

NTE386 Silicon NPN Transistor Audio Power Amp, Switch

Description:

The NTE386 is a silicon NPN power transistor in a TO3 type package designed for high voltage, high—speed power switching in inductive circuit where fall time is critical. This device is particularly suited for line operated switchmode applications.

Applications:

- Switching Regulators
- Inverters
- Solenoid and Relay Drivers
- Motor Controls
- Deflection Circuits

Absolute Maximum Ratings:

Absolute maximum Nutrings.
Collector–Emitter Voltage, V _{CEO(sus)}
Collector–Emitter Voltage, V _{CEV}
Emitter–Base Voltage, V _{EB} 6V
Collector Current, I _C
Continues
Peak (Note 1)
Base Current, I _C Continuous
Peak (Note 1)
Total Power Dissipation ($T_C = +100^{\circ}C$), P_D
Total Power Dissipation ($T_C = +25^{\circ}C$), P_D
Operating Junction Temperature Range, T _J
Storage Temperature Range, T _{stg}
Thermal Resistance, Junction–to–Case, R _{thJC} 1.0°C/W
Maximum Lead Temperature (During Soldering, 1/8" from case, 5sec), T _L +275°C
Note 1 Pulse Test: Pulse Width - 5ms Duty Cycle < 10%

Note 1. Pulse Test: Pulse Width = 5ms, Duty Cycle \leq 10%.

Electrical Characteristics: $(T_C = +25^{\circ}C \text{ unless otherwise specified})$

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit	
OFF Characteristics							
Collector–Emitter Sustaining Voltage	V _{CEO(sus)}	$I_C = 100 \text{mA}, I_B = 0$	500	_	_	V	
Collector Cutoff Current	I _{CEV}	V _{CEV} = 800V, V _{EB(off)} = 1.5V	_	_	0.25	mA	
	I _{CER}	$V_{CE} = 800V, R_{BE} = 50\Omega, T_{C} = +100^{\circ}C$	_	_	5.0	mA	
Emitter Cutoff Current	I _{EBO}	$V_{BE} = 6V, I_{C} = 0$	_	_	1.0	mA	
ON Characteristics (Note 2)							
DC Current Gain	h _{FE}	$V_{CE} = 5V, I_{C} = 5A$	10	_	60		
Collector-Emitter Saturation Voltage	V _{CE(sat)}	I _C = 10A, I _B = 2A	_	_	1.8	V	
		I _C = 20A, I _B = 6.7A	_	_	5.0	V	
Base–Emitter Saturation Voltage	V _{BE(sat)}	I _C = 10A, I _B = 2A	_	_	1.8	V	
Dynamic Characteristics							
Output Capacitance	C _{cb}	$V_{CB} = 10V$, $I_E = 0$, $f_{test} = 1kHz$	125	_	500	pF	
Switching Characteristics (Resistive Load)							
Dealy Time	t _d	$V_{CC} = 250V$, $I_{C} = 10A$, $I_{B1} = 2A$, $V_{BE(off)} = 5V$, $t_{p} = 10\mu s$, Duty Cycle $\leq 2\%$	_	0.02	0.1	μs	
Rise Time	t _r		_	0.3	0.7	μs	
Storage Time	t _s		_	1.6	4.0	μs	
Fall Time	t _f		_	0.3	0.7	μs	

Note 2. Pulse Test: Pulse Width = 300ms, Duty Cycle \leq 2%.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Bipolar Transistors - BJT category:

Click to view products by NTE manufacturer:

Other Similar products are found below:

619691C MCH4017-TL-H MJ15024/WS MJ15025/WS BC546/116 BC556/FSC BC557/116 BSW67A HN7G01FU-A(T5L,F,T NJVMJD148T4G NSVMMBT6520LT1G NTE187A NTE195A NTE2302 NTE2302 NTE2330 NTE2353 NTE316 IMX9T110 NTE63 NTE65 C4460 SBC846BLT3G 2SA1419T-TD-H 2SA1721-O(TE85L,F) 2SA1727TLP 2SA2126-E 2SB1202T-TL-E 2SB1204S-TL-E 2SC5488A-TL-H 2SD2150T100R SP000011176 FMC5AT148 2N2369ADCSM 2SB1202S-TL-E 2SC2412KT146S 2SC4618TLN 2SC5490A-TL-H 2SD1816S-TL-E 2SD1816T-TL-E CMXT2207 TR CPH6501-TL-E MCH4021-TL-E BC557B TTC012(Q) BULD128DT4 JANTX2N3810 Jantx2N5416 US6T6TR KSF350 068071B