74AHC139-Q100; 74AHCT139-Q100

Dual 2-to-4 line decoder/demultiplexer

Rev. 1 — 5 June 2013

Product data sheet

1. General description

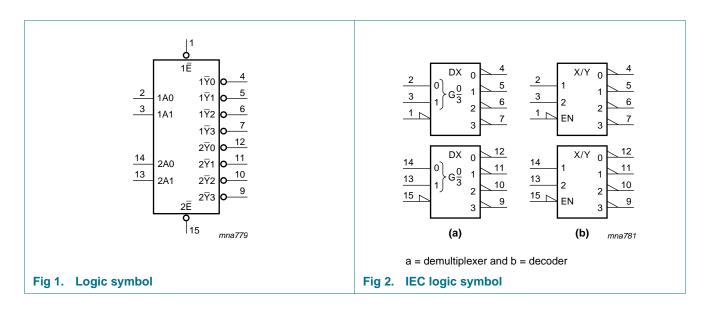
The 74AHC139-Q100; 74AHCT139-Q100 is a high-speed Si-gate CMOS device and is pin compatible with Low-power Schottky TTL (LSTTL). It is specified in compliance with JEDEC standard No. 7A.

The 74AHC139-Q100; 74AHCT139-Q100 is a high-speed, dual 2-to-4 line decoder/demultiplexer. This device has two independent decoders. Each decoder accepts two binary weighted inputs (nA0 and nA1) and provides four mutually exclusive active LOW outputs (nY0 to nY3). Each decoder has an active LOW enable input (nE). When nE is HIGH, every output is forced HIGH. The enable input can be used as the data input for a 1-to-4 demultiplexer application.

This product has been qualified to the Automotive Electronics Council (AEC) standard Q100 (Grade 1) and is suitable for use in automotive applications.

2. Features and benefits

- Automotive product qualification in accordance with AEC-Q100 (Grade 1)
 - ◆ Specified from -40 °C to +85 °C and from -40 °C to +125 °C
- Balanced propagation delays
- All inputs have Schmitt-trigger actions
- Inputs accept voltages higher than V_{CC}
- Input levels:
 - ◆ For 74AHC139-Q100: CMOS level
 - ◆ For 74AHCT139-Q100: TTL level
- ESD protection:
 - ◆ MIL-STD-883, method 3015 exceeds 2000 V
 - HBM JESD22-A114F exceeds 2000 V
 - lacktriangle MM JESD22-A115-A exceeds 200 V (C = 200 pF, R = 0 Ω)
- Multiple package options



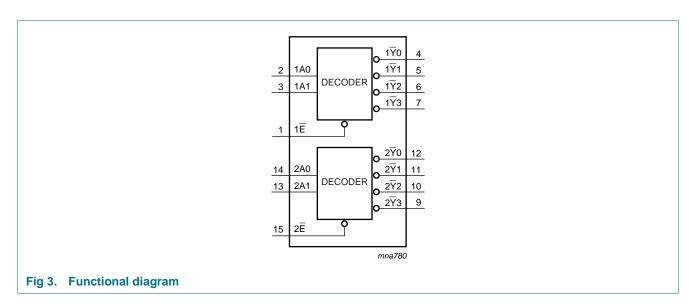
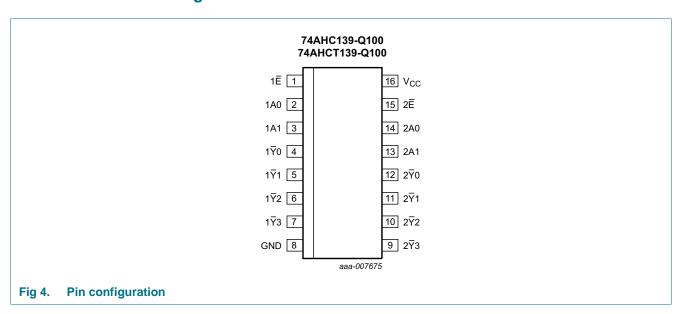

