

N-channel TrenchMOS standard level FET Rev. 02 — 7 February 2011

Product data sheet

Product profile 1.

1.1 General description

Standard level N-channel enhancement mode Field-Effect Transistor (FET) in a plastic package using TrenchMOS technology. This product has been designed and qualified to the appropriate AEC standard for use in automotive critical applications.

1.2 Features and benefits

- AEC Q101 compliant
- Low conduction losses due to low on-state resistance

1.3 Applications

- 12 V, 24 V and 42 V loads
- Automotive and general purpose power switching

1.4 Quick reference data

environments due to 175 °C rating

Suitable for thermally demanding

Suitable for standard level gate drive

Motors, lamps and solenoids

sources

Quick reference data					
Parameter	Conditions	Min	Тур	Max	Unit
drain-source voltage	T _j ≥ 25 °C; T _j ≤ 175 °C	-	-	100	V
drain current	V _{GS} = 10 V; T _{mb} = 25 °C; see <u>Figure 1</u> ; see <u>Figure 3</u>	-	-	26	A
total power dissipation	T _{mb} = 25 °C; see Figure 2	-	-	106	W
aracteristics					
drain-source on-state resistance	V_{GS} = 10 V; I_D = 15 A; T_j = 175 °C; see <u>Figure 12</u> ; see <u>Figure 13</u>	-	-	150	mΩ
	$V_{GS} = 10 \text{ V}; I_D = 15 \text{ A};$ $T_j = 25 \text{ °C}; \text{ see } \frac{\text{Figure } 12}{\text{see } \frac{\text{Figure } 13}{\text{Figure } 13}}$	-	51	60	mΩ
e ruggedness					
non-repetitive drain-source avalanche energy	$ \begin{split} &I_{D} = 20 \; A; \; V_{sup} \leq 100 \; V; \\ &R_{GS} = 50 \; \Omega; \; V_{GS} = 10 \; V; \\ &T_{j(init)} = 25 \; ^{\circ}C; \; unclamped \end{split} $	-	-	110	mJ
	Parameter drain-source voltage drain current total power dissipation aracteristics drain-source on-state resistance e ruggedness non-repetitive drain-source avalanche	ParameterConditionsdrain-source voltage $T_j \ge 25 ^{\circ}C; \ T_j \le 175 ^{\circ}C$ drain current $V_{GS} = 10 ^{\circ}V; \ T_{mb} = 25 ^{\circ}C; \ see \ Figure 1; \ see \ Figure 3$ total power dissipation $T_{mb} = 25 ^{\circ}C; \ see \ Figure 2$ aracteristics $V_{GS} = 10 ^{\circ}V; \ I_D = 15 ^{\circ}C; \ see \ Figure 12; \ see \ Figure 13$ drain-source on-state resistance $V_{GS} = 10 ^{\circ}V; \ I_D = 15 ^{\circ}C; \ see \ Figure 12; \ see \ Figure 13$ $V_{GS} = 10 ^{\circ}V; \ I_D = 15 ^{\circ}C; \ see \ Figure 12; \ see \ Figure 13$ e ruggedness $N_{OS} = 10 ^{\circ}V; \ V_{Sup} \le 100 ^{\circ}V; \ R_{GS} = 50 ^{\circ}V; \ V_{GS} = 10 ^{\circ}V; \ R_{GS} = 10 ^{\circ}V; \ R_{GS} = 10 ^{\circ}V; \ R_{GS} = 10 ^{\circ}V; \ R_{SS} = 10 ^{\circ}V;$	ParameterConditionsMindrain-source voltage $T_j \ge 25 ^{\circ}C; T_j \le 175 ^{\circ}C$ -drain current $V_{GS} = 10 ^{\circ}V; T_{mb} = 25 ^{\circ}C;$ see Figure 1; see Figure 3-total power dissipation $T_{mb} = 25 ^{\circ}C;$ see Figure 2-aracteristicsdrain-source on-state resistance $V_{GS} = 10 ^{\circ}V; I_D = 15 ^{\circ}A;$ $T_j = 175 ^{\circ}C;$ see Figure 12; see Figure 13- $V_{GS} = 10 ^{\circ}V; I_D = 15 ^{\circ}A;$ $T_j = 25 ^{\circ}C;$ see Figure 12; see Figure 13-e ruggednessI_D = 20 ^{\circ}A; V_{sup} \le 100 ^{\circ}V; $R_{GS} = 50 ^{\circ}Q; V_{GS} = 10 ^{\circ}V;$	$\begin{tabular}{ c c c c } \hline Parameter & Conditions & Min Typ \\ \hline drain-source voltage & T_j \ge 25 \ ^\circ C; \ T_j \le 175 \ ^\circ C & - & - \\ \hline drain current & V_{GS} = 10 \ ^\circ V; \ T_{mb} = 25 \ ^\circ C; & - & - \\ \hline see \ Figure 1; \ see \ Figure 3 & - & - \\ \hline see \ Figure 1; \ see \ Figure 2 & - & - \\ \hline aracteristics & & & & & & & \\ \hline drain-source on-state & V_{GS} = 10 \ ^\circ V; \ ^I_D = 15 \ ^\circ C; \ see \ Figure 12; & see \ Figure 13 & & & & & \\ \hline V_{GS} = 10 \ ^\circ V; \ ^I_D = 15 \ ^\circ C; \ see \ Figure 12; & see \ Figure 12; & see \ Figure 13 & & & & & \\ \hline e \ ruggedness & & & & & & & \\ \hline non-repetitive & I_D = 20 \ ^\circ V; \ V_{SS} = 10 \ ^\circ V; \ ~ & & & & & \\ \hline non-repetitive & I_D = 20 \ ^\circ V; \ V_{GS} = 10 \ ^\circ V; \ ~ & & & & & \\ \hline non-repetitive & I_D = 20 \ ^\circ V; \ V_{GS} = 10 \ ^\circ V; \ ~ & & & & & \\ \hline non-repetitive & I_D = 20 \ ^\circ V; \ V_{GS} = 10 \ ^\circ V; \ ~ & & & & & \\ \hline non-repetitive & I_D = 20 \ ^\circ V; \ V_{GS} = 10 \ ^\circ V; \ ~ & & & & & \\ \hline non-repetitive & I_D = 20 \ ^\circ V; \ V_{GS} = 10 \ ^\circ V; \ ~ & & & & \\ \hline non-repetitive & I_D = 20 \ ^\circ V; \ V_{GS} = 10 \ ^\circ V; \ ~ & & & & \\ \hline non-repetitive & I_D = 20 \ ^\circ V; \ V_{GS} = 10 \ ^\circ V; \ ~ & & & & \\ \hline non-repetitive & I_D = 20 \ ^\circ V; \ V_{GS} = 10 \ ^\circ V; \ ~ & & & & \\ \hline non-repetitive & I_D = 20 \ ^\circ V; \ V_{GS} = 10 \ ^\circ V; \ ~ & & & & \\ \hline non-repetitive & I_D = 20 \ ^\circ V; \ V_{GS} = 10 \ ^\circ V; \ ~ & & & \\ \hline non-repetitive & I_D = 20 \ ^\circ V; \ V_{GS} = 10 \ ^\circ V; \ ~ & & & \\ \hline non-repetitive & I_D = 20 \ ^\circ V; \ V_{SS} = 10 \ ^\circ V; \ ~ & & \\ \hline non-reptitive & I_D = 20 \ ^\circ V; \ V_{SS} = 10 \ ^\circ V; \ ~ & & \\ \hline non-repetitive & I_D = 20 \ ^\circ V; \ V_{SS} = 10 \ ^\circ V; \ ~ & & \\ \hline non-repetitive & I_D = 20 \ ^\circ V; \ V_{SS} = 10 \ ^\circ V; \ ~ & \\ \hline non-repetitive & I_D = 20 \ ^\circ V; \ ~ & \\ \hline non-repetitive & I_D \ ^\circ V; \ ~ & \\ \hline non-repetitive & I_D \ ^\circ V; \ ~ & \\ \hline non-repetitive & I_D \ ^\circ V; \ ~ & \\ \hline non-repetitive & I_D \ ^\circ V; \ ~ & \\ \hline non-repttive & I_D \ ^\circ V; \ ~ & \\ \hline non-repttive & I_D \ ^\circ V; \ ~ & \\ \hline non-repttive & I_D \ ^\circ V; \ ~ & \\ \hline non-rep$	ParameterConditionsMinTypMaxdrain-source voltage $T_j \ge 25 ^{\circ}C; T_j \le 175 ^{\circ}C$ 100drain current $V_{GS} = 10 ^{\circ}V; T_{mb} = 25 ^{\circ}C;$ see Figure 1; see Figure 326total power dissipation $T_{mb} = 25 ^{\circ}C;$ see Figure 2106aracteristicsdrain-source on-state resistance $V_{GS} = 10 ^{\circ}V; I_D = 15 ^{\circ}A;$ $T_j = 175 ^{\circ}C;$ see Figure 12; see Figure 13150 $V_{GS} = 10 ^{\circ}V; I_D = 15 ^{\circ}A;$ $T_j = 25 ^{\circ}C;$ see Figure 12; see Figure 13-5160e ruggedness $I_D = 20 ^{\circ}V; V_{sup} \le 100 ^{\circ}V;$ $R_{GS} = 50 ^{\circ}V; V_{GS} = 10 ^{\circ}V;$ 110

