MULTIPLE (QUAD) PNP SILICON SW ITCHING TRANSISTOR Qualified per MILPRF-19500/ 558

Devices

2N6987
 2N6987U

2N6988

Qualified Level JAN JANTX JANTXV JANS

MAXIMUM RATINGS ${ }^{(1)}$

Ratings	Symbol	Value	Units
Collector-Emitter Voltage ${ }^{(4)}$	$\mathrm{V}_{\text {CEO }}$	60	Vdc
Collector-Base Voltage ${ }^{(4)}$	$\mathrm{V}_{\mathrm{CBO}}$	60	Vdc
Emitter-Base Voltage ${ }^{(4)}$	$\mathrm{V}_{\text {Ebo }}$	5.0	Vdc
Collector Current	I_{C}	600	mAdc
Total Power Dissipation $@ \mathrm{~T}_{\mathrm{A}}=+25^{0} \mathrm{C}$ $2 \mathrm{~N} 6987^{(2)}$ $2 \mathrm{~N} 6987 \mathrm{U}^{(2)}$ $2 \mathrm{~N} 6988^{(3)}$	P_{T}	$\begin{aligned} & 1.5 \\ & 1.0 \\ & 0.4 \end{aligned}$	W
Operating \& Storage Junction Temperature Range	$\mathrm{T}_{\text {op, }} \mathrm{T}_{\text {stg }}$	-65 to +200	${ }^{0} \mathrm{C}$

1) Maximum voltage between transistors shall be $\geq 500 \mathrm{Vdc}$
2) Derate linearly $8.57 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$
3) Derate linearly $2.286 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.
4) Ratings apply to each transistor in the array.

ELECTRICAL CHARACTERISTICS ($\mathrm{T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\mathbf{}} \mathrm{C}$ unless otherwise noted)

Characteristics	Symbol	Min.	Max.	Unit
OFF CHARACTERISTICS				
Collector-Emitter Breakdown Voltage $\mathrm{I}_{\mathrm{C}}=10 \mathrm{mAdc}$	$\mathrm{V}_{\text {(BR)CEO }}$	60		Vdc
$\begin{aligned} & \text { Collector-Base Cutoff Current } \\ & V_{C B}=60 \mathrm{Vdc} \\ & V_{C B}=50 \mathrm{Vdc} \\ & \hline \end{aligned}$	$\mathrm{I}_{\text {CBO }}$		$\begin{aligned} & 10 \\ & 10 \end{aligned}$	$\mu \mathrm{Adc}$ η Adc
$\begin{aligned} & \text { Emitter-Base Cutoff Current } \\ & \mathrm{V}_{\mathrm{BE}}=5.0 \mathrm{Vdc} \\ & \mathrm{~V}_{\mathrm{EB}}=3.5 \mathrm{Vdc} \\ & \hline \end{aligned}$	$\mathrm{I}_{\text {EbO }}$		$\begin{aligned} & 10 \\ & 50 \end{aligned}$	$\mu \mathrm{Adc}$ η Adc

ELECTRICAL CHARACTERISTICS (con't)

