

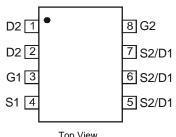
DMG4932LSD

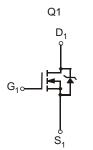
ASYMETRICAL DUAL N-CHANNEL ENHANCEMENT MODE MOSFET

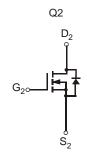
Features

- High Density UMOS with Schottky Barrier Diode
- Low Leakage Current at High Temp.
- High Conversion Efficiency
- Low On-Resistance
- Low Input Capacitance
- Fast Switching Speed
- Utilizes Diodes' Monolithic DIOFET Technology to Increase Conversion Efficiency
- 100% UIS and R_q Tested
- Lead Free By Design/RoHS Compliant (Note 1)
- "Green" Device (Note 2)
- Qualified to AEC-Q101 Standards for High Reliability

Mechanical Data


- Case: SO-8
- Case Material: Molded Plastic, "Green" Molding Compound. UL Flammability Classification Rating 94V-0
- Moisture Sensitivity: Level 1 per J-STD-020
- Terminal Connections: See Diagram Below
- Marking Information: See Page 8
- Ordering Information: See Page 8
- Weight: 0.072 grams (approximate)


Diodes Schottky Integrated MOSFET


Top View

Top View Internal Schematic

N-Channel MOSFET

N-Channel MOSFET

Maximum Ratings - Q1 @TA = 25°C unless otherwise specified

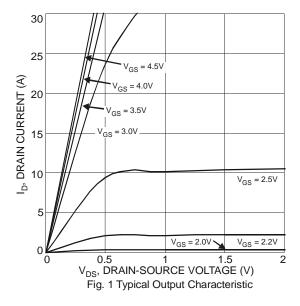
Chara	Symbol	Value	Unit		
Drain-Source Voltage			V_{DSS}	30	V
Gate-Source Voltage			V _{GSS}	±12	V
Continuous Drain Current (Note 3)	Steady State	T _A = 25°C T _A = 85°C	I _D	9.5 7.2	А
Pulsed Drain Current (Note 4)	I _{DM}	40	А		
Avalanche Current (Notes 4 & 5)			I _{AR}	13	Α
Repetitive Avalanche Energy (Notes 4 & 5) L = 0.3mH			E _{AR}	25.4	mJ

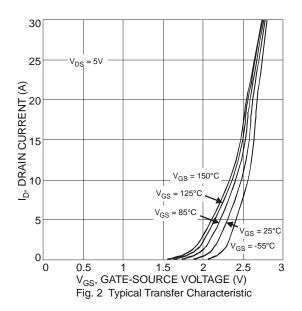
Maximum Ratings - Q2 @TA = 25°C unless otherwise specified

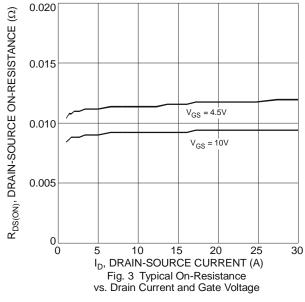
Char	Symbol	Value	Unit		
Drain-Source Voltage			V _{DSS}	30	V
Gate-Source Voltage			V _{GSS}	±25	V
Continuous Drain Current (Note 3)	Steady State	T _A = 25°C T _A = 85°C	I _D	9.5 7.5	А
Pulsed Drain Current (Note 4)			I _{DM}	40	Α
Avalanche Current (Notes 4 & 5)			I _{AR}	13	Α
Repetitive Avalanche Energy (Notes 4 & 5) L = 0.3mH			E _{AR}	25.4	mJ

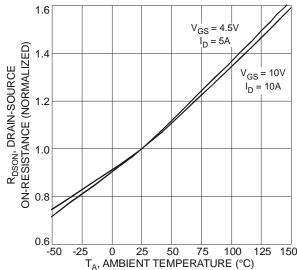
Thermal Characteristics

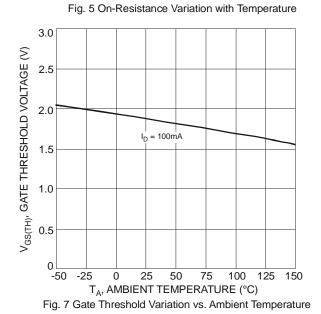
Characteristic	Symbol	Value	Unit
Power Dissipation (Note 3)	P _D	1.19	W
Thermal Resistance, Junction to Ambient @T _A = 25°C (Note 3)	$R_{\theta JA}$	107	°C/W
Operating and Storage Temperature Range	T _J , T _{STG}	-55 to +150	°C

