Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010 Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice

- All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application for written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics atta abooks, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anticrime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU ROHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.
- Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majorityowned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

16

H8/36024Group, H8/36014Group

Hardware Manual

Renesas 16-Bit Single-Chip Microcomputer H8 Family/H8/300H Tiny Series

H8/36024F H8/36022F H8/36014F H8/36012F H8/36023 H8/36022 H8/36014 H8/36013 H8/36012 H8/36012 H8/36011

H8/36010

Renesas Electronics

www.renesas.com

Rev.4.00 2005.09

HD64F36024, HD64F36024G,

HD64F36022, HD64F36022G,

HD64F36014, HD64F36014G, HD64F36012, HD64F36012G,

HD64336024, HD64336024G, HD64336023G,

HD64336022, HD64336022G,

HD64336014, HD64336014G,

HD64336013, HD64336013G,

HD64336012, HD64336012G,

HD64336011, HD64336011G,

HD64336010, HD64336010G

Rev. 4.00 Sep. 23, 2005 Page ii of xxvi

- a third party.
- Renesas Technology Corp. assumes no responsibility for any damage, or infringement of any party's rights, originating in the use of any product data, diagrams, charts, programs, algorith circuit application examples contained in these materials.
- 3. All information contained in these materials, including product data, diagrams, charts, program algorithms represents information on products at the time of publication of these materials, and subject to change by Renesas Technology Corp. without notice due to product improvements other reasons. It is therefore recommended that customers contact Renesas Technology Corp. an authorized Renesas Technology Corp. product distributor for the latest product information before purchasing a product listed herein.

The information described here may contain technical inaccuracies or typographical errors. Renesas Technology Corp. assumes no responsibility for any damage, liability, or other loss from these inaccuracies or errors.

Please also pay attention to information published by Renesas Technology Corp. by various including the Renesas Technology Corp. Semiconductor home page (http://www.renesas.com

- 4. When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a to system before making a final decision on the applicability of the information and products. Rechnology Corp. assumes no responsibility for any damage, liability or other loss resulting finformation contained herein.
- 5. Renesas Technology Corp. semiconductors are not designed or manufactured for use in a desystem that is used under circumstances in which human life is potentially at stake. Please or Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor w considering the use of a product contained herein for any specific purposes, such as apparat systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use
- The prior written approval of Renesas Technology Corp. is necessary to reprint or reproduce whole or in part these materials.
- If these products or technologies are subject to the Japanese export control restrictions, they be exported under a license from the Japanese government and cannot be imported into a co other than the approved destination.

Any diversion or reexport contrary to the export control laws and regulations of Japan and/or country of destination is prohibited.

Please contact Renesas Technology Corp. for further details on these materials or the producontained therein.

Rev. 4.00 Sep. 23, 2005 Pa

- are in their open states, intermediate levels are induced by noise in the vicinity, a through current flows internally, and a malfunction may occur.
- 3. Processing before Initialization
- Note: When power is first supplied, the product's state is undefined.
 - The states of internal circuits are undefined until full power is supplied throughout chip and a low level is input on the reset pin. During the period where the states a undefined, the register settings and the output state of each pin are also undefined your system so that it does not malfunction because of processing while it is in the undefined state. For those products which have a reset function, reset the LSI imma after the power supply has been turned on.
- 4. Prohibition of Access to Undefined or Reserved Addresses
- Note: Access to undefined or reserved addresses is prohibited. The undefined or reserved addresses may be used to expand functions, or test reg may have been be allocated to these addresses. Do not access these registers; the operation is not guaranteed if they are accessed.

Rev. 4.00 Sep. 23, 2005 Page iv of xxvi

- 1
 - CPU and System-Control Modules
 - On-Chip Peripheral Modules

The configuration of the functional description of each module differs according module. However, the generic style includes the following items:

- i) Feature
- ii) Input/Output Pin
- iii) Register Description
- iv) Operation
- v) Usage Note

When designing an application system that includes this LSI, take notes into account. Ea includes notes in relation to the descriptions given, and usage notes are given, as require final part of each section.

