| Forward-Current Transfer Ratio I <sub>C</sub> = 1.5 A, V <sub>CE</sub> = 2 V             | 2N3506<br>2N3507   | h <sub>FE</sub>      | 40<br>30 | 200<br>150 |      |
| Forward-Current Transfer Ratio I <sub>C</sub> = 2.5 A, V <sub>CE</sub> = 3 V             | 2N3506<br>2N3507   | h <sub>FE</sub>      | 30<br>25 |            |      |
| Forward-Current Transfer Ratio I <sub>C</sub> = 3.0 A, V <sub>CE</sub> = 5 V             | 2N3506<br>2N3507   | h <sub>FE</sub>      | 25<br>20 |            |      |
| Forward-Current Transfer Ratio I <sub>C</sub> = 500 mA, V <sub>CE</sub> = 1.0 V @ -55 °C | 2N3506<br>2N3507   | h <sub>FE</sub>      | 25<br>17 |            |      |
| Forward-Current Transfer Ratio I <sub>C</sub> = 500 mA, V <sub>CE</sub> = 2.0 V @ -55 °C | 2N3506A<br>2N3507A | h <sub>FE</sub>      | 25<br>17 |            |      |
| Collector-Emitter Saturation Voltage I <sub>C</sub> = 500 mA, I <sub>B</sub> = 50 mA     |                    | V <sub>CE(sat)</sub> |          | 0.5        | V    |
| Collector-Emitter Saturation Voltage $I_C = 1.5 A$ , $I_B = 150 mA$                      |                    | V <sub>CE(sat)</sub> |          | 1.0        | V    |
| Collector-Emitter Saturation Voltage I <sub>C</sub> = 2.5 A, I <sub>B</sub> = 250 mA     |                    | V <sub>CE(sat)</sub> |          | 1.5        | V    |
| Base-Emitter Saturation Voltage I <sub>C</sub> = 500 mA, I <sub>B</sub> = 50 mA          |                    | V <sub>BE(sat)</sub> |          | 1.0        | V    |
| Base-Emitter Saturation Voltage $I_C = 1.5 A$ , $I_B = 150 mA$                           |                    | V <sub>BE(sat)</sub> | 0.8      | 1.3        | V    |
| Base-Emitter Saturation Voltage $I_C = 2.5 \text{ A}, I_B = 250 \text{ mA}$              |                    | V <sub>BE(sat)</sub> |          | 2.0        | V    |

<sup>(1)</sup> Pulse Test: Pulse Width = 300  $\mu$ s, duty cycle  $\leq$  2.0%.



## **ELECTRICAL CHARACTERISTICS** (T<sub>A</sub> = +25°C, unless otherwise noted)

## **DYNAMIC CHARACTERISTICS**

| Parameters / Test Conditions                                                                                                 | Symbol           | Min. | Max. | Unit |
|------------------------------------------------------------------------------------------------------------------------------|------------------|------|------|------|
| Magnitude of Common Emitter Small-Signal Short-Circuit Forward Current Transfer Ratio $I_C=100$ mA, $V_{CE}=5$ V, $f=20$ MHz | h <sub>fe</sub>  | 3.0  | 15   |      |
| Output Capacitance $V_{CB} = 10 \text{ V}, I_E = 0, 100 \text{ kHz} \le f \le 1.0 \text{ MHz}$                               | C <sub>obo</sub> |      | 40   | pF   |
| Input Capacitance $V_{EB} = 3.0 \text{ V}, I_C = 0, 100 \text{ kHz} \le f \le 1.0 \text{ MHz}$                               | C <sub>ibo</sub> |      | 300  | pF   |

## SWITCHING CHARACTERISTICS (2)

| Parameters / Test Conditions                                         | Symbol         | Min. | Max. | Unit |
|----------------------------------------------------------------------|----------------|------|------|------|
| Delay Time<br>I <sub>C</sub> = 1.5 A, I <sub>B1</sub> = 150 mA       | t <sub>d</sub> |      | 15   | ns   |
| Rise Time<br>I <sub>C</sub> = 1.5 A, I <sub>B1</sub> = 150 mA        | t <sub>r</sub> |      | 30   | ns   |
| Storage Time $I_C = 1.5 \text{ A}, I_{B1} = I_{B2} = 150 \text{ mA}$ | ts             |      | 55   | ns   |
| Fall Time $I_C = 1.5 \text{ A}, I_{B1} = I_{B2} = 150 \text{ mA}$    | t <sub>f</sub> |      | 35   | ns   |

<sup>(2)</sup> Consult MIL-PRF-19500/349 for additional infornation.