nexperia

N-channel TrenchMOS standard level FET

2. Pinning information

Table 2.	Pinning	information		
Pin	Symbol	Description	Simplified outline	Graphic symbol
1	G	gate		_
2	D	drain	mb	
3	S	source		
mb	D	mounting base; connected to drain		mbb076 S

SOT404 (D2PAK)

3. Ordering information

Table 3. Ordering information				
Type number	Package			
	Name	Description	Version	
BUK7660-100A	D2PAK	plastic single-ended surface-mounted package (D2PAK); 3 leads (one lead cropped)	SOT404	

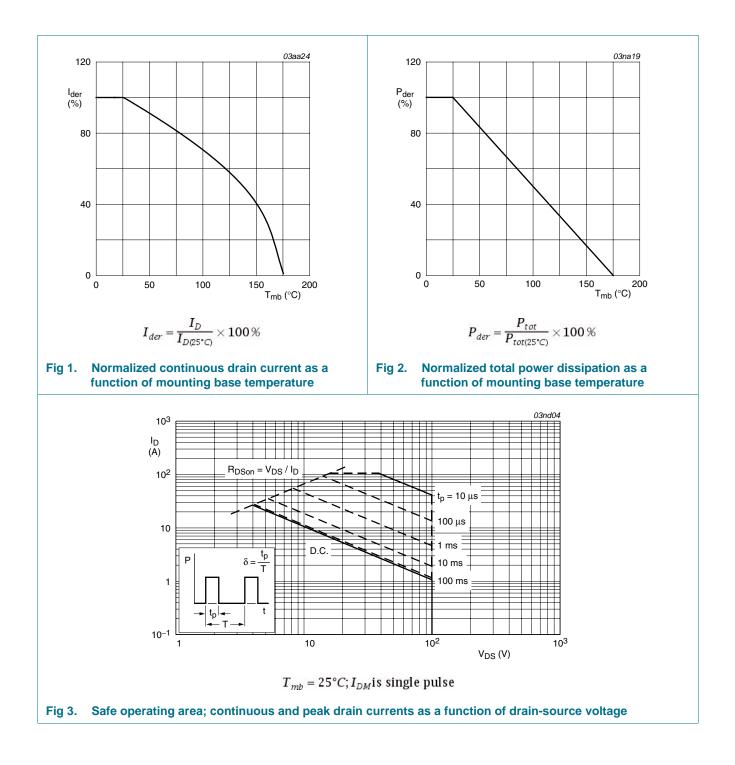
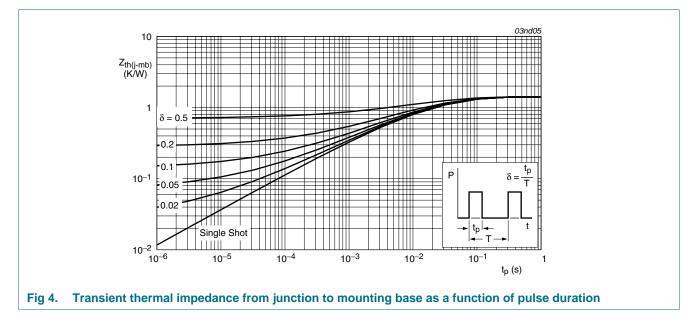

4. Limiting values

Table 4. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134).