- 7. List of Registers
- 8. Electrical Characteristics
- 9. Appendix
- 10. Main Revisions and Additions in this Edition (only for revised versions)

The list of revisions is a summary of points that have been revised or added to earlier ver This does not include all of the revised contents. For details, see the actual locations in t manual.

11. Index

Renesas

Rev. 4.00 Sep. 23, 2005 P

- meroeompaters.
- Objective: This manual was written to explain the hardware functions and electrical characteristics of the H8/36024 Group and H8/36014 Group to the target Refer to the H8/300H Series Software Manual for a detailed description or instruction set.

Notes on reading this manual:

- In order to understand the overall functions of the chip Read the manual according to the contents. This manual can be roughly categorized in on the CPU, system control functions, peripheral functions and electrical characteristi
- In order to understand the details of the CPU's functions Read the H8/300H Series Software Manual.
- In order to understand the details of a register when its name is known Read the index that is the final part of the manual to find the page number of the entry register. The addresses, bits, and initial values of the registers are summarized in secti List of Registers.

Example: Bit order: The MSB is on the left and the LSB is on the right.

Notes:

When using the on-chip emulator (E7, E8) for H8/36014 program development and debut the following restrictions must be noted.

- 1. The $\overline{\text{NMI}}$ pin is reserved for the E7 or E8, and cannot be used.
- 2. Area H'7000 to H'7FFF is used by the E7 or E8, and is not available to the user.
- 3. Area H'F780 to H'FB7F must on no account be accessed.

Rev. 4.00 Sep. 23, 2005 Page vi of xxvi

H8/36024 Group and H8/36014 Group manuals:

Document Title			
H8/36024 Group, H8/36014 Group Hardware Manual	This ma		
H8/300H Series Software Manual	REJ09B		

User's manuals for development tools:

Document Title	Docume
H8S, H8/300 Series C/C++ Compiler, Assembler, Optimizing Linkage Editor User's Manual	REJ10B
Microcomputer Development Environment System H8S, H8/300 Series Simulator/Debugger User's Manual	ADE-70
H8S, H8/300 Series High-Performance Embedded Workshop 3, Tutorial	REJ10B
H8S, H8/300 Series High-Performance Embedded Workshop 3, User's Manual	REJ10B

Application notes:

Document Title			
H8S, H8/300 Series C/C++ Compiler Package Application Note	REJ05B		
Single Power Supply F-ZTAT [™] On-Board Programming	ADE-502		

Rev. 4.00 Sep. 23, 2005 Pa RENESAS

Rev. 4.00 Sep. 23, 2005 Page viii of xxvi

2.1	Addres	ss Space and Memory Map
2.2	Regist	er Configuration
	2.2.1	General Registers
	2.2.2	Program Counter (PC)
	2.2.3	Condition-Code Register (CCR)
2.3	Data F	ormats
	2.3.1	General Register Data Formats
	2.3.2	Memory Data Formats
2.4	Instruc	tion Set
	2.4.1	Table of Instructions Classified by Function
	2.4.2	Basic Instruction Formats
2.5	Addres	ssing Modes and Effective Address Calculation
	2.5.1	Addressing Modes
	2.5.2	Effective Address Calculation
2.6	Basic l	Bus Cycle
	2.6.1	Access to On-Chip Memory (RAM, ROM)
	2.6.2	On-Chip Peripheral Modules
2.7	CPU S	tates
2.8	Usage	Notes
	2.8.1	Notes on Data Access to Empty Areas
	2.8.2	EEPMOV Instruction
	2.8.3	Bit Manipulation Instruction
Secti	on 3	Exception Handling
3.1		ion Sources and Vector Address
3.2	Regist	er Descriptions
	3.2.1	Interrupt Edge Select Register 1 (IEGR1)
	3.2.2	Interrupt Edge Select Register 2 (IEGR2)
	3.2.3	Interrupt Enable Register 1 (IENR1)

