

NTE454 MOSFET, N-Ch, Dual Gate, TV UHF/RF Amp, Gate Protected TO72 Type Package

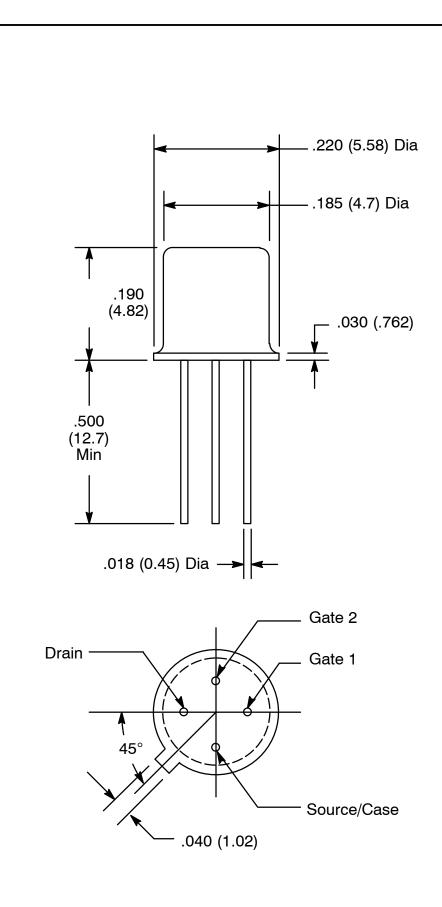
Description:

The NTE454 is a depletion mode dual gate MOSFET transistor designed for VHF amplifier and mixer applications.

Features:

- Low Reverse Transfer Capacitance C_{rss} = 0.03pf (Max)
- High Forward Transfer Admittance |y_{fe}| = 0–20 mmhos
- Diode Protected Gates

G2 G1 S, Case


Absolute Maximum Ratings:

Drain Source Voltage, V _{DSX}	20Vdc
Drain-Gate Voltage, V _{DG1} , V _{DG2}	30Vdc
Gate Current, I _{G1} , I _{G2}	±10mAdc
Drain Current-Continuous, ID	60mAdc
Total Power Dissipation ($T_A = +25^{\circ}C$), $P_D \dots P_D \dots P_$	360mW
Derate above 25°C	2.4mW/°C
Total Power Dissipation ($T_C = +25^{\circ}C$), P_D	1.2Watt
Derate above 25°C	8.0mW/°C
Storage Channel Temperature Range, T _{stg}	65 to +200°C
Junction Temperature Range, T _J	65 to +175°C
Lead Temperature, 1/16" from Seated Surface for 10 Seconds, T _L	+300°C

<u>Electrical Characteristics:</u> (T_A = 25°C unless otherwise noted)