#### **GRAPHS**



## FIGURE 1

Temperature-Power Derating Curve
NOTE: Thermal Resistance Junction to Case = 18.0 °C/W



FIGURE 2

<u>Maximum Thermal Impedance (Rejuc)</u>



## **PACKAGE DIMENSIONS**





|        | Dimensions |          |            |      |      |  |
|--------|------------|----------|------------|------|------|--|
| Symbol | Inc        | hes      | Millim     | Note |      |  |
|        | Min        | Max      | Min        | Max  |      |  |
| CD     | 0.305      | 0.335    | 7.75       | 8.51 |      |  |
| СН     | 0.240      | 0.260    | 6.10       | 6.60 |      |  |
| HD     | 0.335      | 0.370    | 8.51       | 9.40 |      |  |
| LC     | 0.20       | 00 TP    | 5.08       | 3 TP | 6    |  |
| LD     | 0.016      | 0.021    | 0.41       | 0.53 | 7, 8 |  |
| LL     |            | See note | s 7, 8, 11 |      |      |  |
| LU     | 0.016      | 0.019    | 0.41       | 0.48 | 7, 8 |  |
| L1     |            | 0.050    |            | 1.27 | 7, 8 |  |
| L2     | 0.250      |          | 6.35       |      | 7, 8 |  |
| Р      | 0.100      |          | 2.54       |      | 5    |  |
| Q      |            | 0.050    |            | 1.27 | 4    |  |
| TL     | 0.029      | 0.045    | 0.74       | 1.14 | 3    |  |
| TW     | 0.028      | 0.034    | 0.71       | 0.86 | 2    |  |
| r      |            | 0.010    |            | 0.25 | 10   |  |
| α      | 45         | ° TP     | 45° TP     |      | 6    |  |

#### **NOTES:**

- 1. Dimension are in inches.
- 2. Millimeters are given for general information only.
- 3. Beyond r (radius) maximum, TH shall be held for a minimum length of .011 (0.28 mm).
- 4. Dimension TL measured from maximum HD.
- 5. Body contour optional within zone defined by HD, CD, and Q.
- 6. Leads at gauge plane .054 +.001 -.000 inch (1.37 +0.03 -0.00 mm) below seating plane shall be within .007 inch (0.18 mm) radius of true position (TP) at maximum material condition (MMC) relative to tab at MMC.
- Dimension LU applies between L1 and L2. Dimension LD applies between L2 and LL minimum. Diameter is uncontrolled in L1
  and beyond LL minimum.
- 8. All three leads.
- 9. The collector shall be internally connected to the case.
- 10. Dimension r (radius) applies to both inside corners of tab.
- 11. Dimension LL shall be .5 inches (12.7mm) minimum and .75 inches (19.0 mm) maximum.
- 12. In accordance with ASME Y14.5M, diameters are equivalent to  $\Phi x$  symbology.
- 13. Lead 1 = emitter, lead 2 = base, lead 3 = collector.

## **X-ON Electronics**

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Bipolar Transistors - BJT category:

Click to view products by Microsemi manufacturer:

Other Similar products are found below:

619691C MCH4017-TL-H MJ15024/WS MJ15025/WS BC546/116 BC556/FSC BC557/116 BSW67A HN7G01FU-A(T5L,F,T NJVMJD148T4G NSVMMBT6520LT1G NTE187A NTE195A NTE2302 NTE2330 NTE2353 NTE316 IMX9T110 NTE63 NTE65 C4460 SBC846BLT3G 2SA1419T-TD-H 2SA1721-O(TE85L,F) 2SA1727TLP 2SA2126-E 2SB1202T-TL-E 2SB1204S-TL-E 2SC5488A-TL-H 2SD2150T100R SP000011176 FMC5AT148 2N2369ADCSM 2SB1202S-TL-E 2SC2412KT146S 2SC4618TLN 2SC5490A-TL-H 2SD1816S-TL-E 2SD1816T-TL-E CMXT2207 TR CPH6501-TL-E MCH4021-TL-E BC557B TTC012(Q) BULD128DT4 JANTX2N3810 Jantx2N5416 US6T6TR KSF350 068071B