I nstallation Guide

Advanced sensor with dual digital displays for use with plastic and glass fiber optic assemblies.
For complete technical information about this product, including dimensions, accessories, and specifications, see http:// www.bannerengineering.com and search 161999.

Overview

Figure 1. DF-G1 Model Features

$\mathbf{1}$	Output LED
$\mathbf{2}$	LO/DO Switch
$\mathbf{3}$	RUN/PRG/ADJ Mode Switch
$\mathbf{4}$	Lever Action Fiber Clamp
$\mathbf{5}$	Red Signal Level
$\mathbf{6}$	Green Threshold
$\mathbf{7}$	+/SET/- Rocker Button

WARNI NG: Not To Be Used for Personnel Protection

Never use this device as a sensing device for personnel protection. Doing so could lead to serious injury or death. This device does not include the self-checking redundant circuitry necessary to allow its use in personnel safety applications. A sensor failure or malfunction can cause either an energized or de-energized sensor output condition.

Models

Model	Outputs	Connector ${ }^{1}$
DF-G1-NS-2M	Single NPN	2 m (6.5 ft) cable, 4-wire
DF-G1-PS-2M	Single PNP	
DF-G1-KS-2M	Dual outputs, 1 push-pull IO-Link and 1 PNP (complementary outputs)	
DF-G1-NS-Q5	Single NPN	150 mm (6 in) PVC pigtail, M12 Euro QD connector, 4-pin
DF-G1-PS-Q5	Single PNP	
DF-G1-KS-Q5	Dual outputs, 1 push-pull IO-Link and 1 PNP (complementary outputs)	
DF-G1-NS-Q7	Single NPN	Integral M8 Pico QD connector, 4-pin
DF-G1-PS-Q7	Single PNP	
DF-G1-KS-Q7	Dual outputs, 1 push-pull IO-Link and 1 PNP (complementary outputs)	

[^0]- A model with a QD connector requires a mating cordset
- For 9 m cable, change the suffix 2 M to $\mathbf{9 M}$ in the 2 m model number (example, DF-G1-NS-9M).
- For 150 mm (6 in) PVC pigtail, M8 Pico QD connector, 4-pin change the suffix 2 M to $\mathbf{Q 3}$ in the 2 m model number (example, DF-G1-NS-Q3).

I nstallation I nstructions

Mounting Instructions

Mount on a DI N Rail

1. Hook the DIN rail clip on the bottom of the DF-G1 over the edge of the DIN rail (1).
2. Push the DF-G1 up on the DIN rail (1).
3. Pivot the DF-G1 onto the DIN rail, pressing until it snaps into place (2).

Mount to the Accessory Bracket

1. Position the DF-G1 in the SA-DIN-BRACKET.
2. Insert the supplied M3 screws.
3. Tighten the screws.

Remove from a DIN rail

1. Push the DF-G1 up on the DIN rail (1).
2. Pivot the DF-G1 away from the DIN rail and remove it (2).

Installing the Fibers

Follow these steps to install glass or plastic fibers.

1. Open the dust cover.
2. Move the fiber clamp forward to unlock it.
3. Insert the fiber(s) into the fiber port(s) until they stop.
4. Move the fiber clamp backward to lock the fiber(s).
5. Close the dust cover.

Fiber Adapters

NOTE: If a thin fiber with less than 2.2 mm outer diameter is used, install the fiber adapter provided with the fiber assembly to ensure a reliable fit in the fiber holder. Banner includes the adapters with all fiber assemblies.

Fiber Outer Diameter (mm)	Adapter Color
$\varnothing 1.0$	Black
$\varnothing 1.3$	Red
$\varnothing 2.2$	No adapter needed

When connecting coaxial-type fiber assemblies to the amplifier, install the single-core fiber to the Transmitter port, and the multi-core fiber to the Receiver port. This will result in the most reliable detection.

Wiring Diagrams

O-Link Models

NOTE: Open lead wires must be connected to a terminal block.

Top Panel Interface

Opening the dust cover provides access to the top panel interface. The top panel interface consists of the RUN/PRG/ADJ mode switch, LO/DO switch, +/SET/- rocker button, dual red/green digital displays, and output LED.

RUN/ PRG/ ADJ Mode Switch

LO DO

The RUN/PRG/ADJ mode switch puts the sensor in RUN, PRG (Program), or ADJ (Adjust) mode. RUN mode allows the sensor to operate normally and prevents unintentional programming changes via the +/SET/- rocker button. PRG mode allows the sensor to be programmed through the display-driven programming menu (see Program Mode below). ADJ mode allows the user to perform Expert TEACH/SET methods and Manual Adjust (see Adjust Mode below).