Symbol	Parameter	Conditions	Min	Max	Unit
V _{DS}	drain-source voltage	T _j ≥ 25 °C; T _j ≤ 175 °C	-	100	V
V _{DGR}	drain-gate voltage	$R_{GS} = 20 \text{ k}\Omega$	-	100	V
V _{GS}	gate-source voltage		-20	20	V
I _D	drain current	T_{mb} = 25 °C; V_{GS} = 10 V; see <u>Figure 1</u> ; see <u>Figure 3</u>	-	26	A
		T_{mb} = 100 °C; V_{GS} = 10 V; see Figure 1	-	19	А
I _{DM}	peak drain current	T _{mb} = 25 °C; pulsed; t _p ≤ 10 μs; see <u>Figure 3</u>	-	106	А
P _{tot}	total power dissipation	T _{mb} = 25 °C; see <u>Figure 2</u>	-	106	W
T _{stg}	storage temperature		-55	175	°C
Tj	junction temperature		-55	175	°C
Source-drain	diode				
I _S	source current	T _{mb} = 25 °C	-	26	А
I _{SM}	peak source current	pulsed; $t_p \le 10 \ \mu s$; $T_{mb} = 25 \ ^{\circ}C$	-	106	А
Avalanche ru	ggedness				
E _{DS(AL)S}	non-repetitive drain-source avalanche energy	$I_D = 20 \text{ A}; V_{sup} \le 100 \text{ V}; R_{GS} = 50 \Omega;$ $V_{GS} = 10 \text{ V}; T_{j(init)} = 25 ^{\circ}\text{C}; \text{ unclamped}$	-	110	mJ