Renesas

Rev. 4.00 Sep. 23, 2005 Pa

	3.5.3	Notes on Rewriting Port Mode Registers
Sect	ion 4	Address Break
4.1		er Descriptions
	4.1.1	Address Break Control Register (ABRKCR)
	4.1.2	Address Break Status Register (ABRKSR)
	4.1.3	Break Address Registers (BARH, BARL)
	4.1.4	Break Data Registers (BDRH, BDRL)
4.2	Opera	tion
	-1	
Sect	ion 5	Clock Pulse Generators
5.1		n Clock Generator
	5.1.1	Connecting Crystal Resonator
	5.1.2	Connecting Ceramic Resonator
	5.1.3	External Clock Input Method
5.2	Presca	lers
	5.2.1	Prescaler S
5.3	Usage	Notes
	5.3.1	Note on Resonators
	5.3.2	Notes on Board Design
Sect	ion 6	Power-Down Modes
6.1	Regist	er Descriptions
	6.1.1	System Control Register 1 (SYSCR1)
	6.1.2	System Control Register 2 (SYSCR2)
	6.1.3	Module Standby Control Register 1 (MSTCR1)
	6.1.4	Module Standby Control Register 2 (MSTCR2)
6.2	Mode	Transitions and States of LSI
	6.2.1	Sleep Mode

Rev. 4.00 Sep. 23, 2005 Page x of xxvi

	7.2.3	Erase Block Register 1 (EBR1)
	7.2.4	Flash Memory Enable Register (FENR)
7.3	On-Bo	ard Programming Modes
	7.3.1	Boot Mode
	7.3.2	Programming/Erasing in User Program Mode
7.4	Flash M	Memory Programming/Erasing
	7.4.1	Program/Program-Verify
	7.4.2	Erase/Erase-Verify
	7.4.3	Interrupt Handling when Programming/Erasing Flash Memory
7.5	Progra	m/Erase Protection
	7.5.1	Hardware Protection
	7.5.2	Software Protection
	7.5.3	Error Protection
5000	1011 0	RAM
Sect	ion Q	I/O Ports
		I/O Ports
Sect 9.1	Port 1.	
	Port 1. 9.1.1	Port Mode Register 1 (PMR1)
	Port 1. 9.1.1 9.1.2	Port Mode Register 1 (PMR1) Port Control Register 1 (PCR1)
	Port 1. 9.1.1 9.1.2 9.1.3	Port Mode Register 1 (PMR1) Port Control Register 1 (PCR1) Port Data Register 1 (PDR1)
	Port 1. 9.1.1 9.1.2 9.1.3 9.1.4	Port Mode Register 1 (PMR1) Port Control Register 1 (PCR1) Port Data Register 1 (PDR1) Port Pull-Up Control Register 1 (PUCR1)
9.1	Port 1. 9.1.1 9.1.2 9.1.3 9.1.4 9.1.5	Port Mode Register 1 (PMR1) Port Control Register 1 (PCR1) Port Data Register 1 (PDR1) Port Pull-Up Control Register 1 (PUCR1) Pin Functions
	Port 1. 9.1.1 9.1.2 9.1.3 9.1.4 9.1.5 Port 2.	Port Mode Register 1 (PMR1) Port Control Register 1 (PCR1) Port Data Register 1 (PDR1) Port Pull-Up Control Register 1 (PUCR1) Pin Functions
9.1	Port 1. 9.1.1 9.1.2 9.1.3 9.1.4 9.1.5 Port 2. 9.2.1	Port Mode Register 1 (PMR1) Port Control Register 1 (PCR1) Port Data Register 1 (PDR1) Port Pull-Up Control Register 1 (PUCR1) Pin Functions Port Control Register 2 (PCR2)
9.1	Port 1. 9.1.1 9.1.2 9.1.3 9.1.4 9.1.5 Port 2. 9.2.1 9.2.2	Port Mode Register 1 (PMR1) Port Control Register 1 (PCR1) Port Data Register 1 (PDR1) Port Pull-Up Control Register 1 (PUCR1) Pin Functions Port Control Register 2 (PCR2) Port Data Register 2 (PDR2)
9.1 9.2	Port 1. 9.1.1 9.1.2 9.1.3 9.1.4 9.1.5 Port 2. 9.2.1 9.2.2 9.2.3	Port Mode Register 1 (PMR1) Port Control Register 1 (PCR1) Port Data Register 1 (PDR1) Port Pull-Up Control Register 1 (PUCR1) Pin Functions Port Control Register 2 (PCR2) Port Data Register 2 (PDR2) Pin Functions
9.1	Port 1. 9.1.1 9.1.2 9.1.3 9.1.4 9.1.5 Port 2. 9.2.1 9.2.2 9.2.3	Port Mode Register 1 (PMR1) Port Control Register 1 (PCR1) Port Data Register 1 (PDR1) Port Pull-Up Control Register 1 (PUCR1) Pin Functions Port Control Register 2 (PCR2) Port Data Register 2 (PDR2)