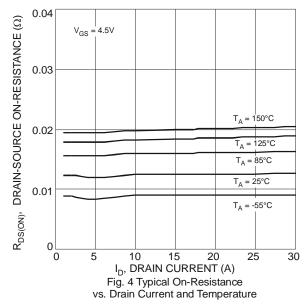

Notes:


- 1. No purposefully added lead.
- 2. Diodes Inc.'s "Green" policy can be found on our website at http://www.diodes.com/products/lead_free/index.php.
- 3. Device mounted on FR-4 PCB with minimum recommended pad layout. The value in any given application depends on the user's specific board design.
- 4. Repetitive rating, pulse width limited by junction temperature.
- 5. I_{AR} and E_{AR} rating are based on low frequency and duty cycles to keep $T_J = 25^{\circ}C$


Electrical Characteristics - Q1 @TA = 25°C unless otherwise specified


Characteristic	Symbol	Min	Тур	Max	Unit	Test Condition	
OFF CHARACTERISTICS (Note 6)							
Drain-Source Breakdown Voltage	BV _{DSS}	30	-	-	V	$V_{GS} = 0V$, $I_D = 1mA$	
Zero Gate Voltage Drain Current	I _{DSS}	-	-	0.1	mA	$V_{DS} = 30V, V_{GS} = 0V$	
Gate-Source Leakage	I _{GSS}	-	-	±100	nA	$V_{GS} = \pm 12V, V_{DS} = 0V$	
ON CHARACTERISTICS (Note 6)							
Gate Threshold Voltage	$V_{GS(th)}$	1.0	-	2.4	V	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	
Static Drain-Source On-Resistance			10	15	mΩ	$V_{GS} = 10V, I_D = 9A$	
Static Drain-Source On-Resistance	R _{DS (ON)}	-	12	18	111 \(\(\) 2	$V_{GS} = 4.5V, I_D = 7A$	
Forward Transfer Admittance	Y _{fs}	-	14	-	S	$V_{DS} = 10V, I_{D} = 9A$	
Diode Forward Voltage	V_{SD}	-	0.4	0.6	V	$V_{GS} = 0V, I_{S} = 1A$	
Maximum Body-Diode + Schottky Continuous Current	Is	-	-	5	Α	-	
DYNAMIC CHARACTERISTICS (Note 7)							
Input Capacitance	C _{iss}	-	1932	-	pF		
Output Capacitance	Coss	-	154	-	pF	$V_{DS} = 15V, V_{GS} = 0V, f = 1.0MHz$	
Reverse Transfer Capacitance	C _{rss}	-	121	-	pF		
Gate Resistance	Rg	-	2.68	-	Ω	$V_{DS} = 0V$, $V_{GS} = 0V$, $f = 1MHz$	
Total Gate Charge (4.5V)	Qg	-	18.1	-	nC		
Total Gate Charge (10V)	Qg	-	42.0	-	nC	15// 15// 10// 10//	
Gate-Source Charge	Q_{gs}	-	4.5	-	nC	$V_{DS} = 15V, V_{GS} = 10V, I_{D} = 9A$	
Gate-Drain Charge	Q _{qd}	-	4.0	-	nC	1	
Turn-On Delay Time	t _{D(on)}	-	6.16	-	ns		
Turn-On Rise Time	t _r	-	7.22	-	ns	$V_{GS} = 10V, V_{DS} = 15V,$ $R_G = 3\Omega, R_L = 1.7\Omega$	
Turn-Off Delay Time	t _{D(off)}	-	36.76	-	ns		
Turn-Off Fall Time	t _f	-	5.38	-	ns		