BUK7660-100A

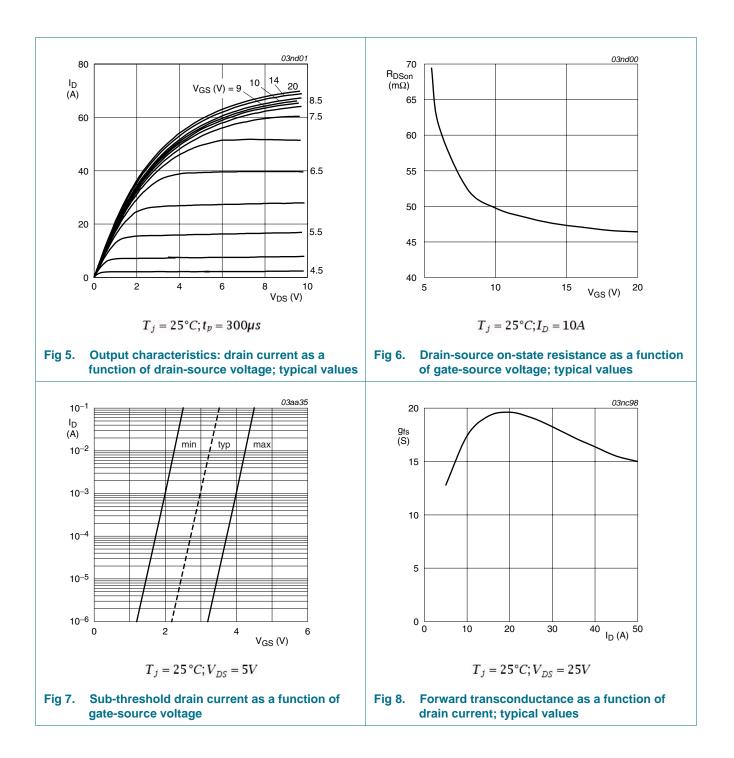


BUK7660-100A

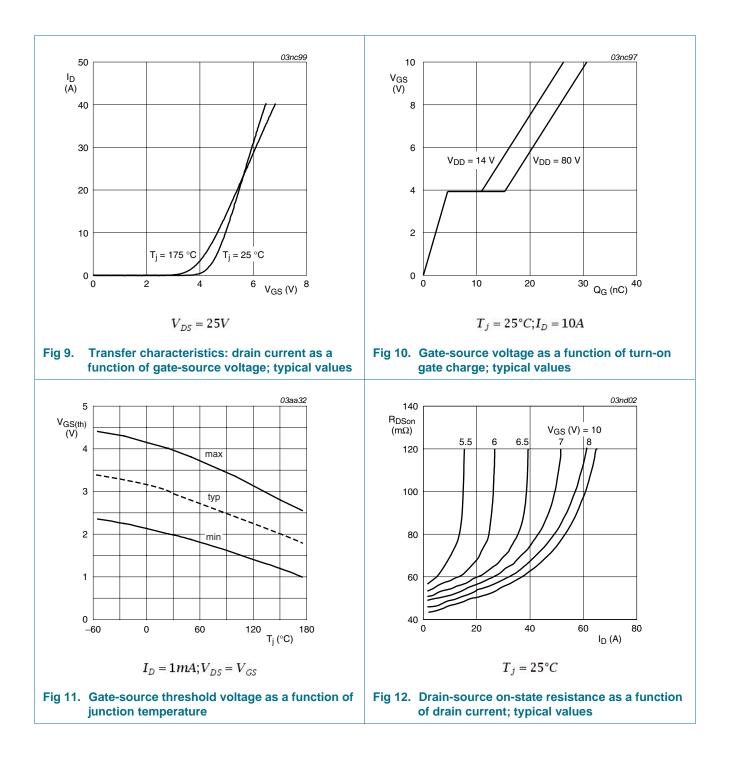
N-channel TrenchMOS standard level FET

Thermal characteristics 5.

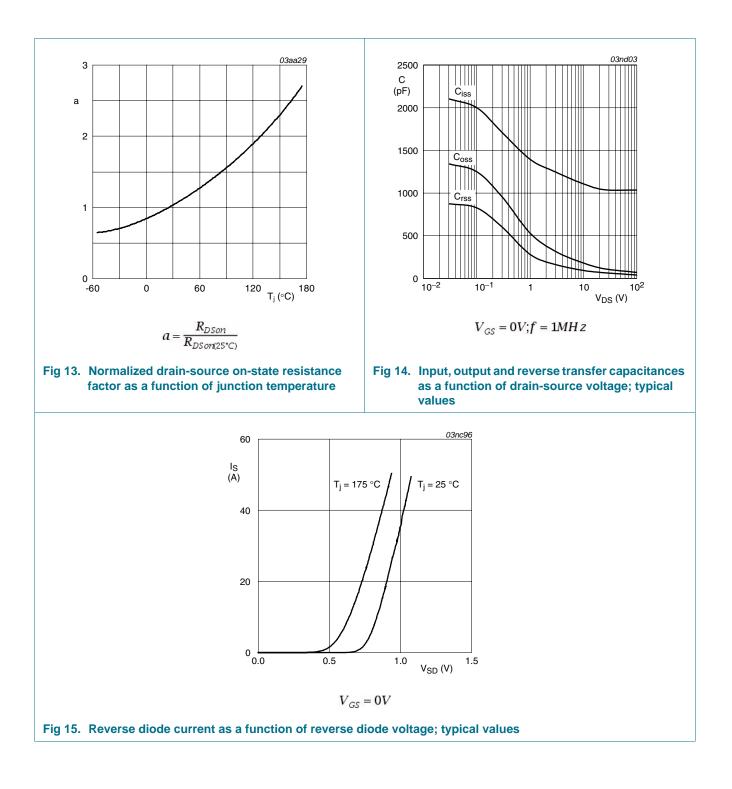
Table 5.	Thermal characteristics					
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
R _{th(j-mb)}	thermal resistance from junction to mounting base	see <u>Figure 4</u>	-	-	1.4	K/W
R _{th(j-a)}	thermal resistance from junction to ambient	mounted on printed-circuit board ; minimum footprint	-	50	-	K/W


