DC Power Relay - G9EC-1

DC Power Relays Capable of

 Interrupting High-voltage, High current Loads- A compact relay ($98 \times 44 \times 86.7 \mathrm{~mm}$ (L x W x H)) capable of switching 400V, 200 A DC loads. (Capable of interrupting 1,000 A at 400 VDC max.)
- The switching section and driving section are gas-injected and hermetically sealed, allowing these compact relays to interrupt high-
capacity loads. The sealed construction also requires no arc space, saves space, and helps ensure safe applications.
Downsizing and optimum design allow no restrictions on the mounting direction.
- Terminal Cover is also available for industria applications.
■ UL/CSA approval pending

Model Number Structure

Model Number Legend
G9EC- $\square=-\frac{\square}{1}-\frac{\square}{4}$

$$
\begin{aligned}
& \text { 1. Number of Poles } \\
& 1: \quad 1 \text { pole } \\
& \text { 2. Contact Form } \\
& \text { Blank: SPST-NO }
\end{aligned}
$$

3. Coil Terminals
$\mathrm{B}: \quad \mathrm{M} 3.5$ screw terminals (standard)

B: M3.5 screw terminals (standard
4. Special Functions

Note: Power-saving Models (with auxiliary contacts function) are scheduled to be added to the line-up as special are scteduled to
function models.

Specifications

- List of Models

Models	Terminals		Contact form	Rated coil voltage	Model
	Coil terminals	Contact terminals			
Switching / current conduction models	Screw terminals	Screw terminals	SPST-NO	12 VDC24 VDC48 VDC60 VDC100 VDC	G9EC-1-B
	Lead wires				G9EC-1

[^0]DC Power Relay - G9EC-1

- Ratings Coil						
Rated voltage	Rated current	Coil resistance	Must-operate voltage	Must-release voltage	Max. Voltage (see note 3)	Power consumption
12 VDC	938 mA	12.8Ω	75% max. of rated voltage	8% min. of rated voltage	$\begin{aligned} & \begin{array}{l} 110 \% \text { of rated } \\ \text { voltage } \end{array} \\ & \hline \end{aligned}$	Approx. 11 W
24 VDC	469 mA	51.2Ω				
48 VDC	234 mA	204.8Ω				
60 VDC	188 mA	320.0Ω				
100 VDC	113 mA	888.9Ω				
Note: 1. The figures for the rated current and coil resistance are for a coil temperature of $23^{\circ} \mathrm{C}$ and have a tolerance of $\pm 10 \%$. 2. The figures for the operating characteristics are for a coil temperature of $23^{\circ} \mathrm{C}$. 3. The figure for the maximum voltage is the maximum voltage that can be applied to the relay coil for period of 10 minutes at an ambient temperature of $23^{\circ} \mathrm{C}$. It does not apply to continuous operation.						
Contacts						
Item		Rated current				
		G9EC-1(-B)				
Rated load		200 A at 400 VDC				
Rated carry current		200 A				
Maximum switching voltage		400 V				
Maximum switching current		200 A				

. The figure for the operating characteristics are for a coil temperature of $23^{\circ} \mathrm{C}$. 23 . ambient temperature of $23^{\circ} \mathrm{C}$. It does not apply to continuous operation.