3. Ordering information

Table 1. Ordering information

Type number	Package												
	Temperature range	Name	Description	Version									
74AHC139-Q100													
74AHC139D-Q100	–40 °C to +125 °C	SO16	plastic small outline package; 16 leads; body width 3.9 mm	SOT109-1									
74AHC139PW-Q100	–40 °C to +125 °C	TSSOP16	plastic thin shrink small outline package; 16 leads; body width 4.4 mm	SOT403-1									
74AHCT139-Q100													
74AHCT139D-Q100	–40 °C to +125 °C	SO16	plastic small outline package; 16 leads; body width 3.9 mm	SOT109-1									
74AHCT139PW-Q100	−40 °C to +125 °C	TSSOP16	plastic thin shrink small outline package; 16 leads; body width 4.4 mm	SOT403-1									


4. Functional diagram

5. Pinning information

5.1 Pinning

5.2 Pin description

Table 2. Pin description

Symbol	Pin	Description
1Ē	1	enable input (active LOW)
1A0	2	address input
1A1	3	address input
1 Y 0	4	output
1 <u>Y</u> 1	5	output

74AHC_AHCT139_Q100

All information provided in this document is subject to legal disclaimers.

Pin description ... continued Table 2.

Symbol	Pin	Description
1 Y 2	6	output
1 Y 3	7	output
GND	8	ground (0 V)
2 Y 3	9	output
2 Y 2	10	output
2 <u>Y</u> 1	11	output
2 Y 0	12	output
2A1	13	address input
2A0	14	address input
2E	15	enable input (active LOW)
V _{CC}	16	supply voltage

Functional description

Function table[1] Table 3.

Control	Input		Output	Output									
nE	nA0	nA1	nY0	n <u>Y</u> 1	nY2	nY3							
Н	X	X	Н	Н	Н	Н							
L	L	L	L	Н	Н	Н							
_	Н	L	Н	L	Н	Н							
	L	Н	Н	Н	L	Н							
	Н	Н	Н	Н	Н	L							

^[1] H = HIGH voltage level;

Limiting values

Table 4. **Limiting values**

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Max	Unit
V_{CC}	supply voltage		-0.5	+7.0	V
VI	input voltage		-0.5	+7.0	V
I _{IK}	input clamping current	$V_{I} < -0.5 \text{ V}$	<u>[1]</u> –20	-	mA
I _{OK}	output clamping current	V_O < -0.5 V or V_O > V_{CC} + 0.5 V	<u>[1]</u> –20	+20	mA
I _O	output current	$V_{O} = -0.5 \text{ V to } (V_{CC} + 0.5 \text{ V})$	-25	+25	mA
I _{CC}	supply current		-	+75	mA
I _{GND}	ground current		−75	-	mA
T _{stg}	storage temperature		-65	+150	°C
P _{tot}	total power dissipation	$T_{amb} = -40 ^{\circ}\text{C} \text{ to } +125 ^{\circ}\text{C}$	[2] -	500	mW

^[1] The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

74AHC_AHCT139_Q100

L = LOW voltage level;

X = don't care.

[2] For SO16 packages: above 70 °C the value of P_{tot} derates linearly at 8 mW/K. For TSSOP16 packages: above 60 °C the value of P_{tot} derates linearly at 5.5 mW/K.

