1-Bit Low Power Bus Switch with Level Shifting

General Description

The NC7SZD384 provides 1-bit of high-speed CMOS TTL-compatible bus switch. The low on resistance of the switch allows inputs to be connected to outputs with minimal propagation delay and without generating additional ground bounce noise. The device is organized as a 1 -bit switch with a bus enable ($\overline{\mathrm{OE}})$ signal. When $\overline{\mathrm{OE}}$ is LOW, the switch is on and Port A is connected to Port B . When $\overline{\mathrm{OE}}$ is HIGH, the switch is open and a high-impedance state exists between the two ports. Reduced voltage drive to the gate of the FET switch permits nominal level shifting of 5 V to 3.3 V through the switch.

Features

■ Space saving SOT23 or SC70 5-lead package
■ Ultra small MicroPak ${ }^{\top M}$ Pb-Free leadless package
$\square 5 \Omega$ switch connection between two ports
■ Designed to be used in level-shifting applications
■ Minimal propagation delay through the switch

- Low I_{CC}

■ Zero bounce in flow-through mode

- Control inputs compatible with TTL level

Ordering Code:

Order Number	Package Number	Product Code Top Mark	Package Description	Supplied As
NC7SZD384M5X	MA05B	8Z4D	5-Lead SOT23, JEDEC MO-178, 1.6mm	3k Units on Tape and Reel
NC7SZD384P5X	MAA05A	Z4D	5-Lead SC70, EIAJ SC-88a, 1.25mm Wide	3k Units on Tape and Reel
NC7SZD384L6X	MAC06A	A4	Pb-Free 6-Lead MicroPak, 1.0mm Wide	5k Units on Tape and Reel

Pb-Free package per JEDEC J-STD-020B.

Logic Symbol

Pin Descriptions

Pin Name	Description
$\overline{\mathrm{OE}}$	Bus Switch Enable
A	Bus A
B	Bus B
NC	No Connect

Function Table

$\mathbf{O E}$	$\mathbf{B}_{\mathbf{O}}$	Function
L	$\mathrm{A}_{\boldsymbol{O}}$	Connect
H	HIGH-Z State	Disconnect

Connection Diagrams

Pin Assignments for SC70 and SOT23

Pad Assignments for MicroPak

(Top Through View)

Absolute Maximum Ratings(Note 1)	
Supply Voltage (V_{CC})	-0.5 V to +7.0 V
DC Switch Voltage (VS)	-0.5 V to +7.0 V
DC Input Voltage (V_{IN}) (Note 2)	-0.5 V to +7.0 V
DC Input Diode Current (I_{IK}) $\mathrm{V}_{\mathbb{I N}}<0 \mathrm{~V}$	-50 mA
DC Output (lout) Sink Current	128 mA
DC $\mathrm{V}_{\text {CC }} / \mathrm{GND}$ Current ($\mathrm{I}_{\mathrm{CC}} / \mathrm{GND}$)	$\pm 100 \mathrm{~mA}$
Storage Temperature Range ($\mathrm{T}_{\text {STG }}$)	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction Temperature under bias (T_{J})	$+150^{\circ} \mathrm{C}$
Junction Lead Temperature (T_{L}) (Soldering, 10 seconds)	$+260^{\circ} \mathrm{C}$
Power Dissipation (P_{D}) @ $+85^{\circ} \mathrm{C}$	
SOT23-5	200 mW
SC70-5	150 mW

Recommended Operating
 Conditions (Note 3)

Power Supply Operating $\left(\mathrm{V}_{\mathrm{CC}}\right)$	4.5 V to 5.5 V
Input Voltage $\left(\mathrm{V}_{\text {IN }}\right)$	0 V to 5.5 V
Output Voltage $\left(\mathrm{V}_{\text {OUT }}\right)$	0 V to 5.5 V
Input Rise and Fall Time $\left(\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}\right)$	
\quad Switch Control Input	$0 \mathrm{~ns} / \mathrm{V}$ to 5 ns
Switch I/O	$0 \mathrm{~ns} / \mathrm{V}$ to DC
Operating Temperature $\left(\mathrm{T}_{\mathrm{A}}\right)$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Thermal Resistance $\left(\theta_{\mathrm{JA}}\right)$	
\quad SOT23-5	$300^{\circ} \mathrm{C} /$ Watt
SC70-5	$425^{\circ} \mathrm{C} /$ Watt

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Note 2: The input and output negative voltage ratings may be exceeded if the input and output diode current ratings are observed.

Note 3: Unused inputs must be held HIGH or LOW. They may not float.