LO/ DO Switch

The LO/DO switch selects Light Operate or Dark Operate mode. In Light Operate mode, the output is ON when the sensing condition is above the threshold. (For Window SET, the output is ON when the sensing condition is inside the window.) In Dark Operate mode, the output is ON when the sensing condition is below the threshold. (For Window SET, the output is ON when the sensing condition is outside the window.)
+/ SET/-Rocker Button
The +/SET/- rocker button is a 3-way button. The +/- positions are engaged by rocking the button left/ right. The SET position is engaged by clicking down the button while the rocker is in the middle position. All three button positions are used during PRG mode to navigate the display-driven programming menu. During ADJ mode, SET is used to perform TEACH/SET methods and $+/$ - are used to manually adjust the threshold(s). The rocker button is disabled during RUN mode, except when using Window SET, see Window SET on page 7.

Red/ Green Digital Displays

During RUN and ADJ modes, the Red display shows the signal level, and the Green display shows the threshold. During PRG mode, both displays are used to navigate the display-driven programming menu.

Output LED

The output LED provides a visible indication when the output is activated.

Operating Instructions

Remote Input/ IO-Link

For more information about how to perform TEACH/SET methods, to program the sensor remotely, or to interface with the sensor via IO-Link, see the DF-G1 Manual (P/N 161999).

Run Mode
 RuN PRG ADJ

Run mode allows the sensor to operate normally and prevents unintentional programming changes. The +/SET/- rocker button is disabled during RUN mode, except when using Window SET, see Window SET on page 7.

Program (PRG) mode allows the following settings to be programmed in the DF-G1:

Factory Default Settings:

Setting	Factory Default
Threshold	2026
TEACH Selection	Two-Point TEACH
Response Speed	Standard - $500 ~ \mu s ~$
Offset Percent	10%
Auto Thresholds	OFF
OFF Delay	0 (Disabled)
OFF One-Shot	0 (Disabled)
ON Delay	0 (Disabled)
ON One-Shot	0 (Disabled)
Display Readout	Numeric, ECO disabled, Normal Orientation
Gain Selection	Auto Gain

Adjust Mode

RUN PRG ADJ

Sliding the RUN/PRG/ADJ mode switch to the ADJ position allows the user to perform Expert TEACH/SET methods and Manual Adjustment of the threshold(s).

TEACH Procedures

The instruction manual has detailed instructions for these TEACH modes:

- Two-Point TEACH
- Dynamic TEACH
- Window SET
- Light SET
- Dark SET
- Calibration SET

Two-Point TEACH

- Establishes a single switching threshold
- Threshold can be adjusted by using the "+" and "-" rocker button (Manual Adjust)

Two-Point TEACH is used when two conditions can be presented statically to the sensor. The sensor locates a single sensing threshold (the switch point) midway between the two taught conditions, with the Output ON condition on one side, and the Output OFF condition on the other.

Figure 2. Two-Point TEACH (Light Operate shown)

The Output ON and OFF conditions can be reversed by using the LO/DO (Light Operate/ Dark Operate) switch.

Dynamic TEACH

- Teaches on-the-fly
- Establishes a single switching threshold
- Threshold can be adjusted using "+" and "-" rocker button (Manual Adjust)

Dynamic TEACH is best used when a machine or process may not be stopped for teaching. The sensor learns during actual sensing conditions, taking multiple samples of the light and dark conditions and automatically setting the threshold at the optimum level.

[^1]The output ON and OFF conditions can be reversed using the LO/DO switch.

Window SET

- Sets window thresholds that extend a programmable \% offset above and below the presented condition
- All other conditions (lighter or darker) cause the output to change state
- Sensing window center can be adjusted using "+" and "-" rocker button (Manual Adjust)
- Recommended for applications where a product may not always appear in the same place, or when other signals may appear
- See Program Mode in the user's manual for programming the Offset Percent setting (to increase/decrease the window size)

A single sensing condition is presented, and the sensor positions window thresholds a programmable \% offset above and below the presented condition. In LO mode, Window SET designates a sensing window with the Output ON condition inside the window, and the Output OFF conditions outside the window.

Figure 4. Window SET (Light Operate shown)

Output ON and OFF conditions can be reversed using the LO/DO switch.

Light SET

- Sets a threshold a programmable \% offset below the presented condition
- Changes output state on any condition darker than the threshold condition
- Threshold can be adjusted using "+" and "- " rocker button (Manual Adjust)
- Recommended for applications where only one condition is known, for example a stable light background with varying darker targets
- See Program Mode on page 5 for programming the Offset Percent setting

A single sensing condition is presented, and the sensor positions a threshold a programmable \% offset below the presented condition. When a condition darker than the threshold is sensed, the output either turns ON or OFF, depending on the LO/DO setting.

