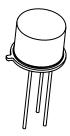


6 Lake Street, Lawrence, MA 01841 1-800-446-1158 / (978) 620-2600 / Fax: (978) 689-0803 Website: http://www.microsemi.com

NPN SILICON TRANSISTOR

Qualified per MIL-PRF-19500/727


DEVICES			Ī	LEVELS
2N5010	2N5013	2N5010S	2N5013S	JAN
2N5011	2N5014	2N5011S	2N5014S	JANTX
2N5012	2N5015	2N5012S	2N5015S	JANTXV

ABSOLUTE MAXIMUM RATINGS ($T_C = +25^{\circ}C$ unless otherwise noted)

Parameters / Test Conditions	Symbol	Value	Unit	
Collector-Emitter Voltage 2N5010			500	Vdc
	2N5011		600	Vdc
	2N5012	V_{CER}	700	Vdc
	2N5013	V CER	800	Vdc
	2N5014		900	Vdc
	2N5015		1000	Vdc
Collector-Base Voltage	2N5010		500	Vdc
	2N5011		600	Vdc
	2N5012	V	700	Vdc
	2N5013	V_{CBO}	800	Vdc
	2N5014		900	Vdc
	2N5015		1000	Vdc
Emitter-Base Voltage		V_{EBO}	5	Vdc
Collector Current		I_{C}	200	mAdc
Base Current		I_{B}	20	mAdc
Total Power Dissipation	@ $T_A = +25^{\circ}C$ @ $T_C = +25^{\circ}C$	P _t	1.0 7.0	W
Thermal Resistance, Junction to	Case 1/	$R_{ heta JC}$	20	°C/W
Operating & Storage Junction T	Cemperature Range	T_j, T_{stg}	-65 to +200	°C

TO-5 2N5010 thru 2N5015

TO-39 2N5010S thru 2N5015S

Note

1/ See 19500/727 for Thermal Derating Curves.

6 Lake Street, Lawrence, MA 01841 1-800-446-1158 / (978) 620-2600 / Fax: (978) 689-0803 Website: http://www.microsemi.com

ELECTRICAL CHARACTERISTICS ($T_A = +25$ °C, unless otherwise noted)

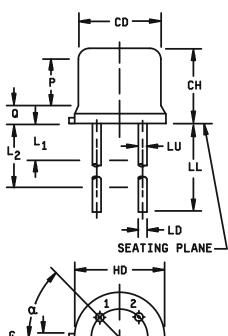
Parameters / Test Conditions		Symbol	Min.	Max.	Unit
Collector to Base Cutoff Current					
$V_{CB} = 400V$	2N5010			10	nAdc
$V_{CB} = 500V$	2N5011			10	nAdc
$V_{CB} = 580V$	2N5012	I_{CBO1}		10	nAdc
$V_{CB} = 650V$	2N5013	1CBO1		10	nAdc
$V_{CB} = 700V$	2N5014			10	nAdc
$V_{CB} = 760V$	2N5015			10	nAdc
	@ $T_A = +150^{\circ}C$				
$V_{CB} = 400V$	2N5010			10	uAdc
$V_{CB} = 500V$	2N5011			10	uAdc
$V_{CB} = 588V$	2N5012	I_{CBO2}		10	uAdc
$V_{CB} = 650V$	2N5013	0202		10	uAdc
$V_{CB} = 700V$	2N5014			10	uAdc
$V_{CB} = 760V$	2N5015			10	uAdc
Emitter to Base Cutoff Current					
$V_{EB} = 4V$		I_{EBO}		20	uAdc
Collector to Base Breakdown Voltage					
$I_C = 0.1 \text{mAdc}$	2N5010		500		Vdc
$I_C = 0.1 \text{mAdc}$	2N5011		600		Vdc
$I_C = 0.1 \text{mAdc}$	2N5012	V _{(BR)CBO}	700		Vdc
$I_C = 0.2 \text{mAdc}$	2N5013	V (BR)CBO	800		Vdc
$I_C = 0.2 \text{mAdc}$	2N5014		900		Vdc
$I_C = 0.2 \text{mAdc}$	2N5015		1000		Vdc
Emitter to Base Breakdown Voltage					
$I_C = 0$ mA		$V_{(BR)EBO}$	5		Vdc
$I_E = 0.05 \text{mA}$		(BR)EB0			
Collector to Emitter Breakdown Voltage					
$R_{BE} = 1K\Omega$	2N5010		500		Vdc
$I_C = 0.2 \text{mA}$, Pulsed	2N5011		600		Vdc
	2N5012	V _{(BR)CER}	700		Vdc
	2N5013		800		Vdc
	2N5014		900		Vdc
	2N5015		1000		Vdc
Forward-Current Transfer Ratio					
$I_C = 25 \text{mA}$	2N5010, 2N5011, 2N5012	$h_{\mathrm{FE}1}$	30	180	
$I_C = 20mA$	2N5013, 2N5014, 2N5015	**FEI	30	180	
$V_{CE} = 10V$					
$V_{CE} = 10V$		h-	10		
$I_C = 5mA$		h_{FE2}	10		
$V_{CE} = 10V$	@ T = 55°C	h	10		
$I_C = 20 \text{mA}$	@ $T_A = -55^{\circ}C$	h_{FE3}	10		

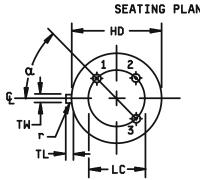
6 Lake Street, Lawrence, MA 01841 1-800-446-1158 / (978) 620-2600 / Fax: (978) 689-0803 Website: http://www.microsemi.com

ELECTRICAL CHARACTERISTICS ($T_A = +25^{\circ}C$, unless otherwise noted) (Cont.)