Characteristics	Symbol	Test Conditions	Min	Тур	Max	Unit
OFF CHARACTERISTICS		•				
Drain-Source Breakdown Voltage	V _{(BR)DSX}	$I_D = 10 \le Adc, V_5 = 0,$ $V_{GIS} = V_{G25} = 5.0Vdc$	20	_	_	Vdc
Gate 1= Source Breakdown Voltage (Note 1)	V _{(BR)G1SO}	$I_{G1} = \pm 10 \text{mAdc}, V_{GIS} = V_{DS} = 0$	±6.0	±12	±30	Vdc
Gate 2-Source Breakdown Voltage (Note 1)	V _{(BR)G2SO}	$I_{G2} = \pm 10 \text{mAdc}, V_{G15} = V_{D5} = 0$	±5.0	±12	±30	Vdc
Gate 1 to Source Cutoff Voltage	V _{GIS(off)}	V_{DS} = 15Vdc, V_{G2S} = 4.0Vdc, I_D = 20≤Adc	-0.5	-1.5	-5.0	Vdc
Gate 2 to Source Cutoff Voltage	V _{G2S(off)}	$V_{DS} = 15Vdc, V_{G15} = 0,$ $I_{D} = 20 \le Adc$	-0.2	-1.4	-5.0	Vdc
Gate 1 Leakage Current	I _{G1SS}	$V_{GIS} = \pm 5.0 Vdc, V_{G2S} = V_{DS} = 0$	_	±0.04	±10	nAdc
		$V_{\rm G2S} = -5.0 {\rm Vdc}, \ V_{\rm G2S} = V_{\rm DS} = 0, \ T_{\rm A} = 150 {\rm ^{\circ}C}$	-	-	-10	≤Adc
Gate 2 Leakage Current	I _{G2SS}	$V_{G2S} = \pm 5.0 Vdc, V_{GIS} = V_{DS} = 0$	-	±0.05	±10	nAdc
		$V_{G2S} = -5.0 Vdc, V_{GIS} = V_{DS} = 0,$ $T_A = 150^{\circ}C$	-	_	-10	≤Adc
ON CHARACTERISTICS						
Zero-Gate Voltage Drain Current (Note 2)	I _{DSS}	$V_{DS} = 15Vdc, V_{GIS} = 0, V_{G25} = 4.0Vdc$	6.0	13	30	mAdc
SMALL-SIGNAL CHARACTERI	STICS					
Forward Transfer Admittance (Note 3)	y _{fe}	$V_{DS} = 15Vdc, V_{G2S} = 4.0Vdc, V_{GIS} = 0, f = 1.0kH_Z$	8.0	12.8	20	mmhos
Input Capacitance	C _{iss}	$V_{DS} = 15Vdc, V_{G2S} = 4.0Vdc, I_{D} = I_{DSS}, f = 1.0MH_{Z}$	_	3.3	_	pF
Output Capacitance	C _{oss}	V_{DS} = 15Vdc, V_{G2S} = 4.0Vdc, I_D = I_{DSS} , f = 1.0MH _Z	_	1.7	_	pF
Reverse Transfer Capacitance	C _{rss}	V_{DS} = 15Vdc, V_{G2S} = 4.0Vdc, I_D = 10mAdc, f = 1.0MH _Z	0.005	0.014	0.03	pF
FUNCTIONAL CHARACTERIST	ics					
Noise Figure	NF	V_{DD} = 18Vdc, V_{GG} = 7.0Vdc, f = 200MH _Z	-	1.8	4.5	dB
Common Source Power Gain	G _{ps}	$V_{DD} = 18Vdc, V_{GG} = 7.0Vdc,$ f = 200MH _Z	15	20	25	dB
Bandwidth	BW	$V_{DD} = 18Vdc, V_{GG} = 7.0Vdc,$ f = 200MH _Z	5.0	-	9.0	MHZ
Gain Control Gate Supply Voltage (Note 4)	V _{GG(GC)}	$V_{DD} = 18Vdc, \pm G_{ps} = -30dB,$ f = 200MH _Z	0	-1.0	-3.0	Vdc

- Note 1. All gate breakdown voltages are measured while the device is conducting rated gate current. This ensures that the gate–voltage limiting network is functioning properly.
- Note 2. Pulse Test: Pulse Width = 300≤s, Duty Cycle ≤ 2.0%.
- Note 3. This parameter must be measured with bias voltages supplied for less than 6 seconds to avoid overheating.
- Note 4. $\pm G_{ps}$ is defined as the change in G_{pe} from the values at V_{GG} = 7.0V power gain conversion.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for MOSFET category:

Click to view products by NTE manufacturer:

Other Similar products are found below:

614233C 648584F MCH3443-TL-E MCH6422-TL-E FDPF9N50NZ FW216A-TL-2W FW231A-TL-E APT5010JVR NTNS3A92PZT5G IRF100S201 JANTX2N5237 2SK2464-TL-E 2SK3818-DL-E FCA20N60_F109 FDZ595PZ STD6600NT4G FSS804-TL-E 2SJ277-DL-E 2SK1691-DL-E 2SK2545(Q,T) D2294UK 405094E 423220D MCH6646-TL-E TPCC8103,L1Q(CM 367-8430-0972-503 VN1206L 424134F 026935X 051075F SBVS138LT1G 614234A 715780A NTNS3166NZT5G 751625C 873612G IRF7380TRHR IPS70R2K0CEAKMA1 RJK60S3DPP-E0#T2 RJK60S5DPK-M0#T0 APT5010JVFR APT12031JFLL APT12040JVR DMN3404LQ-7 NTE6400 JANTX2N6796U JANTX2N6784U JANTXV2N5416U4 SQM110N05-06L-GE3 SIHF35N60E-GE3