

NTE390 (NPN) & NTE391 (PNP) **Silicon Complementary Transistors General Purpose** TO-3PN Type Package

Description:

The NTE390 (NPN) and NTE391 (PNP) are silicon complementary transistors in a TO-3PN type package designed for general purpose power amplifier and switching applications.

Features:

- 10A Collector Current
- Low Leakage Current: I_{CFO} = 0.7mA @ V_{CF} = 60V
- Excellent DC Gain: h_{FF} = 40 Typ @ 3A
- High Current Gain Bandwidth Product: h_{fe} = 3 Min @ I_C = 500mA, f = 1MHz

Absolute Maximum Ratings:

Aboolato maximam riatingor
Collector–Emitter Voltage, V _{CEO}
Collector-Base Voltage, V _{CB} 100V
Emitter-Base Voltage, V _{EB} 5V
Collector Current, I _C
Continuous
Peak (Note 1)
Continuous Base Current, I _B
Total Power Dissipation ($T_C = +25^{\circ}C$), P_D
Derate Above 25°C 0.64W/°C
Operating Junction Temperature Range, T _J –65° to +150°C
Storage Temperature Range, T _{stg} –65° to +150°C
Thermal Resistance, Junction-to-Case, R _{thJC}
Thermal Resistance, Junction-to-Ambient, R _{thJA}
Note 1. Pulse Test: Pulse Width = 10ms. Duty Cycle ≤ 10%.

Note 1. Pulse lest: Pulse width = 10ms, Duty Cycle ≤ 10%.

<u>Electrical Characteristics</u>: $(T_C = +25^{\circ}C \text{ unless otherwise specified})$

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit	
OFF Characteristics							
Collector-Emitter Sustaining Voltage	V _{CEO(sus)}	$I_C = 30 \text{mA}, I_B = 0, \text{Note 2}$	100	_	_	V	
Collector-Emitter Cutoff Current	I _{CEO}	V _{CE} = 60V, I _B = 0	_	_	0.7	mA	
	I _{CES}	V _{CE} = 100V, V _{EB} = 0	_	_	0.4	mA	
Emitter-Base Cutoff Current	I _{EBO}	$V_{EB} = 5V, I_{C} = 0$	-	-	1	mA	
ON Characteristics (Note 2)							
DC Current Gain	h _{FE}	I _C = 1A, V _{CE} = 4V	40	_	_		
		I _C = 3A, V _{CE} = 4V	20	_	100		
Collector-Emitter Saturation Voltage	V _{CE(sat)}	$I_C = 3A, I_B = 0.3A$	_	_	1	V	
		I _C = 10A, I _B = 2.5A	_	_	4	V	
Base-Emitter ON Voltage	V _{BE(on)}	$I_C = 3A$, $V_{CE} = 4V$	_	_	1.6	V	
		I _C = 10A, V _{CE} = 4V	_	_	3.0	V	
Dynamic Characteristics							
Small-Signal Current Gain	h _{fe}	$I_C = 0.5A$, $V_{CE} = 10V$, $f = 1kHz$	20	_	_		
Current-Gain Bandwidth Product	f _T	I _C = 0.5A, V _{CE} = 10V, f = 1MHz, Note 3	3	-	_	MHz	

Note 2. Pulse Test: Pulse Width = $300\mu s$, Duty Cycle $\leq 2\%$.

Note 3. $f_T = |h_{fe}| \bullet f_{test}$

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Bipolar Transistors - BJT category:

Click to view products by NTE manufacturer:

Other Similar products are found below:

619691C MCH4017-TL-H MJ15024/WS MJ15025/WS BC546/116 BC556/FSC BC557/116 BSW67A HN7G01FU-A(T5L,F,T NJVMJD148T4G NSVMMBT6520LT1G NTE187A NTE195A NTE2302 NTE2302 NTE2330 NTE2353 NTE316 IMX9T110 NTE63 NTE65 C4460 SBC846BLT3G 2SA1419T-TD-H 2SA1721-O(TE85L,F) 2SA1727TLP 2SA2126-E 2SB1202T-TL-E 2SB1204S-TL-E 2SC5488A-TL-H 2SD2150T100R SP000011176 FMC5AT148 2N2369ADCSM 2SB1202S-TL-E 2SC2412KT146S 2SC4618TLN 2SC5490A-TL-H 2SD1816S-TL-E 2SD1816T-TL-E CMXT2207 TR CPH6501-TL-E MCH4021-TL-E BC557B TTC012(Q) BULD128DT4 JANTX2N3810 Jantx2N5416 US6T6TR KSF350 068071B