8. Recommended operating conditions

Table 5. Operating conditions

	o por anni gi o o manino no					
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
74AHC1	39-Q100					
V _{CC}	supply voltage		2.0	5.0	5.5	V
VI	input voltage		0	-	5.5	V
Vo	output voltage		0	-	V_{CC}	V
T _{amb}	ambient temperature		-40	+25	+125	°C
Δt/ΔV	input transition rise and fall rate	$V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$	-	-	100	ns/V
		$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$	-	-	20	ns/V
74AHCT	139-Q100					
V_{CC}	supply voltage		4.5	5.0	5.5	V
VI	input voltage		0	-	5.5	V
Vo	output voltage		0	-	V_{CC}	V
T _{amb}	ambient temperature		-40	+25	+125	°C
Δt/ΔV	input transition rise and fall rate	$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$	-	-	20	ns/V

9. Static characteristics

Table 6. Static characteristics

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions		25 °C		–40 °C t	o +85 °C	–40 °C to	Unit	
			Min	Тур	Max	Min	Max	Min	Max	
74AHC1	39-Q100		•	•				'		'
V_{IH}	HIGH-level	V _{CC} = 2.0 V	1.5	-	-	1.5	-	1.5	-	V
	input voltage	$V_{CC} = 3.0 \text{ V}$	2.1	-	-	2.1	-	2.1	-	V
		$V_{CC} = 5.5 \text{ V}$	3.85	-	-	3.85	-	3.85	-	V
V_{IL}	LOW-level	V _{CC} = 2.0 V	-	-	0.5	-	0.5	-	0.5	V
input voltage	$V_{CC} = 3.0 \text{ V}$	-	-	0.9	-	0.9	-	0.9	V	
		V _{CC} = 5.5 V	-	-	1.65	-	1.65	-	1.65	V
V_{OH}	HIGH-level	$V_I = V_{IH}$ or V_{IL}								
	output voltage	$I_{O} = -50 \mu A; V_{CC} = 2.0 V$	1.9	2.0	-	1.9	-	1.9	-	V
		$I_{O} = -50 \mu A; V_{CC} = 3.0 V$	2.9	3.0	-	2.9	-	2.9	-	V
		$I_{O} = -50 \mu A; V_{CC} = 4.5 V$	4.4	4.5	-	4.4	-	4.4	-	V
		$I_O = -4.0 \text{ mA}; V_{CC} = 3.0 \text{ V}$	2.58	-	-	2.48	-	2.40	-	V
		$I_{O} = -8.0 \text{ mA}; V_{CC} = 4.5 \text{ V}$	3.94	-	-	3.80	-	3.70	-	V
V _{OL}	LOW-level	$V_I = V_{IH}$ or V_{IL}								
	output voltage	$I_O = 50 \mu A; V_{CC} = 2.0 V$	-	0	0.1	-	0.1	-	0.1	V
		$I_O = 50 \mu A; V_{CC} = 3.0 V$	-	0	0.1	-	0.1	-	0.1	V
		$I_O = 50 \mu A; V_{CC} = 4.5 V$	-	0	0.1	-	0.1	-	0.1	V
		$I_O = 4.0 \text{ mA}; V_{CC} = 3.0 \text{ V}$	-	-	0.36	-	0.44	-	0.55	V
		I_{O} = 8.0 mA; V_{CC} = 4.5 V	-	-	0.36	-	0.44	-	0.55	V

74AHC_AHCT139_Q100

All information provided in this document is subject to legal disclaimers.