DC Electrical Characteristics

Symbol	Parameter	V_{cc} (V)	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			Units	Conditions
			Min	$\begin{gathered} \text { Typ } \\ \text { (Note 4) } \end{gathered}$	Max		
V_{IK}	Maximum Clamp Diode Voltage	4.5			-1.2	-V	$\mathrm{I}_{\mathrm{N}}=-18 \mathrm{~mA}$
$\mathrm{V}_{1 \mathrm{H}}$	HIGH Level Input Voltage	4.5-5.5	2.0			V	
V_{IL}	LOW Level Input Voltage	4.5-5.5			0.8	V	
V_{OH}	HIGH Level Output Voltage	4.5-5.5		See Figure		V	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{CC}}$
${ }_{1}$	Input Leakage Current	0-5.5			± 1.0	$\mu \mathrm{A}$	$0 \leq \mathrm{V}_{\text {IN }} \leq 5.5 \mathrm{~V}$
loff	"OFF" Leakage Current	5.5			± 10.0	$\mu \mathrm{A}$	$0 \leq \mathrm{A}, \mathrm{B}, \leq \mathrm{V}_{\text {CC }}$
R_{ON}	Switch On Resistance (Note 5)	4.5		5.0	7.0	Ω	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{I}}=64 \mathrm{~mA}$
				5.0	7.0	Ω	$\mathrm{V}_{1 \mathrm{~N}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{I}}=30 \mathrm{~mA}$
				35.0	50.0	Ω	$\mathrm{V}_{\text {IN }}=2.4 \mathrm{~V}, \mathrm{I}_{\mathrm{I}}=15 \mathrm{~mA}$
${ }^{\text {cc }}$	Quiescent Supply Current Switch On Switch Off	$\begin{aligned} & 5.5 \\ & 5.5 \end{aligned}$		0.8	$\begin{gathered} 1.5 \\ 10.0 \end{gathered}$	$\begin{aligned} & \mathrm{mA} \\ & \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND}, \mathrm{I}_{\mathrm{O}}=0 \\ & \mathrm{OE}=\mathrm{GND} \\ & \overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{CC}} \end{aligned}$
$\Delta^{\text {l }}$	Increase in $\mathrm{I}_{\text {CC }}$ per Input (Note 6)	5.5		0.8	2.5	mA	$\overline{\mathrm{OE}}=3.4 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=0,$ Control Input only.

Note 4: All typical values are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 5: Measured by the voltage drop between A and B pins at the indicated current through the switch. On Resistance is determined by the lower of the voltages on the two (A or B) pins.

Note 6: Per TTL driven input ($\mathrm{V}_{\mathrm{IN}}=3.4 \mathrm{~V}$, control input only). A and B pins do not contribute to I_{CC}

AC Electrical Characteristics

Symbol	Parameter	V_{CC} (V)	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{RU}=\mathrm{RD}=500 \Omega \end{gathered}$		Units	Conditions	Figure Number
			Min	Typ Max (Note 7)			
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PHL}}, \\ & \mathrm{t}_{\mathrm{PLH}} \end{aligned}$	Propagation Delay Bus-to-Bus (Note 8)	4.5-5.5		0.25	ns	$\mathrm{V}_{1}=$ OPEN	Figures $1,2$
$\begin{aligned} & \hline t_{\mathrm{PZL}}, \\ & \mathrm{t}_{\mathrm{PZH}} \end{aligned}$	Output Enable Time	4.5-5.5	1.5	7.5	ns	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=7 \mathrm{~V} \text { for } \mathrm{t}_{\mathrm{PZL}} \\ & \mathrm{~V}_{\mathrm{I}}=\text { OPEN for } t_{\mathrm{PZH}} \end{aligned}$	Figures 1, 2
$\begin{aligned} & t_{\text {PLZ }}, \\ & t_{\text {PHZ }} \end{aligned}$	Output Disable Time	4.5-5.5	1.0	6.0	ns	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=7 \mathrm{~V} \text { for } \mathrm{t}_{\mathrm{PLZ}} \\ & \mathrm{~V}_{\mathrm{I}}=\text { OPEN for } t_{\mathrm{PHZ}} \end{aligned}$	Figures $1,2$

Note 7: All typical values are $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 8: This parameter is guaranteed by design but is not tested. The bus switch contributes no propagation delay other than the RC delay of the typical On Resistance of the switch and the 50 pF load capacitance, when driven by an ideal voltage source (zero output impedance).

Capacitance (Note 9)

Symbol	Parameter	Typ	Max	Units	Conditions
C_{IN}	Control Pin Input Capacitance	2	5	pF	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$
$\mathrm{C}_{\mathrm{I} / \mathrm{O}}$	Input/Output Capacitance	4.5	10	pF	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$

Note 9: $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \mathrm{f}=1 \mathrm{MHz}$

AC Loading and Waveforms

FIGURE 1. AC Test Circuit
Note: Input driven by 50Ω source terminated in 50Ω.
C_{L} includes load and stray capacitance.
Input $P R R=1.0 \mathrm{MHz} \mathrm{t}$ w $=500 \mathrm{~ns}$.