DC Power Relay - G9EC-1

■ Characteristics

	Item	G9EC-1(-B)
Contact resistance (see note 2)		$30 \mathrm{~m} \Omega$ max. ($0.2 \mathrm{~m} \Omega$ typical)
Contact voltage drop		0.1 V max. (for a carry current of 200 A)
Operate time		50 ms max.
Release time		30 ms max.
Insulation resistance (see note 3.)	Between coil \& contacts	1,000 $\mathrm{M} \Omega$ min.
	Between contacts of the same polarity	$1,000 \mathrm{M} \Omega$ min.
Dielectric strength	Between coil \& contacts	2,500 VAC, 1 min
	Between contacts of the same polarity	2,500 VAC, 1 min
Impulse withstand voltage (See note 4.)		4,500 V
Vibration resistance	Destruction	10 to 55 to $10 \mathrm{~Hz}, 0.75-\mathrm{mm}$ single amplitude (Acceleration: 2.94 to $88.9 \mathrm{~m} / \mathrm{s}^{2}$)
	Malfunction	10 to 55 to $10 \mathrm{~Hz}, 0.75-\mathrm{mm}$ single amplitude (Acceleration: 2.94 to $88.9 \mathrm{~m} / \mathrm{s}^{2}$)
Shock resistance	Destruction	$490 \mathrm{~m} / \mathrm{s}^{2}$
	Malfunction	$196 \mathrm{~m} / \mathrm{s}^{2}$
Mechanical endurance (See note 5.)		200,000 ops. min.
Electrical endurance (resistive load) (See note 6.)		$400 \mathrm{VDC}, 200 \mathrm{~A}, 3,000$ ops. min.
Short-time carry current		300 A (15 min)
Maximum interruption current		1.000 A at 400 VDC (10 times)
Overload interruption		700 A at 400 VDC (40 times min.)
Reverse polarity interruption		-200 A at 200 VDC (1,000 times min.)
Ambient operating temperature		-40 to $50^{\circ} \mathrm{C}$ (with no icing or condensation)
Ambient operating humidity		5\% to 85\%
Weight Approx.		570 g

Note: 1. The above values are initial values at an ambient temperature of $23^{\circ} \mathrm{C}$ unless otherwise specifie
2. The contact resistance was measured with 1 A at 5 VDC using the volter.
3. The insulation resistance was measured with a 500 VDC megohmmeter
4. The impulse withstand voltage was measured with a JEC-212 (1981) standard impulse voltage waveform ($1.2 \times 50 \mu \mathrm{~s}$).
5. The mechanical endurance was measured at a switching frequency of 3,600 operations $/ \mathrm{hr}$.

164

```
Omron A5 Catalogue 2006 1-294 14/10/05 9.39 am Page 165
```

DC Power Relay - G9EC-1

- G9EC-1 Switching / Current Conduction Models

Carry Current vs Energizing Time

Electrical Endurance (Switching Performance)

Must-operate Voltage and Must-release Voltage Distributions

Electrical Endurance

$\frac{0}{0}$
$\frac{1}{0}$
$\stackrel{0}{0}$
0
0

Time Characteristic Distributions

DC Power Relay - G9EC-1

■ G9EC-1 Switching / Current Conduction Models

Vibration Malfunction Vibration Resistance

Shock Resistance


```
Omron A5 Catalogue 2006 1-294 14/10/05 9P39 am Page 167
```

DC Power Relay - G9EC-1

Dimensions Note: All units are in millimeters unless otherwise indicated
 $■$ Models with Screw Threads

- Models with Lead Wires

G9EC-1

DC Power Relay - G9EC-1
Options

- Terminal Cover

DC Power Relay - G9EC-1

Precautions

WARNING
Take measures to prevent contact with charged parts 1 Take measures to prevent contact with

■ Correct Use

Refer to the relevant catalog for common precautions.

1. Be sure to tighten all screws to the appropriate torque given below. Loose screws may result in burning due to abnormal heat generation during energization.
-M 8 screws: 8.82 to $9.80 \mathrm{~N} . \mathrm{m}$
screws: 8.82 to 9.80 N
M6 screws: 3.92 to $4.90 \mathrm{~N} \cdot \mathrm{~m}$
M5 screws: 1.57 to $2.35 \mathrm{~N} \cdot \mathrm{~m}$