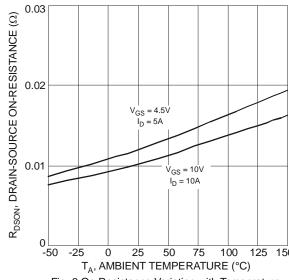


Fig. 6 On-Resistance Variation with Temperature

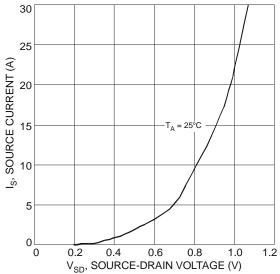
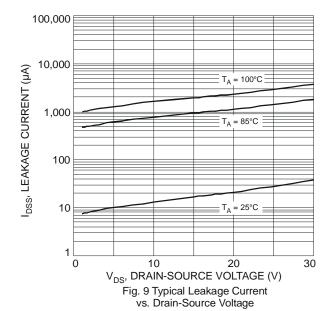
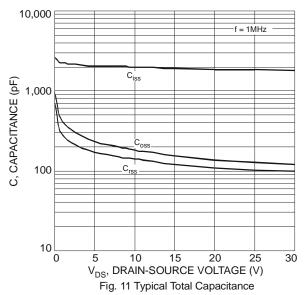
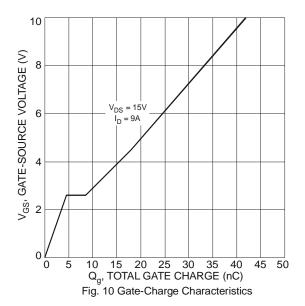
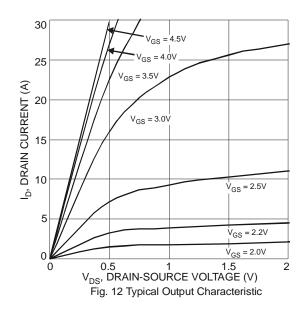
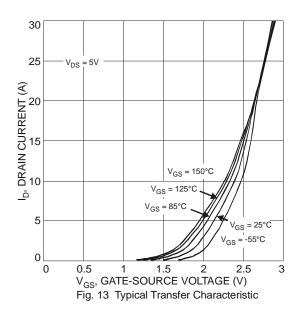
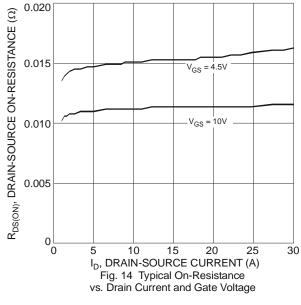





Fig. 8 Diode Forward Voltage vs. Current




Electrical Characteristics – Q2 @TA = 25°C unless otherwise specified

Characteristic	Symbol	Min	Тур	Max	Unit	Test Condition	
DFF CHARACTERISTICS (Note 6)							
Drain-Source Breakdown Voltage	BV _{DSS}	30	-	-	V	$V_{GS} = 0V, I_D = 250\mu A$	
Zero Gate Voltage Drain Current	I _{DSS}	-	-	1	μΑ	$V_{DS} = 30V, V_{GS} = 0V$	
Coto Source Leakage		-	-	+100	nA	$V_{GS} = +25V, V_{DS} = 0V$	
Gate-Source Leakage	I _{GSS}	-	-	-800	IIA	$V_{GS} = -25V, V_{DS} = 0V$	
ON CHARACTERISTICS (Note 6)							
Gate Threshold Voltage	$V_{GS(th)}$	1.0	-	2.3	V	$V_{DS} = V_{GS}, I_D = 250 \mu A$	
Static Drain-Source On-Resistance			12	15.8	mΩ	$V_{GS} = 10V, I_D = 9A$	
Static Drain-Source On-Resistance	R _{DS} (ON)	-	16	23	111 \(\)2	$V_{GS} = 4.5V, I_D = 7A$	
Forward Transfer Admittance	Y _{fs}	-	8	-	S	$V_{DS} = 10V, I_{D} = 9A$	
Diode Forward Voltage	V_{SD}	-	0.65	1.0	V	$V_{GS} = 0V, I_{S} = 1A$	
DYNAMIC CHARACTERISTICS (Note 7)							
Input Capacitance	C _{iss}	-	675	-	pF	\\ 45\\\\\ 0\\	
Output Capacitance	Coss	-	98	-	pF	$V_{DS} = 15V, V_{GS} = 0V,$ of = 1.0MHz	
Reverse Transfer Capacitance	C _{rss}	-	90	-	pF	1 = 1:01/11/12	
Gate Resistance	Rg	-	1.6	-	Ω	$V_{DS} = 0V$, $V_{GS} = 0V$, $f = 1MHz$	
Total Gate Charge (4.5V)	Q_g	-	7.8	-	nC		
Total Gate Charge (10V)	Qg	-	16.0	-	nC	$V_{DS} = 15V, V_{GS} = 10V, I_{D} = 9A$	
Gate-Source Charge	Qgs	-	1.9	-	nC	1	
Gate-Drain Charge	Q_{gd}	-	2.6	-	nC		
Turn-On Delay Time	t _{D(on)}	-	5.05	-	ns		
Turn-On Rise Time	t _r	-	9.21	-	ns	$V_{GS} = 10V, V_{DS} = 15V,$	
Turn-Off Delay Time	t _{D(off)}	-	20.76	-	ns	$R_G = 3\Omega$, $R_L = 1.7\Omega$	
Turn-Off Fall Time	t _f	-	4.94	-	ns	1	


Notes:

- 6. Short duration pulse test used to minimize self-heating effect.
- 7. Guaranteed by design. Not subject to production testing.