© Nexperia B.V. 2017. All rights reserved

 Table 6.
 Static characteristics ...continued

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions		25 °C		-40 °C t	o +85 °C	–40 °C to	Unit	
			Min	Тур	Max	Min	Max	Min	Max	
I _I	input leakage current	V _I = 5.5 V or GND; V _{CC} = 0 V to 5.5 V	-	-	0.1	-	1.0	-	2.0	μΑ
I _{CC}	supply current	$V_I = V_{CC}$ or GND; $I_O = 0$ A; $V_{CC} = 5.5 \text{ V}$	-	-	4.0	-	40	-	80	μΑ
Cı	input capacitance	$V_I = V_{CC}$ or GND	-	3	10	-	10	-	10	pF
C _O	output capacitance		-	4	-	-	-	-	-	pF
74AHCT	139-Q100									
V_{IH}	HIGH-level input voltage	$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$	2.0	-	-	2.0	-	2.0	-	V
V_{IL}	LOW-level input voltage	$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$	-	-	0.8	-	0.8	-	0.8	V
V_{OH}	HIGH-level	$V_I = V_{IH}$ or V_{IL} ; $V_{CC} = 4.5 \text{ V}$								
	output voltage	$I_{O} = -50 \mu A$	4.4	4.5	-	4.4	-	4.4	-	V
		$I_0 = -8.0 \text{ mA}$	3.94	-	-	3.80	-	3.70	-	V
V_{OL}	LOW-level	$V_I = V_{IH}$ or V_{IL} ; $V_{CC} = 4.5 \text{ V}$								
	output voltage	$I_O = 50 \mu A$	-	0	0.1	-	0.1	-	0.1	V
		$I_0 = 8.0 \text{ mA}$	-	-	0.36	-	0.44	-	0.55	V
I	input leakage current	$V_I = 5.5 \text{ V or GND};$ $V_{CC} = 0 \text{ V to } 5.5 \text{ V}$	-	-	0.1	-	1.0	-	2.0	μΑ
I _{CC}	supply current	$V_I = V_{CC}$ or GND; $I_O = 0$ A; $V_{CC} = 5.5 \text{ V}$	-	-	4.0	-	40	-	80	μΑ
Δl _{CC}	additional supply current	per input pin; $V_I = V_{CC} - 2.1 \text{ V}$; other pins at V_{CC} or GND; $I_O = 0 \text{ A}$; $V_{CC} = 4.5 \text{ V}$ to 5.5 V	-	-	1.35	-	1.5	-	1.5	mA
Cı	input capacitance	$V_I = V_{CC}$ or GND	-	3	10	-	10	-	10	pF
Co	output capacitance		-	4	-	-	-	-	-	pF

10. Dynamic characteristics

Table 7. Dynamic characteristics

Voltages are referenced to GND (ground = 0 V); for test circuit see <u>Figure 7</u>.

Symbol	Parameter	Conditions			25 °C		-40 °C to	+85 °C	-40 °C to	+125 °C	Unit
				Min	Typ[1]	Max	Min	Max	Min	Max	
74AHC1	39-Q100										
t _{pd}	propagation	nAn to $n\overline{Y}$ n; see Figure 5	[2]								
	delay	$V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$									
		C _L = 15 pF		-	5.5	11.0	1.0	13.0	1.0	14.0	ns
		C _L = 50 pF		-	7.9	14.5	1.0	16.5	1.0	18.5	ns
		$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$									
	C _L = 15 pF		-	3.9	7.2	1.0	8.5	1.0	9.0	ns	
		C _L = 50 pF		-	5.6	9.2	1.0	10.5	1.0	11.5	ns
		nE to nYn; see Figure 6	[2]								
		$V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$									
		C _L = 15 pF		-	4.8	9.2	1.0	11.0	1.0	11.5	ns
		C _L = 50 pF		-	6.9	12.7	1.0	14.5	1.0	16.0	ns
		$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$									
		$C_L = 15 pF$		-	3.4	6.3	1.0	7.5	1.0	8.0	ns
		$C_L = 50 pF$		-	4.9	8.3	1.0	9.5	1.0	10.5	ns
C _{PD}	power dissipation capacitance	f_i = 1 MHz; V_I = GND to V_{CC}	[3]	-	26	-	-	-	-	-	pF
74AHCT	139-Q100; V _C	_C = 4.5 V to 5.5 V									
t_{pd}		nAn to nYn; see Figure 5	[2]								
	delay	$C_L = 15 pF$		-	4.7	7.2	1.0	8.5	1.0	9.0	ns
		$C_L = 50 pF$		-	6.5	9.2	1.0	10.5	1.0	11.5	ns
		nE to nYn; see Figure 6	[2]								
		C _L = 15 pF		-	3.6	6.3	1.0	7.5	1.0	8.0	ns
		C _L = 50 pF		-	5.2	8.3	1.0	9.5	1.0	10.5	ns
C _{PD}	power dissipation capacitance	f_i = 1 MHz; V_I = GND to V_{CC}	[3]	-	23	-	-	-	-	-	pF

^[1] Typical values are measured at nominal supply voltage (V_{CC} = 3.3 V and V_{CC} = 5.0 V).

