TR-EI1P-UNI

time relays

Output circuit - contact data

Number and type of contacts	
Contact material	AC1
Rated load	AC1
Max. breaking capacity	

Max. operating frequency

- at resistive load 100 VA
- at resistive load 1000 VA

Input circuit

Rated voltage AC: $50 / 60 \mathrm{~Hz} \mathrm{AC/DC}$	12.. 240 V terminals (+)A1 - (-)A2
Must release voltage	AC: $\geq 0,3 \mathrm{Un}_{n}$
Operating range of supply voltage	0,9...1,1 Un
Rated power consumption AC	4,0 VA
DC	1,5 W
Range of supply frequency AC	$48 . .63 \mathrm{~Hz}$
Duty cycle	100\%
Residual ripple to DC	10\%
Insulation according to PN-EN 60664-1	
Insulation rated voltage	250 V AC
Rated surge voltage	4000 V 1,2/50 s
Overvoltage category	III
Insulation pollution degree	2 if built-in: 3
Dielectric strength • contact clearance	1000 VAC type of clearance: micro-disconnection
General data	
Electrical life •resistive AC1	$>2 \times 10^{5} \quad 1000 \mathrm{VA}$
Mechanical life (cycles)	$>2 \times 10^{7}$
Dimensions (L x W x H)	$87 \times 17,5 \times 65 \mathrm{~mm}$
Weight	63 g
$\begin{array}{ll}\text { Ambient temperature } & \text { • storage } \\ & \text { - operating }\end{array}$	$\begin{aligned} & -25 \ldots+70^{\circ} \mathrm{C} \\ & -25 \ldots+55^{\circ} \mathrm{C} \end{aligned}$
Cover protection category	IP 20 PN-EN 60529
Relative humidity	15...85\%
Shock resistance	15 g 11 ms
Vibration resistance	0,35 mm DA $10 \ldots . .55 \mathrm{~Hz}$
Time module data	
Functions (1)	li, lp
Time ranges	$1 \mathrm{~s} ; 10 \mathrm{~s} ; 1$ min.; 10 min.; $1 \mathrm{~h} ; 10 \mathrm{~h} ; 100 \mathrm{~h}$
Timing adjustment	smooth - (0,05...1) x time range
Base accuracy	$\pm 1 \%$ (calculated from the final range values)
Setting accuracy	$\pm 5 \%$ (calculated from the final range values)
Repeatability	$\pm 0,5 \%$ or $\pm 5 \mathrm{~ms}$
Temperature influence	$\pm 0,01 \% /{ }^{\circ} \mathrm{C}$
Recovery time	100 ms
LED indicator	green LED U ON - indication of supply voltage U green LED U slow flashing - measurement of T1 time green LED U fast flashing - measurement of T2 time yellow LED R ON/OFF - output relay status

[^0]- Time relays with independently controled times T1 and T2, time function Ii, Ip (Cyclical operation in two independent intervals T 1 and T 2) $\mathbf{0}, 7$ time ranges
- AC/DC input voltages
- Cover - installation module, width $17,5 \mathrm{~mm}$
- Direct mounting on 35 mm rail mount acc. to PN-EN 60715
- Application: in low-voltage systems
- Recognitions, certifications, directives: $(\in \mathbb{E B}[$

1 CO
AgNi
8 A / 250 V AC
2000 VA (8 A / 250 V AC)
3600 cycles/hour
360 cycles/hour

TR-EI1P-UNI

time relays

Time functions

Ip - Cyclical operation pause first. Independent settings of T1 and T2 intervals.
(1) Start by function Ip - terminals A1-B1 are not connected / bridged.

$\begin{array}{cc}\circ & 0 \\ \text { A1 } & \end{array}$
A1 B1

When the supply voltage U is applied, the set interval T1 begins (green LED flashes slowly). After the interval T1 has expired, the output relay R switches into on-position (yellow LED illuminated) and the set interval T2 begins (green LED flashes fast). After the interval T2 has expired, the output relay switches into off-position (yellow LED not illumninated). The output relay is triggered at the ratio of $\mathrm{T} 1: \mathrm{T} 2$ until the supply voltage is interrupted.