N-channel TrenchMOS standard level FET

6. Characteristics


Table 6.	Characteristics					
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Static cha	aracteristics					
V _{(BR)DSS}		$I_D = 0.25 \text{ mA}; V_{GS} = 0 \text{ V}; T_j = 25 \text{ °C}$	100	-	-	V
	voltage	$I_D = 0.25 \text{ mA}; V_{GS} = 0 V; T_j = -55 ^\circ\text{C}$	89	-	-	V
V _{GS(th)}	gate-source threshold voltage	$I_D = 1 \text{ mA}; V_{DS} = V_{GS}; T_j = 25 \text{ °C};$ see <u>Figure 11</u>	2	3	4	V
		$I_D = 1 \text{ mA}; V_{DS} = V_{GS}; T_j = -55 \text{ °C};$ see <u>Figure 11</u>	-	-	4.4	V
		$I_D = 1 \text{ mA}; V_{DS} = V_{GS}; T_j = 175 \text{ °C};$ see <u>Figure 11</u>	1	-	-	V
I _{DSS}	drain leakage current	V_{DS} = 100 V; V_{GS} = 0 V; T_j = 175 °C	-	-	500	μA
		V_{DS} = 100 V; V_{GS} = 0 V; T_j = 25 °C	-	0.05	10	μA
I _{GSS}	gate leakage current	V_{GS} = 20 V; V_{DS} = 0 V; T_j = 25 °C	-	2	100	nA
		V_{GS} = -20 V; V_{DS} = 0 V; T_j = 25 °C	-	2	100	nA
R _{DSon} drain-source on-state resistance		V _{GS} = 10 V; I _D = 15 A; T _j = 175 °C; see <u>Figure 12</u> ; see <u>Figure 13</u>	-	-	150	mΩ
	V_{GS} = 10 V; I_D = 15 A; T_j = 25 °C; see <u>Figure 12</u> ; see <u>Figure 13</u>	-	51	60	mΩ	
Dynamic	characteristics					
C _{iss}	input capacitance	$V_{GS} = 0 V; V_{DS} = 25 V; f = 1 MHz;$	-	1030	1377	pF
C _{oss}	output capacitance	T _j = 25 °C; see <u>Figure 14</u>	-	143	171	pF
C _{rss}	reverse transfer capacitance		-	90	120	pF
t _{d(on)}	turn-on delay time	V_{DS} = 30 V; R_L = 1.2 Ω ; V_{GS} = 10 V;	-	10	-	ns
t _r	rise time	$R_{G(ext)} = 10 \ \Omega; \ T_j = 25 \ ^{\circ}C$	-	45	-	ns
t _{d(off)}	turn-off delay time		-	31	-	ns
t _f	fall time		-	20	-	ns
L _D	internal drain inductance	from upper edge of drain mounting base to centre of die ; $T_j = 25 \text{ °C}$	-	2.5	-	nH
		from drain lead 6 mm from package to centre of die ; $T_j = 25 \text{ °C}$	-	4.5	-	nH
L _S	internal source inductance	from source lead to source bond pad ; $T_j = 25 \text{ °C}$	-	7.5	-	nH
Source-d	rain diode					
V_{SD}	source-drain voltage	$I_S = 25 \text{ A}; V_{GS} = 0 \text{ V}; T_j = 25 \text{ °C};$ see <u>Figure 15</u>	-	0.85	1.2	V
t _{rr}	reverse recovery time	$I_{S} = 20 \text{ A}; \text{ d}I_{S}/\text{d}t = -100 \text{ A}/\mu\text{s};$	-	59	-	ns
Q _r	recovered charge	V _{GS} = -10 V; V _{DS} = 30 V; T _j = 25 °C	-	180	-	nC

BUK7660-100A Product data sheet


BUK7660-100A

BUK7660-100A

BUK7660-100A

N-channel TrenchMOS standard level FET

7. Package outline

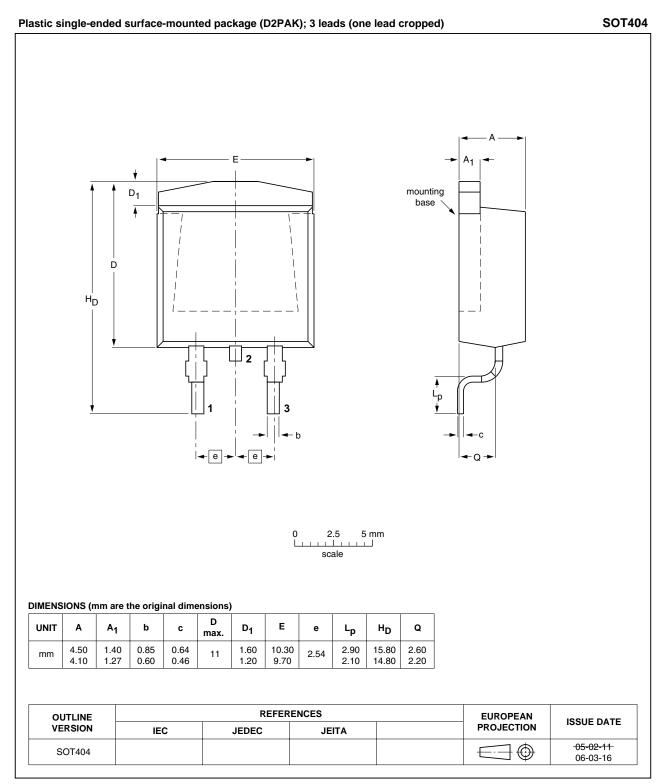


Fig 16. Package outline SOT404 (D2PAK)

All information provided in this document is subject to legal disclaimers.