 $P_D = C_{PD} \times V_{CC}{}^2 \times f_i \times N + \Sigma (C_L \times V_{CC}{}^2 \times f_o) \text{ where:}$

 f_i = input frequency in MHz;

f_o = output frequency in MHz;

C_L = output load capacitance in pF;

 V_{CC} = supply voltage in V;

N = number of inputs switching;

 $\Sigma(C_L \times V_{CC}^2 \times f_o)$ = sum of the outputs.

^[2] t_{pd} is the same as t_{PLH} and t_{PHL} .

^[3] C_{PD} is used to determine the dynamic power dissipation (P_D in μW).

11. Waveforms

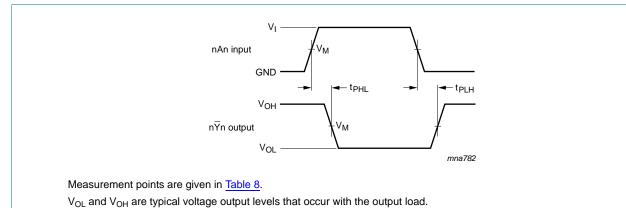


Fig 5. Address input to output propagation delays

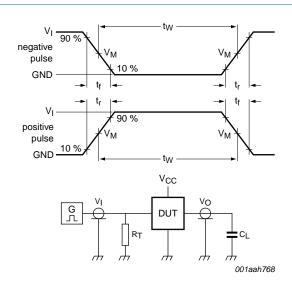



Table 8. Measurement points

Туре	Input	Output
	V _M	V _M
74AHC139-Q100	$0.5 \times V_{CC}$	$0.5 \times V_{CC}$
74AHCT139-Q100	1.5 V	$0.5 \times V_{CC}$

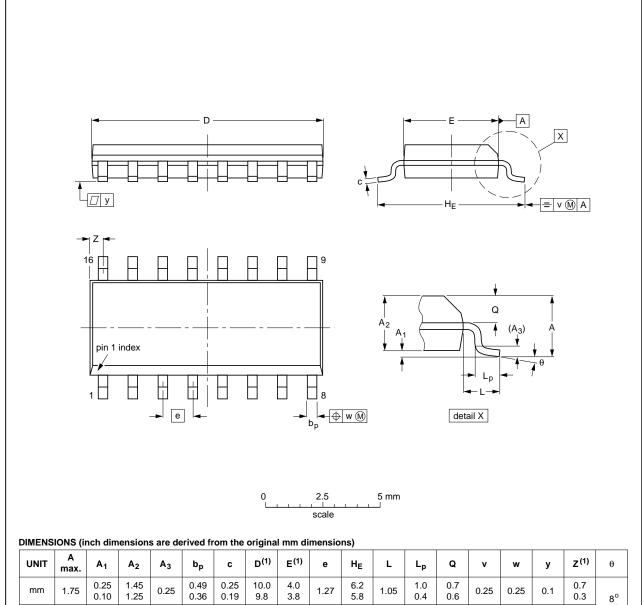
Test data is given in Table 9.

Definitions test circuit:

 R_T = termination resistance should be equal to output impedance Z_0 of the pulse generator.

 C_L = load capacitance including jig and probe capacitance.