RENESAS

Rev. 4.00 Sep. 23, 2005 Pa

	9.5.3	Pin Functions
9.6	Port B.	
	9.6.1	Port Data Register B (PDRB)
Secti	ion 10	Timer V
10.1	Feature	28
10.2	Input/C	Dutput Pins
10.3	Registe	er Descriptions
	10.3.1	Timer Counter V (TCNTV)
	10.3.2	Time Constant Registers A and B (TCORA, TCORB)
	10.3.3	Timer Control Register V0 (TCRV0)
	10.3.4	Timer Control/Status Register V (TCSRV)
		Timer Control Register V1 (TCRV1)
10.4	Operati	on
	10.4.1	Timer V Operation
10.5	Timer V	V Application Examples
	10.5.1	Pulse Output with Arbitrary Duty Cycle
	10.5.2	Pulse Output with Arbitrary Pulse Width and Delay from TRGV Input
10.6	Usage 1	Notes
Secti	ion 11	Timer W
11.1		28
11.2	Input/C	Dutput Pins
11.3	Registe	r Descriptions
	11.3.1	Timer Mode Register W (TMRW)
	11.3.2	Timer Control Register W (TCRW)
		Timer Interrupt Enable Register W (TIERW)
	11.3.4	Timer Status Register W (TSRW)
	11.3.5	Timer I/O Control Register 0 (TIOR0)

Rev. 4.00 Sep. 23, 2005 Page xii of xxvi

	11.5.5	Buffer Operation Timing
		Timing of IMFA to IMFD Flag Setting at Compare Match
		Timing of IMFA to IMFD Setting at Input Capture
		Timing of Status Flag Clearing
11.6		Notes
	-	
Sect	ion 12	Watchdog Timer
12.1		25
12.2	Registe	er Descriptions
	12.2.1	Timer Control/Status Register WD (TCSRWD)
		Timer Counter WD (TCWD)
		Timer Mode Register WD (TMWD)
12.3	Operati	ion
Sect	ion 13	Serial Communication Interface 3 (SCI3)
13.1	Feature	28
13.2	Input/C	Dutput Pins
13.3	Registe	er Descriptions
	13.3.1	Receive Shift Register (RSR)
	13.3.2	Receive Data Register (RDR)
	13.3.3	Transmit Shift Register (TSR)
		Transmit Data Register (TDR)
	13.3.5	
	13.3.6	Serial Control Register 3 (SCR3)
	13.3.7	Serial Status Register (SSR)
	13.3.8	Bit Rate Register (BRR)
		SCI3_3 Module Control Register (SMCR)
13.4	Operati	ion in Asynchronous Mode
		Clock