Figure 5. Light SET (Light Operate shown)

Dark SET

- Sets a threshold a programmable \% offset above the presented condition
- Any condition lighter than the threshold condition causes the output to change state
- Threshold can be adjusted using "+" and "-" rocker button (Manual Adjust)
- Recommended for applications where only one condition is known, for example a stable dark background with varying lighter targets
- See Program Mode on page 5 for programming the Offset Percent setting

NOTE: Offset Percent MUST be programmed to Minimum Offset to accept conditions of no signal (0 counts).

A single sensing condition is presented, and the sensor positions a threshold a programmable \% offset above the presented condition. When a condition lighter than the threshold is sensed, the output either turns ON or OFF, depending on the LO/DO setting.

Figure 6. Dark SET (Light Operate shown)

Calibration SET

- Sets a threshold exactly at the presented condition
- Threshold can be adjusted using "+" and "-" rocker button (Manual Adjust)

A single sensing condition is presented, and the sensor positions a threshold exactly at the presented condition. When a condition lighter than the threshold is sensed, the output either turns ON or OFF, depending on the LO/DO setting.

Figure 7. Calibration SET (Light Operate shown)

Troubleshooting

Manual Adjustments Disabled

Manual adjustments are disabled when Auto Thresholds are ON. If a manual adjustment is attempted while Auto Thresholds are ON, the Green display will flash \square Rutal.

Percent Minimum Difference after TEACH

The Two-Point and Dynamic TEACH methods will flash a \% minimum difference on the displays after a PASS or FAIL.

Value	PASS/ FAIL	Description
0 to 99%	FAIL	The difference of the taught conditions does not meet the required minimum
100 to 300%	PASS	The difference of the taught conditions just meets/exceeds the required minimum, minor sensing variables may affect sensing reliability

Value	PASS/ FAI L	Description
300 to 600%	PASS	The difference of the taught conditions sufficiently exceeds the required minimum, minor sensing variables will not affect sensing reliability
$600 \%+$	PASS	The difference of the taught conditions greatly exceeds the required minimum, very stable operation

Percent Offset after SET

The Window, Dark, and Light SET methods will flash a \% offset on the displays after a PASS or FAIL.

SET Result	\% Offset Meaning
PASS (with \% Offset)	Displays the \% offset used for the SET method
FAIL (with \% Offset)	Displays the minimum required \% offset necessary to PASS the SET method
FAIL (without \% Offset)	Presented condition cannot be used for the SET method

Threshold Alert or Threshold Error

Severe contamination/changes in the taught condition can prevent the Auto Thresholds algorithm from optimizing the threshold(s).

State	Display	Description	Corrective Action
Threshold Alert	Alternates Ehr RLrt and 	The threshold(s) cannot be optimized, but the sensor's output will still continue to function	Cleaning/correcting the sensing environment and/or a re-teach of the sensor is highly recommended
Threshold Error	r Err	The threshold(s) cannot be optimized, and the sensor's output will stop functioning	Cleaning/correcting the sensing environment and/or a re-teach of the sensor is required

Specifications

Sensing Beam

660 nm visible red
Supply Voltage
NPN/ PNP models: 10 to 30 V dc Class 2 (10% maximum ripple) IO-Link models: 18 to 30 V dc (10% maximum ripple)
Power and Current Consumption (exclusive of load)
Standard display mode: 960 mW , Current consumption < 40 mA at 24 V dc
ECO display mode: 720 mW , Current consumption $<30 \mathrm{~mA}$ at 24 V dc
Supply Protection Circuitry
Protected against reverse polarity and transient overvoltages

Delay at Power-Up

500 milliseconds maximum; outputs do not conduct during this time
Output Configuration
NPN/ PNP models: 1 current sinking (NPN) or 1 current sourcing (PNP) output, depending on model
IO-Link models: 1 push-pull and 1 PNP (complementary outputs)
Required Overcurrent Protection

WARNING: Electrical connections must be made by qualified personnel in accordance with local and national electrical codes and regulations.

Overcurrent protection is required to be provided by end product application per the supplied table.
Overcurrent protection may be provided with external fusing or via Current Limiting, Class 2 Power Supply.
Supply wiring leads < 24 AWG shall not be spliced.
For additional product support, go to http://
www.bannerengineering.com.