Fig 7. Load circuitry for measuring switching times


Table 9. Test data

Туре	Input		Load	Test
	VI	t _r , t _f	CL	
74AHC139-Q100	V _{CC}	≤ 3.0 ns	15 pF, 50 pF	t _{PLH} , t _{PHL}
74AHCT139-Q100	3.0 V	≤ 3.0 ns	15 pF, 50 pF	t _{PLH} , t _{PHL}

12. Package outline

SO16: plastic small outline package; 16 leads; body width 3.9 mm

SOT109-1

UNIT	A max.	A ₁	A ₂	A ₃	bp	С	D ⁽¹⁾	E ⁽¹⁾	е	HE	L	Lp	q	v	w	у	Z ⁽¹⁾	θ
mm	1.75	0.25 0.10	1.45 1.25	0.25	0.49 0.36	0.25 0.19	10.0 9.8	4.0 3.8	1.27	6.2 5.8	1.05	1.0 0.4	0.7 0.6	0.25	0.25	0.1	0.7 0.3	8°
inches	0.069	0.010 0.004	0.057 0.049	0.01	I	0.0100 0.0075		0.16 0.15	0.05	0.244 0.228	0.041	0.039 0.016		0.01	0.01	0.004	0.028 0.012	0°

Note

1. Plastic or metal protrusions of 0.15 mm (0.006 inch) maximum per side are not included.

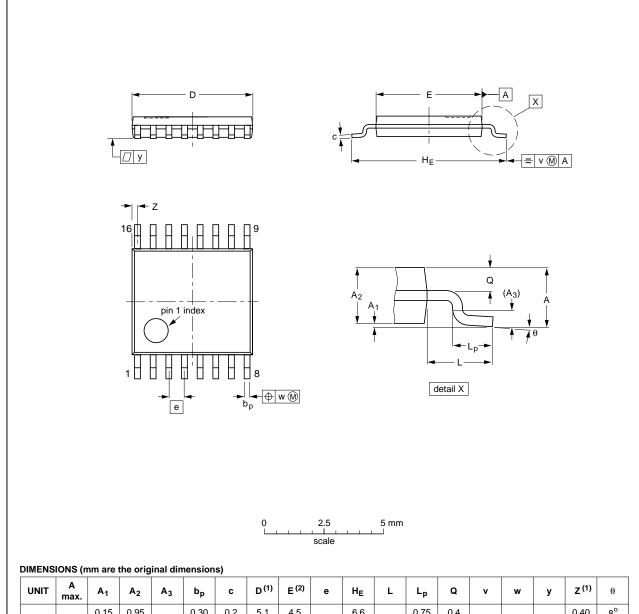

OUTLINE		REFER	EUROPEAN	ISSUE DATE			
VERSION	IEC	JEDEC	JEITA		PROJECTION	ISSUE DATE	
SOT109-1	076E07	MS-012				99-12-27 03-02-19	

Fig 8. Package outline SOT109-1 (SO16)

74AHC_AHCT139_Q100 All information provided in this document is subject to legal disclaimers.

TSSOP16: plastic thin shrink small outline package; 16 leads; body width 4.4 mm

SOT403-1

UNIT	A max.	A ₁	A ₂	A ₃	bp	С	D ⁽¹⁾	E ⁽²⁾	е	HE	L	Lp	Q	v	w	у	Z ⁽¹⁾	θ
mm	1.1	0.15 0.05	0.95 0.80	0.25	0.30 0.19	0.2 0.1	5.1 4.9	4.5 4.3	0.65	6.6 6.2	1	0.75 0.50	0.4 0.3	0.2	0.13	0.1	0.40 0.06	8° 0°

- 1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.
- 2. Plastic interlead protrusions of 0.25 mm maximum per side are not included.

OUTLINE		REFER	EUROPEAN	ISSUE DATE		
VERSION	IEC	JEDEC	JEITA		PROJECTION	ISSUE DATE
SOT403-1		MO-153				-99-12-27 03-02-18

Fig 9. Package outline SOT403-1 (TSSOP16)

74AHC_AHCT139_Q100

All information provided in this document is subject to legal disclaimers.