Renesas

Rev. 4.00 Sep. 23, 2005 Pag

		13.6.2	Multiprocessor Serial Data Reception	
	13.7	3.7 Interrupts		
13.8 Usage Notes		Notes		
		13.8.1	Break Detection and Processing	
		13.8.2	Mark State and Break Sending	
		13.8.3	Receive Error Flags and Transmit Operations	
			(Clocked Synchronous Mode Only)	
		13.8.4	Receive Data Sampling Timing and Reception Margin in Asynchronous	
			Mode	
Section 14 A/D Converter		A/D Converter		
	14.1	Feature	28	
	14.2	Input/C	Output Pins	
	14.3	Registe	er Description	
		14.3.1	A/D Data Registers A to D (ADDRA to ADDRD)	
		14.3.2	A/D Control/Status Register (ADCSR)	
		14.3.3	A/D Control Register (ADCR)	
	14.4	Operati	ion	
		14.4.1	Single Mode	
		14.4.2	Scan Mode	
		14.4.3	Input Sampling and A/D Conversion Time	
		14.4.4	External Trigger Input Timing	
	14.5	A/D Co	onversion Accuracy Definitions	
	14.6	Usage 1	Notes	
			Permissible Signal Source Impedance	
		14.6.2	Influences on Absolute Accuracy	

Rev. 4.00 Sep. 23, 2005 Page xiv of xxvi

Secti	ion 16	Power Supply Circuit
16.1	When U	Using Internal Power Supply Step-Down Circuit
16.2	When I	Not Using Internal Power Supply Step-Down Circuit
Secti	ion 17	List of Registers
17.1	Registe	er Addresses (Address Order)
17.2	Registe	er Bits
17.3	Registe	r States in Each Operating Mode
Secti	ion 18	Electrical Characteristics
18.1	Absolu	te Maximum Ratings
18.2	Electric	cal Characteristics (F-ZTAT [™] Version)
	18.2.1	Power Supply Voltage and Operating Ranges
	18.2.2	DC Characteristics
	18.2.3	AC Characteristics
	18.2.4	A/D Converter Characteristics
	18.2.5	Watchdog Timer Characteristics
	18.2.6	Flash Memory Characteristics
	18.2.7	Power-Supply-Voltage Detection Circuit Characteristics (Optional)
	18.2.8	Power-On Reset Circuit Characteristics (Optional)
18.3	Electric	cal Characteristics (Masked ROM Version).
		Power Supply Voltage and Operating Ranges
		DC Characteristics
	18.3.3	AC Characteristics
	18.3.4	A/D Converter Characteristics
	18.3.5	Watchdog Timer Characteristics
	18.3.6	Power-Supply-Voltage Detection Circuit Characteristics (Optional)
		Power-On Reset Circuit Characteristics (Optional)
18.4	Operati	ion Timing
	-	-

Renesas

Rev. 4.00 Sep. 23, 2005 Pa

Appendix C	Product Code Lineup
Appendix D	Package Dimensions
Main Revisio	ons and Additions in this Edition
Index	