BUK7660-100A

N-channel TrenchMOS standard level FET

8. Revision history

Table 7. Revision histo	ry			
Document ID	Release date	Data sheet status	Change notice	Supersedes
BUK7660-100A v.2	20110207	Product data sheet	-	BUK7560_7660_100A v.1
Modifications:		his data sheet has been r XP Semiconductors.	edesigned to comply	with the new identity
	 Legal texts have 	e been adapted to the ne	w company name wh	nere appropriate.
	 Type number E 	UK7660-100A separated	from data sheet BU	K7560_7660_100A v.1.
BUK7560_7660_100A v.1	20010222	Product specification	-	-

N-channel TrenchMOS standard level FET

9. Legal information

9.1 Data sheet status

Document status[1][2]	Product status ^[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

[1] Please consult the most recently issued document before initiating or completing a design.

[2] The term 'short data sheet' is explained in section "Definitions".

[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nexperia.com.

9.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. Nexperia does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local Nexperia sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between Nexperia and its customer, unless Nexperia and

customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the Nexperia product is deemed to offer functions and qualities beyond those described in the Product data sheet.

9.3 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, Nexperia does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

In no event shall Nexperia be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, Nexperia's aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of Nexperia.

Right to make changes — Nexperia reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof. Suitability for use in automotive applications — This Nexperia product has been qualified for use in automotive

applications. The product is not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or malfunction of a Nexperia product can reasonably be expected to result in personal injury, death or severe property or environmental damage. Nexperia accepts no liability for inclusion and/or use of Nexperia products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Quick reference data — The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. Nexperia makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using Nexperia products, and Nexperia accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the Nexperia product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

Nexperia does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using Nexperia products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). Nexperia does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale - Nexperia

products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nexperia.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual

BUK7660-100A

N-channel TrenchMOS standard level FET

agreement is concluded only the terms and conditions of the respective agreement shall apply. Nexperia hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of Nexperia products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from national authorities.

10. Contact information

For more information, please visit: http://www.nexperia.com

For sales office addresses, please send an email to: <u>salesaddresses@nexperia.com</u>

9.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

N-channel TrenchMOS standard level FET

11. Contents

1	Product profile1
1.1	General description1
1.2	Features and benefits1
1.3	Applications1
1.4	Quick reference data1
2	Pinning information2
3	Ordering information2
4	Limiting values2
5	Thermal characteristics4
6	Characteristics5
7	Package outline9
8	Revision history10
9	Legal information11
9.1	Data sheet status11
9.2	Definitions11
9.3	Disclaimers
9.4	Trademarks12
10	Contact information12

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for MOSFET category:

Click to view products by NXP manufacturer:

Other Similar products are found below :

614233C 648584F MCH3443-TL-E MCH6422-TL-E FDPF9N50NZ FW216A-TL-2W FW231A-TL-E APT5010JVR NTNS3A92PZT5G IRF100S201 JANTX2N5237 2SK2464-TL-E 2SK3818-DL-E FCA20N60_F109 FDZ595PZ STD6600NT4G FSS804-TL-E 2SJ277-DL-E 2SK1691-DL-E 2SK2545(Q,T) D2294UK 405094E 423220D MCH6646-TL-E TPCC8103,L1Q(CM 367-8430-0972-503 VN1206L 424134F 026935X 051075F SBVS138LT1G 614234A 715780A NTNS3166NZT5G 751625C 873612G IRF7380TRHR IPS70R2K0CEAKMA1 RJK60S3DPP-E0#T2 RJK60S5DPK-M0#T0 APT5010JVFR APT12031JFLL APT12040JVR DMN3404LQ-7 NTE6400 JANTX2N6796U JANTX2N6784U JANTXV2N5416U4 SQM110N05-06L-GE3 SIHF35N60E-GE3