13. Abbreviations

Table 10. Abbreviations

Acronym	Description
CDM	Charged Device Model
CMOS	Complementary Metal-Oxide Semiconductor
DUT	Device Under Test
ESD	ElectroStatic Discharge
НВМ	Human Body Model
LSTTL	Low-power Schottky Transistor-Transistor Logic
MIL	Military
MM	Machine Model

14. Revision history

Table 11. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes
74AHC_AHCT139_Q100 v.1	20130605	Product data sheet	-	-

15. Legal information

15.1 Data sheet status

Document status[1][2]	Product status[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

- [1] Please consult the most recently issued document before initiating or completing a design.
- [2] The term 'short data sheet' is explained in section "Definitions"
- [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nexperia.com.

15.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. Nexperia does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local Nexperia sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between Nexperia and its customer, unless Nexperia and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the Nexperia product is deemed to offer functions and qualities beyond those described in the Product data sheet.

15.3 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, Nexperia does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. Nexperia takes no responsibility for the content in this document if provided by an information source outside of Nexperia.

In no event shall Nexperia be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, Nexperia's aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of Nexperia.

Right to make changes — Nexperia reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use in automotive applications — This Nexperia product has been qualified for use in automotive applications. Unless otherwise agreed in writing, the product is not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of a Nexperia product can reasonably be expected to result in personal injury, death or severe property or environmental damage. Nexperia and its suppliers accept no liability for inclusion and/or use of Nexperia products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk

Applications — Applications that are described herein for any of these products are for illustrative purposes only. Nexperia makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using Nexperia products, and Nexperia accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the Nexperia product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

Nexperia does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using Nexperia products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). Nexperia does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — Nexperia products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nexperia.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. Nexperia hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of Nexperia products by customer.

14 of 16

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

15.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

16. Contact information

For more information, please visit: http://www.nexperia.com

For sales office addresses, please send an email to: salesaddresses@nexperia.com

17. Contents

1	General description 1
2	Features and benefits 1
3	Ordering information
4	Functional diagram 2
5	Pinning information
5.1	Pinning
5.2	Pin description
6	Functional description 4
7	Limiting values 4
8	Recommended operating conditions 6
9	Static characteristics 6
10	Dynamic characteristics 8
11	Waveforms
12	Package outline
13	Abbreviations
14	Revision history
15	Legal information
15.1	Data sheet status
15.2	Definitions
15.3	Disclaimers
15.4	Trademarks15
16	Contact information
17	Contents

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Encoders, Decoders, Multiplexers & Demultiplexers category:

Click to view products by NXP manufacturer:

Other Similar products are found below:

M38510/01406BEA MC74HC163ADTG 74HC253N HMC854LC5TR NLV74VHC1G01DFT1G NLVHC4851ADTR2G

NLVHCT4851ADTR2G PI3B33X257BE M74HCT4052ADTR2G M74VHC1GT04DFT3G TC74AC138P(F) MC74LVX4051MNTWG

HMC855LC5TR NLV14028BDR2G NLV14051BDR2G NLV74HC238ADTR2G 715428X COMX-CAR-210 5962-8607001EA 5962
8756601EA MAX3783UCM+D PI5C3253QEX 8CA3052APGGI8 TC74HC4051AF(EL,F) TC74VHC138F(EL,K,F PI3B3251LE

PI5C3309UEX PI5C3251QEX PI3B3251QE 74VHC4052AFT(BJ) PI3PCIE3415AZHEX NLV74HC4851AMNTWG MC74LVX257DG

M74HC151YRM13TR M74HC151YTTR PI5USB31213XEAEX M74HCT4851ADWR2G XD74LS154 AP4373AW5-7-01 QS3VH251QG8

QS4A201QG HCS301T-ISN HCS500-I/SM MC74HC151ADTG TC4066BP(N,F) 74ACT11139PWR HMC728LC3CTR 74VHC238FT(BJ)

74VHC4066AFT(BJ) 74VHCT138AFT(BJ)