Rev. 4.00 Sep. 23, 2005 Page xvi of xxvi

rigule 2.2	CPU Registers
Figure 2.3	Usage of General Registers
Figure 2.4	Relationship between Stack Pointer and Stack Area
Figure 2.5	General Register Data Formats (1)
Figure 2.5	General Register Data Formats (2)
Figure 2.6	Memory Data Formats
Figure 2.7	Instruction Formats
Figure 2.8	Branch Address Specification in Memory Indirect Mode
Figure 2.9	On-Chip Memory Access Cycle
Figure 2.10	On-Chip Peripheral Module Access Cycle (3-State Access)
Figure 2.11	CPU Operation States
Figure 2.12	State Transitions
Figure 2.13	Example of Timer Configuration with Two Registers Allocated to Same
	Address
Section 3	Exception Handling
Figure 3.1	Reset Sequence
Figure 3.2	Stack Status after Exception Handling
Figure 3.3	Interrupt Sequence
Figure 3.4	Port Mode Register Setting and Interrupt Request Flag Clearing Procedure .
Section 4	Address Break
Figure 4.1	Block Diagram of Address Break
Figure 4.2	Address Break Interrupt Operation Example (1)
Figure 4.2	Address Break Interrupt Operation Example (2)
Section 5	Clock Pulse Generators
Figure 5.1	Block Diagram of Clock Pulse Generators
Figure 5.2	Block Diagram of System Clock Generator
Figure 5.3	Typical Connection to Crystal Resonator
	Equivalent Circuit of Crystal Resonator

Rev. 4.00 Sep. 23, 2005 Pag

Figure 9.1 Port 1 Pin Configuration
Figure 9.2 Port 2 Pin Configuration
Figure 9.3 Port 5 Pin Configuration
Figure 9.4 Port 7 Pin Configuration
Figure 9.5 Port 8 Pin Configuration
Figure 9.6 Port B Pin Configuration
Section 10 Timer V
Figure 10.1 Block Diagram of Timer V
Figure 10.2 Increment Timing with Internal Clock
Figure 10.3 Increment Timing with External Clock
Figure 10.4 OVF Set Timing
Figure 10.5 CMFA and CMFB Set Timing
Figure 10.6 TMOV Output Timing
Figure 10.7 Clear Timing by Compare Match
Figure 10.8 Clear Timing by TMRIV Input
Figure 10.9 Pulse Output Example
Figure 10.10 Example of Pulse Output Synchronized to TRGV Input
Figure 10.11 Contention between TCNTV Write and Clear
Figure 10.12 Contention between TCORA Write and Compare Match
Figure 10.13 Internal Clock Switching and TCNTV Operation
Section 11 Timer W
Figure 11.1 Timer W Block Diagram
Figure 11.2 Free-Running Counter Operation
Figure 11.3 Periodic Counter Operation
Figure 11.4 0 and 1 Output Example (TOA = 0, TOB = 1)
Figure 11.5 Toggle Output Example (TOA = 0, TOB = 1)
Figure 11.6 Toggle Output Example (TOA = 0, TOB = 1)

Rev. 4.00 Sep. 23, 2005 Page xviii of xxvi

RENESAS

Figure 11.16	6 Output Compare Output Timing
Figure 11.17	/ Input Capture Input Signal Timing
Figure 11.18	3 Timing of Counter Clearing by Compare Match
Figure 11.19	Buffer Operation Timing (Compare Match)
Figure 11.20	Buffer Operation Timing (Input Capture)
Figure 11.21	Timing of IMFA to IMFD Flag Setting at Compare Match
Figure 11.22	2 Timing of IMFA to IMFD Flag Setting at Input Capture
Figure 11.23	5 Timing of Status Flag Clearing by CPU
Figure 11.24	Contention between TCNT Write and Clear
Figure 11.25	5 Internal Clock Switching and TCNT Operation
Figure 11.26	When Compare Match and Bit Manipulation Instruction to TCRW Occur
	Same Timing
Section 12	Watchdog Timer
Figure 12.1	Block Diagram of Watchdog Timer
Figure 12.2	Watchdog Timer Operation Example
Section 13	Serial Communication Interface 3 (SCI3)
Figure 13.1	Block Diagram of SCI3
Figure 13.2	Data Format in Asynchronous Communication
Figure 13.3	Relationship between Output Clock and Transfer Data Phase
	(Asynchronous Mode)(Example with 8-Bit Data, Parity, Two Stop Bits)
Figure 13.4	Sample SCI3 Initialization Flowchart
Figure 13.5	Example of SCI3 Transmission in Asynchronous Mode
	(8-Bit Data, Parity, One Stop Bit)
Figure 13.6	Sample Serial Transmission Data Flowchart (Asynchronous Mode)
Figure 13.7	Example of SCI3 Reception in Asynchronous Mode
	(8-Bit Data, Parity, One Stop Bit)
Figure 13.8	Sample Serial Reception Data Flowchart (Asynchronous Mode)(1)
Figure 13.8	Sample Serial Reception Data Flowchart (Asynchronous Mode)(2)