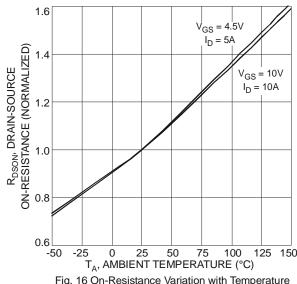


Fig. 16 On-Resistance Variation with Temperature

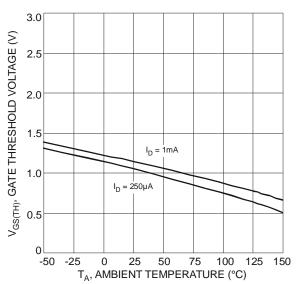
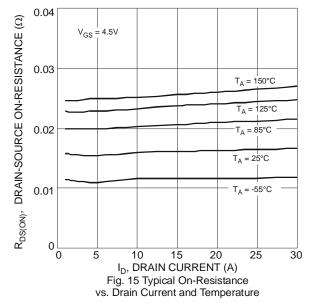



Fig. 18 Gate Threshold Variation vs. Ambient Temperature

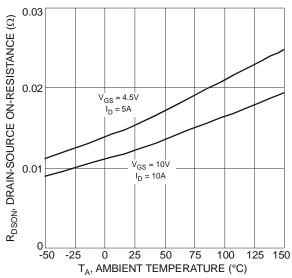
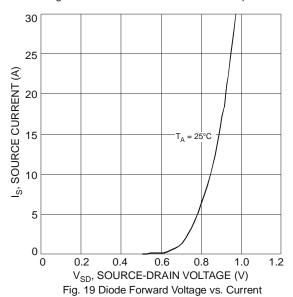
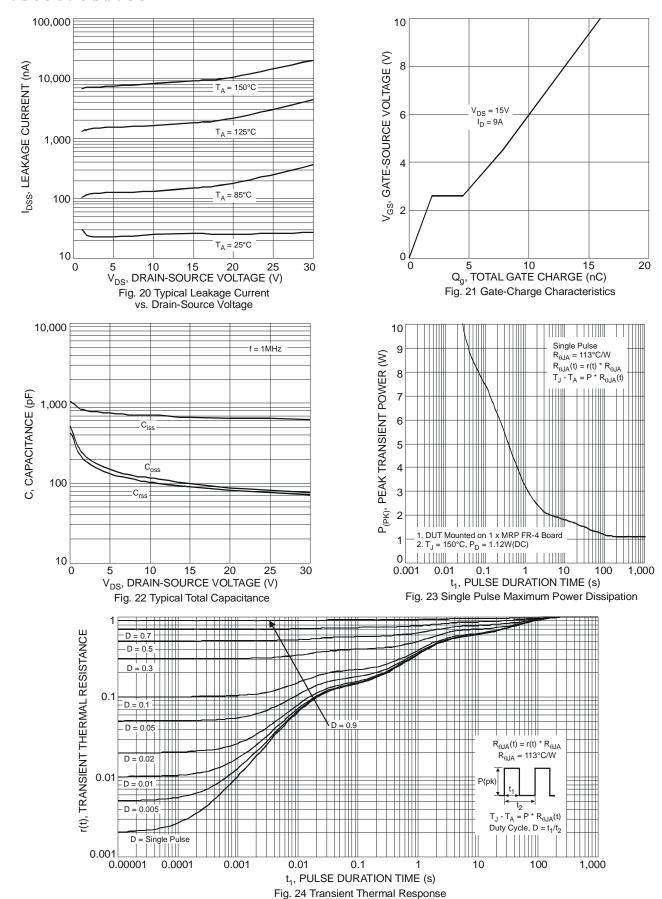
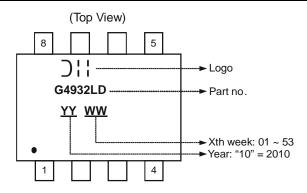
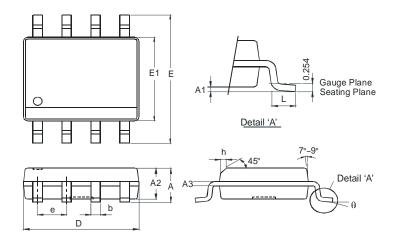