FIGURE 2. AC Waveforms

FIGURE 3. Typical High Level Output Voltage vs. Supply Voltage

Tape and Reel Specification

TAPE FORMAT for SC70 and SOT23

Package Designator	Tape	Number	Cavity	Cover Tape
Section	Cavities	Status	Status	
M5X, P5X	Leader (Start End)	$125($ typ	Empty	Sealed
	Carrier	3000	Filled	Sealed
	Trailer (Hub End)	$75($ typ $)$	Empty	Sealed

TAPE DIMENSIONS inches (millimeters)
DIRECTION OF FEED \qquad

SECTION B-B

SECTION A-A

BEND RADIUS NOT TO SCALE

Package	Tape Size	DIM A	DIM B	DIM F	DIM K $_{\mathbf{0}}$	DIM P1	DIM W
SC70-5	8 mm	0.093 (2.35)	0.096 (2.45)	0.138 ± 0.004 (3.5 ± 0.10)	0.053 ± 0.004 (1.35 ± 0.10)	0.157 (4)	0.315 ± 0.004 (8 ± 0.1)
SOT23-5	8 mm	0.130 (3.3)	0.130 (3.3)	0.138 ± 0.002 (3.5 ± 0.05)	0.055 ± 0.004 (1.4 ± 0.11)	0.157 (4)	0.315 ± 0.012 (8 ± 0.3)

TAPE FORMAT for MicroPak

Package	Tape	Number	Cavity	Cover Tape
Designator	Section	Cavities	Status	Status
L6X	Leader (Start End)	$125($ typ)	Empty	Sealed
	Carrier	5000	Filled	Sealed
	Trailer (Hub End)	$75(\mathrm{typ})$	Empty	Sealed

REEL DIMENSIONS inches (millimeters)

Tape Size	\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{D}	\mathbf{N}	W1	W2	W3
8 mm	7.0	0.059	0.512	0.795	2.165	$0.331+0.059 /-0.000$	0.567	$\mathrm{~W} 1+0.078 /-0.039$
	(177.8)	(1.50)	(13.00)	(20.20)	(55.00)	$(8.40+1.50 /-0.00)$	(14.40)	$(\mathrm{W} 1+2.00 /-1.00)$

Physical Dimensions inches (millimeters) unless otherwise noted

LAND PATTERN RECOMMENDATION

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

NOTES:
A. CONFORMS TO EIAJ REGISTERED OUTLINE DRAWING SC88A B. DIMENSIONS DO NOT INCLUDE BURRS OR MOLD FLASH. C. DIMENSIONS ARE IN MILLIMETERS.

5-Lead SC70, EIAJ SC-88a, 1.25mm Wide

 Package Number MAA05APhysical Dimensions inches (millimeters) unless otherwise noted (Continued)

Pb-Free 6-Lead MicroPak, 1.0mm Wide
Package Number MAC06A

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use
provided in the labeling, can be reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product develop- ment. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been dis- continued by Fairchild Semiconductor. The datasheet is printed for ref- erence information only.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Digital Bus Switch ICs category:
Click to view products by ON Semiconductor manufacturer:
Other Similar products are found below :
MT8986AE1 MT90812AP1 MT90869AG2 CA91L8260B-100CEV TC7MPB9307FT(EL) MT8986AP1 72V8985JG8 732757E
ZL50020QCG1 ZL50012QCG1 PI3C32X384BE PI5C3861QEX ZL50023GAG2 MT8986AL1 MT8981DP1 PI3VT3245-ALE
ZL50016GAG2 TC7MBL3257CFT(EL) PI3CH800QE MT90823AB1 ZL50075GAG2 PI5C32X245BEX PI5C3126QEX PI5C3125QEX
PI3VT3245-AQE PI3CH800QEX PI3C3384QE PI3C3305UEX PI3B3861QEX PI3B3861QE PI3B32X245BEX PI3B3245QEX PI3B3245QE PI3CH800ZHEX PI3CH1000LE PI3CH400ZBEX 728981JG8 TC7MBL3257CFK(EL) 728985JG8 PI3CH401LE PI3CH401LEX FST3126DR2G QS34X245Q3G8 QS3VH125S1G8 TC7WBL3305CFK(5L,F 74CB3Q3125DBQRE4 74FST6800PGG8 74CB3Q3244DBQRE4 74CBTLV3125PGG8 TC7MBL3125CFT(EL)