Ii - Cyclical operation pulse first. Independent settings of T1 and T2 intervals.
(1) Start by function li - terminals A1-B1 are connected / bridged.

When the supply voltage U is applied, the output relay R switches into on-position (yellow LED illuminated) and the set interval T1 begins (green LED flashes slowly). After the interval T1 has expired, the output relay switches into off-position (yellow LED not illuminated) and the set interval T2 begins (green LED flashes fast). After the interval T2 has expired, the output relay switches into on-position (yellow LED illuminated). The output relay is triggered at the ratio of T1:T2 until the supply voltage is interrupted.
\mathbf{U} - supply voltage; \mathbf{R} - output state of the relay; $\mathbf{T 1}, \mathbf{T} \mathbf{2}$ - measured times; \mathbf{t} - time axis

Dimensions

Front panel description

Connection diagram

1 CO

Mounting

Relays TR-EIIP-UNI are designed for direct mounting on 35 mm rail mount acc. to PN-EN 60715. Operational position - any. Connections: max. cross section of the cables: $1 \times 2,5 \mathrm{~mm}^{2} / 2 \times 1,5 \mathrm{~mm}^{2}(1 \times 14 / 2 \times 16$ AWG), length of the cable deinsulation: $6,5 \mathrm{~mm}$, max. tightening moment for the terminal: $1,0 \mathrm{Nm}$. Shockproof terminal connection according to VBG 4 (PZ1 required).
(1) Start by function Ip - terminals A1-B1 are not connected / bridged; start by function li - terminals A1-B1 are connected / bridged - see „Time functions", page 2.

Ordering codes

Example of ordering codes:
TR-EITP-UNI time relay TR-EI1P-UNI, single-function (relay perform function li +lp), cover - installation module, width $17,5 \mathrm{~mm}$, one changeover contact, rated input voltage $12 \ldots 240 \mathrm{~V}$ AC/DC AC: $50 / 60 \mathrm{~Hz}$

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Timers category:
Click to view products by Relpol manufacturer:
Other Similar products are found below :
79237785 H3DS-GL AC24-230/DC24-48 H5AN-4DM DC12-24 H5CN-XDNM AC100-240 H5CN-YAN AC100-240 H5CX-L8S-N AC100240 H3AMNSCAC100240 H3AM-NSR-B AC100-240 H3CA-8 DC12 H3CR-A8-302 DC24 H3CR-F AC24-48/DC12-48 H3CR-G8EL AC200-240 H5AN-4D DC12-24 8150694488225029 H5S-YB4-X H3CR-A-301 AC100-240/DC100-125 H3CR-AS AC24-48/DC12-48 H3DK-GE AC240-440 H3RN-2 AC24 H3RN-21 AC24 H3CR-H8RL AC/DC24 M H3CR-H8RL AC100-120 S H3CR-G8EL-31 AC100-120 H3CR-H8RL AC100-120 M H3CR-HRL AC100-120 M H3CR-A8-301 AC24-48/DC12-48 H3CR-H8RL AC/DC24 S H7AN-2D DC12-24 H5CN-XANS DC12-48 H3CA-8 DC110 H7AN-W4DM DC12-24 H7AN-4DM DC12-24 H7AN-4D DC12-24 H7AN-RT6M AC100-240 H3CA-8H AC200/220/240 MTR17-BA-U240-116 PM4HSDM-S-AC240VS PM4HSDM-S-AC240VSW PO-405 600DT-CU H3Y-2-B DC24 30S PM4HF8-M-DC24V PM4HS-H-DC12VSW H3Y-2-B AC100-120 10S H3Y-2-B AC100-120 30S H3C-R H3CR-A8-301 24-48AC/1248DC H3CR-A8E 24-48AC/DC H3CR-F8 100-240AC/100-125DC

[^0]: 1 Start by function Ip - terminals A1-B1 are not connected / bridged; start by function li - terminals A1-B1 are connected / bridged - see „Time functions", page 2

