

NTE385 Silicon NPN Transistor Audio Power Amp, Switch

Description:

The NTE385 is a silicon NPN transistor in a TO3 type package designed for high voltage, high speed, power switching in inductive circuits where fall time is critical. It is particularly suited for line operated switch mode applications.

Features:

Fast Turn–Off Times

Absolute Maximum Ratings:

Lead Temperature (During Soldering, 1/8" from case, 5sec), T₁+275°C

Note 1. Pulse test: Pulse Width = 5ms, Duty Cycle ≤ 10%.

<u>Electrical Characteristics:</u> (T_C = +25°C unless otherwise specified)

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit				
OFF Characteristics (Note 2)										
Collector-Emitter Sustaining Voltage	V _{CEO(sus)}	$I_C = 200 \text{mA}, I_B = 0, L = 25 \text{mH}$	400	_	_	V				
Collector Cutoff Current	I _{CEX}	$V_{CEX} = 850V, V_{BE(off)} = 1.5V$	_	_	0.2	mΑ				
		$V_{CEV} = 850V$, $V_{BE(off)} = 1.5V$, $T_{C} = +125$ °C	_	_	2.0	mΑ				
	I _{CER}	$V_{CE} = 850V, R_{BE} = 10\Omega$	_	_	0.5	mΑ				
		$V_{CE} = 850V, R_{BE} = 10\Omega, T_{C} = +100^{\circ}C$	_	_	3.0	mΑ				
Emitter Cutoff Current	I _{EBO}	$V_{BE} = 5V, I_{C} = 0$	_	_	0.1	mΑ				
Emitter-Base Breakdown Voltage	V _{(BR)EBO}	$I_E = 50 \text{mA}, -I_C = 0$	7	_	_	V				

Note 2. Pulse test: Pulse Width = $300\mu s$, Duty Cycle $\leq 2\%$, $V_{cl} = 300V$, $V_{BE(off)} = 5V$, $L_C = 180\mu H$.

<u>Electrical Characteristics (Cont'd)</u>: $(T_C = +25^{\circ}C)$ unless otherwise specified)

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
ON Characteristics (Note 2)			•	•	•	
DC Current Gain	h _{FE}	$V_{CE} = 5V, I_{C} = 10A$	8	_	_	
Collector–Emitter Saturation Voltage	V _{CE(sat)}	I _C = 10A, I _B = 2A	_	_	1.5	V
		$I_C = 10A$, $I_B = 2A$, $T_C = +100$ °C	_	_	2.0	V
		I _C = 8A, I _B = 1.6A	_	_	1.5	V
		$I_C = 8A, I_B = 1.6A, T_C = +100^{\circ}C$	_	_	2.0	V
Base–Emitter Saturation Voltage	V _{BE(sat)}	I _C = 10A, I _B = 2A	_	_	1.6	V
		$I_C = 10A$, $I_B = 2A$, $T_C = +100$ °C	_	_	1.6	V
Dynamic Characteristics						
Output Capacitance	C _{ob}	$V_{CB} = 10V$, $I_E = 0$, $f_{test} = 1kHz$	_	_	350	рF
Switching Characteristics (Resist	ive Load)		•			
Delay Time	t _d	V_{CC} = 300V, I_{C} = 10A, I_{B} = 2A, t_{p} = 30 μ s, Duty Cycle = 2%, $V_{BE(off)}$ = 5V	_	0.1	0.2	μs
Rise Time	t _r		_	0.4	0.7	μs
Storage Time	t _s		_	1.3	2.0	μs
Fall Time	t _f		_	0.2	0.4	μs
Switching Characteristics (Induct	ive Load, C	lamped)	•	•	•	
Storage Time	t _{sv}	$I_C = 10A$, $I_{B1} = 2A$, $T_C = +25$ °C	_	1.3	_	μs
Fall Time	t _{fi}		_	0.06	-	μs
Storage Time	t _{sv}	I _C = 10A, I _{B1} = 2A, T _C = +100°C	-	1.5	2.5	μs
Crossover Time	t _c		_	0.3	0.6	μs
Fall Time	t _{fi}		_	0.17	0.35	μs

Note 2. Pulse test: Pulse Width = $300\mu s$, Duty Cycle \leq 2%, V_{cl} = 300V, $V_{BE(off)}$ = 5V, L_C = $180\mu H$.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Bipolar Transistors - BJT category:

Click to view products by NTE manufacturer:

Other Similar products are found below:

619691C MCH4017-TL-H MJ15024/WS MJ15025/WS BC546/116 BC556/FSC BC557/116 BSW67A HN7G01FU-A(T5L,F,T NJVMJD148T4G NSVMMBT6520LT1G NTE187A NTE195A NTE2302 NTE2302 NTE2330 NTE2353 NTE316 IMX9T110 NTE63 NTE65 C4460 SBC846BLT3G 2SA1419T-TD-H 2SA1721-O(TE85L,F) 2SA1727TLP 2SA2126-E 2SB1202T-TL-E 2SB1204S-TL-E 2SC5488A-TL-H 2SD2150T100R SP000011176 FMC5AT148 2N2369ADCSM 2SB1202S-TL-E 2SC2412KT146S 2SC4618TLN 2SC5490A-TL-H 2SD1816S-TL-E 2SD1816T-TL-E CMXT2207 TR CPH6501-TL-E MCH4021-TL-E BC557B TTC012(Q) BULD128DT4 JANTX2N3810 Jantx2N5416 US6T6TR KSF350 068071B