Characteristics	Symbol	Min.	Max.	Unit
ON CHARACTERISTICS				
Forward-Current Transfer Ratio		75		
$\mathrm{I}_{\mathrm{C}}=0.1 \mathrm{mAdc}, \mathrm{V}_{\mathrm{CE}}=10 \mathrm{Vdc}$		100	450	
$\mathrm{I}_{\mathrm{C}}=1.0 \mathrm{mAdc}, \mathrm{V}_{\mathrm{CE}}=10 \mathrm{Vdc}$	h_{FE}	100		
$\mathrm{I}_{\mathrm{C}}=10 \mathrm{mAdc}, \mathrm{V}_{\mathrm{CE}}=10 \mathrm{Vdc}$		100	300	
$\mathrm{I}_{\mathrm{C}}=150 \mathrm{mAdc}, \mathrm{V}_{\mathrm{CE}}=10 \mathrm{Vdc}$		50		
$\mathrm{I}_{\mathrm{C}}=500 \mathrm{mAdc}, \mathrm{V}_{\mathrm{CE}}=10 \mathrm{Vdc}$				
Collector-Emitter Saturation Voltage	$\mathrm{V}_{\mathrm{CE}(\mathrm{sat})}$		0.4	
$\mathrm{I}_{\mathrm{C}}=150 \mathrm{mAdc}, \mathrm{I}_{\mathrm{B}}=15 \mathrm{mAdc}$			1.6	Vdc
$\mathrm{I}_{\mathrm{C}}=500 \mathrm{mAdc}, \mathrm{I}_{\mathrm{B}}=50 \mathrm{mAdc}$				
Base-Emitter Voltage	$\mathrm{V}_{\mathrm{BE}(\mathrm{sat})}$		1.3	Vdc
$\mathrm{I}_{\mathrm{C}}=150 \mathrm{mAdc}, \mathrm{I}_{\mathrm{B}}=15 \mathrm{mAdc}$			2.6	
$\mathrm{I}_{\mathrm{C}}=500 \mathrm{mAdc}, \mathrm{I}_{\mathrm{B}}=50 \mathrm{mAdc}$				

DYNAMIC CHARACTERISTICS

Magnitude of Small-Signal Short-Circuit Forward-Current Transfer Ratio $\mathrm{I}_{\mathrm{C}}=50 \mathrm{mAdc}, \mathrm{V}_{\mathrm{CE}}=20$ Vdc, $\mathrm{f}=100 \mathrm{MHz}$	$\left\|\mathrm{h}_{\mathrm{fe}}\right\|$	2.0	8.0	
Small-Signal Short-Circuit Forward Current Transfer Ratio $\mathrm{I}_{\mathrm{C}}=1.0 \mathrm{mAdc}, \mathrm{V}_{\mathrm{CE}}=10 \mathrm{Vdc}, \mathrm{f}=1.0 \mathrm{kHz}$	h_{fe}	100		
Output Capacitance $\mathrm{V}_{\mathrm{CB}}=10 \mathrm{Vdc}, \mathrm{I}_{\mathrm{E}}=0,100 \mathrm{kHz} \leq \mathrm{f} \leq 1.0 \mathrm{MHz}$	$\mathrm{C}_{\mathrm{obo}}$		8.0	pF
Input Capacitance $\mathrm{V}_{\mathrm{EB}}=2.0 \mathrm{Vdc}, \mathrm{I}_{\mathrm{C}}=0,100 \mathrm{kHz} \leq \mathrm{f} \leq 1.0 \mathrm{MHz}$	$\mathrm{C}_{\mathrm{ibo}}$		30	pF

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Bipolar Transistors - BJT category:
Click to view products by Microsemi manufacturer:
Other Similar products are found below :
619691C MCH4017-TL-H MJ15024/WS MJ15025/WS BC546/116 BC556/FSC BC557/116 BSW67A HN7G01FU-A(T5L,F,T NJVMJD148T4G NSVMMBT6520LT1G NTE187A NTE195A NTE2302 NTE2330 NTE2353 NTE316 IMX9T110 NTE63 NTE65 C4460 SBC846BLT3G 2SA1419T-TD-H 2SA1721-O(TE85L,F) 2SA1727TLP 2SA2126-E 2SB1202T-TL-E 2SB1204S-TL-E 2SC5488A-TL-H 2SD2150T100R SP000011176 FMC5AT148 2N2369ADCSM 2SB1202S-TL-E 2SC2412KT146S 2SC4618TLN 2SC5490A-TL-H 2SD1816S-TL-E 2SD1816T-TL-E CMXT2207 TR CPH6501-TL-E MCH4021-TL-E BC557B TTC012(Q) BULD128DT4 JANTX2N3810 Jantx2N5416 US6T6TR KSF350 068071B