Supply Wiring	Required Overcurrent Protection
20	5.0 Amps
22	3.0 Amps
24	2.0 Amps
26	1.0 Amps
28	0.8 Amps
30	0.5 Amps

Output Rating

100 mA maximum load (derate 1 mA per ${ }^{\circ} \mathrm{C}$ above $30^{\circ} \mathrm{C}$)
OFF-state leakage current: NPN/ PNP models: < $5 \mu \mathrm{~A}$ at 30 V dc; IO-Link models: < $50 \mu \mathrm{~A}$ at 30 V dc
ON-state saturation voltage: NPN: <1.5 V; PNP / IO-Link: < 2 V
Output Protection
Protected against output short-circuit, continuous overload, transient overvoltages, and false pulse on power-up
Output Response Time
High Speed: $200 \mu \mathrm{~s}$; Standard: $500 \mu \mathrm{~s}$; Long Range: $2 \mathrm{~ms} ;$ Extra Long Range: 5 ms
Repeatability
High Speed: $66 \mu \mathrm{~s}$, Standard/Long Range/Extra Long Range: $100 \mu \mathrm{~s}$
Construction
Black ABS/polycarbonate alloy (UL94 V-0 rated) housing, clear polycarbonate cover
Connections
PVC-jacketed 2 m or 9 m (6.5 ft . or 30 ft .) 4-wire integral cable; or integral 4-pin M8/Pico-style quick disconnect; or 150 mm (6 in.) cable with a 4 -pin M12/Euro-style quick disconnect; or 150 mm (6 in .) cable with a 4-pin M8/Pico-style quick disconnect.
Environmental Rating
IEC IP50, NEMA 1
Operating Conditions
Temperature: $-10^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}\left(+14^{\circ} \mathrm{F}\right.$ to $\left.+131^{\circ} \mathrm{F}\right)$
Storage Temperature: $-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}\left(-4^{\circ} \mathrm{F}\right.$ to $\left.+185^{\circ} \mathrm{F}\right)$
Humidity: 90% at $+60^{\circ} \mathrm{C}$ maximum relative humidity (noncondensing)
IO-Link Interface
Supports Smart Sensor Profile: Yes
Baud Rate: 38,400 bps (COM2)
Process Data Width: 16 bits
IODD files: Provide all programming options of top panel interface, plus additional functionality, see the DF-G1 Manual (P/N 161999)
Certifications

Banner Engineering Corp Limited Warranty

Banner Engineering Corp. warrants its products to be free from defects in material and workmanship for one year following the date of shipment. Banner Engineering Corp. will repair or replace, free of charge, any product of its manufacture which, at the time it is returned to the factory, is found to have been defective during the warranty period. This warranty does not cover damage or liability for misuse, abuse, or the improper application or installation of the Banner product.

THIS LIMITED WARRANTY IS EXCLUSIVE AND IN LIEU OF ALL OTHER WARRANTIES WHETHER EXPRESS OR I MPLIED (INCLUDING, WITHOUT LI MITATI ON, ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE), AND WHETHER ARISI NG UNDER COURSE OF PERFORMANCE, COURSE OF DEALI NG OR TRADE USAGE.

This Warranty is exclusive and limited to repair or, at the discretion of Banner Engineering Corp., replacement. IN NO EVENT SHALL BANNER ENGI NEERING CORP. BE LI ABLE TO BUYER OR ANY OTHER PERSON OR ENTITY FOR ANY EXTRA COSTS, EXPENSES, LOSSES, LOSS OF PROFITS, OR ANY I NCI DENTAL, CONSEQUENTI AL OR SPECI AL DAMAGES RESULTI NG FROM ANY PRODUCT DEFECT OR FROM THE USE OR INABILITY TO USE THE PRODUCT, WHETHER ARISING IN CONTRACT OR WARRANTY, STATUTE, TORT, STRICT LIABILITY, NEGLI GENCE, OR OTHERWISE.

Banner Engineering Corp. reserves the right to change, modify or improve the design of the product without assuming any obligations or liabilities relating to any product previously manufactured by Banner Engineering Corp.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for banner manufacturer:
Other Similar products are found below :
Q45VR2FPQ BTA23S RS-11 L16F 2LM3 2PBA LM8-1 LMT SM312CV SM31RQD LS4ELQ FX1 Q45BB6LLQ QM42VP6AFV150Q
D12SP6FP MBCC-412 BA23S BT21S BTA13S LM4-2 Q25SP6LPQ ES-FA-6G T183E SLSP30-600Q88 SLSP30-1200Q88 OPBA5
PBAT SBLV1 SMA91EQD SMA91E SMA912LVQD SMA912DQD SM2A312CVQD SM2A912LVQD SM31RL TL70RAQ TL70RQ K50LGRYPQ LEDRR70X70-78587 BRT-THG-4X4-5 T18-2VNDL-Q8 SLLP14-1190P88 SME312DQD SM312CUQD BR-2 BR23P SM2A312FPQD SM2A312LVQD SM31EQD D12EP6FP

[^0]: 1 Connector options:

[^1]: Figure 3. Dynamic TEACH (Light Operate shown)