Parameters / Test Conditions		Symbol	Min.	Max.	Unit
$\begin{aligned} & \text{Base-Emitter Saturation Voltage} \\ & I_C = 25\text{mA} \\ & I_C = 20\text{mA} \\ & I_B = 5\text{mA}, \text{Pulsed} \end{aligned}$	2N5010, 2N5011, 2N5012 2N5013, 2N5014, 2N5015	V _{BE(SAT)}		1.0 1.0	Vdc Vdc
$\begin{split} & \text{Collector-Emitter Saturation Voltage} \\ & I_C = 25\text{mA} \\ & I_C = 25\text{mA} \\ & I_C = 25\text{mA} \\ & I_C = 20\text{mA} \\ & I_C = 20\text{mA} \\ & I_C = 20\text{mA} \\ & I_B = 5\text{mA}, \text{Pulsed} \end{split}$	2N5010 2N5011 2N5012 2N5013 2N5014 2N5015	$V_{\text{CE(SAT)}}$		1.4 1.5 1.6 1.6 1.6 1.8	Vdc Vdc Vdc Vdc Vdc Vdc

DYNAMIC CHARACTERISTICS


Parameters / Test Conditions	Symbol	Min.	Max.	Unit
$\begin{aligned} &\text{Magnitude of small signal short-circuit forward current transfer ratio} \\ &V_{\text{CE}} = 10 \text{Vdc}, \ I_{\text{C}} = 25 \text{mA}, \ f = 10 \text{MHz} \\ &V_{\text{CE}} = 10 \text{Vdc}, \ I_{\text{C}} = 20 \text{mA}, \ f = 10 \text{MHz} \end{aligned} \qquad \begin{aligned} &2 \text{N} 5010, \ 2 \text{N} 5011, \ 2 \text{N} 5012 \\ &2 \text{N} 5013, \ 2 \text{N} 5014, \ 2 \text{N} 5015 \end{aligned}$	$ \mathrm{h_{fe}} $	1.0 1.0		
Open circuit output capacitance $V_{CB}=10V,I_{E}=0,f=2MHz$	$C_{ m obo}$		30	pF



6 Lake Street, Lawrence, MA 01841 1-800-446-1158 / (978) 620-2600 / Fax: (978) 689-0803 Website: http://www.microsemi.com

PACKAGE DIMENSIONS

Symbol	Inc	Inches Millimeters		Millimeters	
	Min	Max	Min	Max	
CD	.305	.335	7.75	8.51	6
CH	.240	.260	6.10	6.60	
HD	.335	.370	8.51	9.40	
LC	.200) TP	5.08	3 TP	7
LD	.016	.019	0.41	0.48	8,9
LL	See note 14				
LU	.016	.019	0.41	0.48	8,9
L ₁		.050		1.27	8,9
L ₂	.250		6.35		8,9
P	.100		2.54		7
Q		.030		0.76	5
TL	.029	.045	0.74	1.14	3,4
TW	.028	.034	0.71	0.86	3
r		.010		0.25	10
α	45°	TP	45° TP		7

NOTE:

- Dimensions are in inches.
- Millimeters are given for general information only.
- 3. Beyond r (radius) maximum, TW shall be held for a minimum length of .011 (0.28 mm).
- Dimension TL measured from maximum HD.
- 5. Body contour optional within zone defined by HD, CD, and Q.
- CD shall not vary more than .010 inch (0.25 mm) in zone P. This zone is controlled for automatic handling.
- Leads at gauge plane .054 +.001 -.000 inch (1.37 +0.03 -0.00 mm) below seating plane shall be within .007 inch (0.18 mm) radius of true position (TP) at maximum material condition (MMC) relative to tab at MMC. The device may be measured by direct methods or by gauging procedure.
- Dimension LU applies between L₁ and L₂. Dimension LD applies between L₂ and LL minimum. Diameter is uncontrolled in and beyond LL minimum.
- All three leads.
- 10. The collector shall be internally connected to the case.
- 11. Dimension r (radius) applies to both inside corners of tab.
- 12. In accordance with ASME Y14.5M, diameters are equivalent to Φx symbology.
- 13. Lead 1 = emitter, lead 2 = base, lead 3 = collector.
- 14. For non-S-suffix devices (TO-5), dimension LL = 1.5 inches (38.10 mm) min. and 1.75 inches (44.45 mm) max. For Ssuffix types (TO-39), dimension LL = .5 inch (12.70 mm) min. and .750 inch (19.05 mm) max.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Bipolar Transistors - BJT category:

Click to view products by Microsemi manufacturer:

Other Similar products are found below:

619691C MCH4017-TL-H MJ15024/WS MJ15025/WS BC546/116 BC556/FSC BC557/116 BSW67A HN7G01FU-A(T5L,F,T NJVMJD148T4G NSVMMBT6520LT1G NTE187A NTE195A NTE2302 NTE2330 NTE2353 NTE316 IMX9T110 NTE63 NTE65 C4460 SBC846BLT3G 2SA1419T-TD-H 2SA1721-O(TE85L,F) 2SA1727TLP 2SA2126-E 2SB1202T-TL-E 2SB1204S-TL-E 2SC5488A-TL-H 2SD2150T100R SP000011176 FMC5AT148 2N2369ADCSM 2SB1202S-TL-E 2SC2412KT146S 2SC4618TLN 2SC5490A-TL-H 2SD1816S-TL-E 2SD1816T-TL-E CMXT2207 TR CPH6501-TL-E MCH4021-TL-E BC557B TTC012(Q) BULD128DT4 JANTX2N3810 Jantx2N5416 US6T6TR KSF350 068071B