Fig. 17 On-Resistance Variation with Temperature

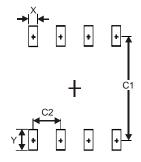


Ordering Information (Note 8)


Part Number	Case	Packaging
DMG4932LSD-13	SO-8	2500 / Tape & Reel

Notes: 8. For packaging details, go to our website at http://www.diodes.com/datasheets/ap02007.pdf.

Marking Information



Package Outline Dimensions

SO-8					
Dim	Min	Max			
Α	ı	1.75			
A1	0.10	0.20			
A2	1.30	1.50			
A3	0.15	0.25			
b	0.3	0.5			
D	4.85	4.95			
Е	5.90	6.10			
E1	3.85	3.95			
е	e 1.27 Typ				
h	1	0.35			
L	0.62	0.82			
θ	0°	8°			
All Dimensions in mm					

Suggested Pad Layout

Dimensions	Value (in mm)
X	0.60
Υ	1.55
C1	5.4
C2	1.27

IMPORTANT NOTICE

DIODES INCORPORATED MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARDS TO THIS DOCUMENT, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION).

Diodes Incorporated and its subsidiaries reserve the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein. Diodes Incorporated does not assume any liability arising out of the application or use of this document or any product described herein; neither does Diodes Incorporated convey any license under its patent or trademark rights, nor the rights of others. Any Customer or user of this document or products described herein in such applications shall assume all risks of such use and will agree to hold Diodes Incorporated and all the companies whose products are represented on Diodes Incorporated website, harmless against all damages.

Diodes Incorporated does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel. Should Customers purchase or use Diodes Incorporated products for any unintended or unauthorized application, Customers shall indemnify and hold Diodes Incorporated and its representatives harmless against all claims, damages, expenses, and attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized application.

Products described herein may be covered by one or more United States, international or foreign patents pending. Product names and markings noted herein may also be covered by one or more United States, international or foreign trademarks.

LIFE SUPPORT

Diodes Incorporated products are specifically not authorized for use as critical components in life support devices or systems without the express written approval of the Chief Executive Officer of Diodes Incorporated. As used herein:

- A. Life support devices or systems are devices or systems which:
 - 1. are intended to implant into the body, or
 - 2. support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in significant injury to the user.
- B. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or to affect its safety or effectiveness.

Customers represent that they have all necessary expertise in the safety and regulatory ramifications of their life support devices or systems, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of Diodes Incorporated products in such safety-critical, life support devices or systems, notwithstanding any devices- or systems-related information or support that may be provided by Diodes Incorporated. Further, Customers must fully indemnify Diodes Incorporated and its representatives against any damages arising out of the use of Diodes Incorporated products in such safety-critical, life support devices or systems.

Copyright © 2010, Diodes Incorporated

www.diodes.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for MOSFET category:

Click to view products by Diodes Incorporated manufacturer:

Other Similar products are found below:

614233C 648584F MCH3443-TL-E MCH6422-TL-E FDPF9N50NZ FW216A-TL-2W FW231A-TL-E APT5010JVR NTNS3A92PZT5G IRF100S201 JANTX2N5237 2SK2464-TL-E 2SK3818-DL-E FCA20N60_F109 FDZ595PZ STD6600NT4G FSS804-TL-E 2SJ277-DL-E 2SK1691-DL-E 2SK2545(Q,T) D2294UK 405094E 423220D MCH6646-TL-E TPCC8103,L1Q(CM 367-8430-0972-503 VN1206L 424134F 026935X 051075F SBVS138LT1G 614234A 715780A NTNS3166NZT5G 751625C 873612G IRF7380TRHR IPS70R2K0CEAKMA1 RJK60S3DPP-E0#T2 RJK60S5DPK-M0#T0 APT5010JVFR APT12031JFLL APT12040JVR DMN3404LQ-7 NTE6400 JANTX2N6796U JANTX2N6784U JANTXV2N5416U4 SQM110N05-06L-GE3 SIHF35N60E-GE3