- M4 screws: 0.98 to $1.37 \mathrm{~N} \cdot \mathrm{~m}$

2. The G9EA and G9EC Relays' contacts have polarity. Be sure to perform connections with the correct polarity. If the switching characteristics specified in this document cannot be assured.
3. Do not drop or disassemble this Relay. Not only may the Relay fail to meet the performance specifications, it may also result in damage, electric shock, or burning.
4. Do not use these Relays in strong magnetic fields of 800 discharge that occurs during switching may be bent by the magnetic field, resulting in flashover or insulation faults.
5. This Relay is a device for switching high DC voltages. If it is used for voltages exceeding the specified range, it may no be possible to interrupt the load and burning may result. In
order to prevent fire spreading, use a configuration in which the current load can be interrupted in the event of emergencies.
n order to ensure safety of the system, replace the Relay on a regular basis.
6. If the Relay is used for no-load switching, the contact esistance may increase and so confirm correct operation under the actual operating conditions.
7. These Relays coing frequencies the gas. Even in applications and heat caused by arc discharge in the contacts may allo ermeation of the sealed gas, resulting in arc interruption failure.
order to ensure safety of the system, replace Relays on a gular basis.
8. Do not use or store the Relay in a vacuum. Doing so wil accelerate deterioration of the sealing.
9. With this Relay, if the rated voltage (or current) is continuously applied to the coil and contacts, and then turned OFF and immediately ON again, the coil temperat and consequently the coil resistance, will be higher than usual. This means that the mustoperate voltage will also
higher than usual, exceeding the rated value "hot start") higher than usual, exceeecing the rated value thot start). reducing the load current or restricting the energizing time or ambient operating temperature.
10. The ripple percentage for $D C$ relays can cause fluctuations in the must-operate voltage or humming. For this reason,
reduce the ripple percentage in full-wave rectified power supply circuits by adding a smoothing capacitor. Ensure that the ripple percentage is less than 5%.
11. Ensure that a voltage exceeding the specified maximum voltage is not continuously applied to the coil. Abnormal heating in the
coating.
12. Do not use the Relay at a switching voltage or current greater than the specified maximum values. Doing so may
result in arc discharge interuytion failure or burning due to result in arc discharge interruption failure or burning due to abnormal heating in the contacts.
13. The contact ratings are for resistive loads. The electrical endurance with inductive loads is inferior to that of resistive conditions.
14. Do not use the Relay in locations where water, solvents, chemicals, or oil may come in contact with the case or terminals. Doing so may result in deterioration of the case resin or abnormal heating due to corrosion or contamination
of the terminals. Also, if electrolyte adheres to the output terminals, electrolysis may occur between the output terminals, resulting in corrosion of the terminals or wiring disconnections.
15. Be sure to turn OFF the power and confirm that there is no residual
wiring.
16. The distance between crimp terminals or other conductive parts will be reduced and insulation properties will be lowered if wires are laid in the same direction from the contact terminals. Use insulating coverings, do not wire in maintain insulation properties.
17. Do not tighten the screws to a torque exceed
the M 8 screws and $5 \mathrm{~N} \cdot \mathrm{~m}$ for the M 5 screws. Overtightening the contact terminals will reduce th
switching performance and damage the product. The coil's power consumption can be reduced by using in
combination with a sumiconductor circuit. Consult your OMRON representative for details.
Recommended Wire Size

Model	Size
G9EA-1(-B)	14 to $22 \mathrm{~mm}^{2}$
G9EA-1(-B)-CA	22 to $38 \mathrm{~mm}^{2}$
G9EC-1(-B)	38 to $60 \mathrm{~mm}^{2}$
G9EB-1-B	Consult your OMRON representative
Note: Use flexible leads.	

Note: Use flexible leads.

ALL DIMENSIONS SHOWN ARE IN MILLIMETERS.

To convert millimeters into inches, multiply by 0.03937 . To convert grams into ounces, multiply by 0.03527 .

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for General Purpose Relays category:
Click to view products by Omron manufacturer:

Other Similar products are found below :

```
APF30318 JVN1AF-4.5V-F PCN-105D3MHZ 5JO-10000S-SIL 5JO-1000CD-SIL 5JO-400CD-SIL LY2S-AC220/240 LYQ20DC12
6031007G 6131406HQ 6-1393099-3 6-1393099-8 6-1393122-4 6-1393123-2 6-1393767-1 6-1393843-7 6-1415012-1 6-1419102-2 6-
1423698-4 6-1608051-6 6-1608067-0 6-1616170-6 6-1616248-2 6-1616282-3 6-1616348-2 6-1616350-1 6-1616350-8 6-1616358-7 6-
1616359-9 6-1616360-9 6-1616931-6 6-1617039-1 6-1617052-1 6-1617090-2 6-1617090-5 6-1617347-5 6-1617353-3 6-1617801-8 6-
1617802-2 6-1618107-9 6-1618248-4 M83536/1-027M CX-4014 MAHC-5494 MAVCD-5419-6 703XCX-120A 7-1393100-5 7-1393111-7
7-1393144-5 7-1393767-8
```


[^0]: 2. Relays with coil terminals and screw terminals come with two M3.5 screws.