Rev. 4.00 Sep. 23, 2005 Pag

Figure 13.17	7 Sample Multiprocessor Serial Reception Flowchart (2)
Figure 13.18	3 Example of SCI3 Reception Using Multiprocessor Format
C	(Example with 8-Bit Data, Multiprocessor Bit, One Stop Bit)
Figure 13.19	Receive Data Sampling Timing in Asynchronous Mode
Section 14	A/D Converter
Figure 14.1	Block Diagram of A/D Converter
	A/D Conversion Timing
Figure 14.3	External Trigger Input Timing
Figure 14.4	A/D Conversion Accuracy Definitions (1)
	A/D Conversion Accuracy Definitions (2)
Figure 14.6	Analog Input Circuit Example
Section 15	Power-On Reset and Low-Voltage Detection Circuits (Optional)
	Block Diagram of Power-On Reset Circuit and Low-Voltage Detection Circ
	Operational Timing of Power-On Reset Circuit
Figure 15.3	Operational Timing of LVDR Circuit
Figure 15.4	Operational Timing of LVDI Circuit
Figure 15.5	Timing for Operation/Release of Low-Voltage Detection Circuit
Section 16	Power Supply Circuit
Figure 16.1	Power Supply Connection when Internal Step-Down Circuit is Used
Figure 16.2	Power Supply Connection when Internal Step-Down Circuit is Not Used
Section 18	Electrical Characteristics
Figure 18.1	System Clock Input Timing
-	RES Low Width Timing
	Input Timing
	SCK3 Input Clock Timing
-	SCI3 Input/Output Timing in Clocked Synchronous Mode
-	Output Load Circuit
-	

Rev. 4.00 Sep. 23, 2005 Page xx of xxvi

Figure B.11	Port 5 Block Diagram (P56) (H8/36024)
Figure B.12	Port 5 Block Diagram (P55)
Figure B.13	Port 5 Block Diagram (P54 to P50)
Figure B.14	Port 7 Block Diagram (P76)
Figure B.15	Port 7 Block Diagram (P75)
Figure B.16	Port 7 Block Diagram (P74)
	Port 7 Block Diagram (P73)
	Port 7 Block Diagram (P72)
	Port 7 Block Diagram (P71)
	Port 7 Block Diagram (P70)
Figure B.21	Port 8 Block Diagram (P84 to P81)
	Port 8 Block Diagram (P80)
	Port B Block Diagram (PB3 to PB0)
	FP-64E Package Dimensions.
	FP-48F Package Dimensions
	FP-48B Package Dimensions
	TNP-48 Package Dimensions

Rev. 4.00 Sep. 23, 2005 Pag

Rev. 4.00 Sep. 23, 2005 Page xxii of xxvi

1 able 2.4	Logic Operations Instructions
Table 2.5	Shift Instructions
Table 2.6	Bit Manipulation Instructions (1)
Table 2.6	Bit Manipulation Instructions (2)
Table 2.7	Branch Instructions
Table 2.8	System Control Instructions
Table 2.9	Block Data Transfer Instructions
Table 2.10	Addressing Modes
Table 2.11	Absolute Address Access Ranges
Table 2.12	Effective Address Calculation (1)
Table 2.12	Effective Address Calculation (2)
Section 3 E	xception Handling
Table 3.1	Exception Sources and Vector Address
Table 3.2	Interrupt Wait States
Section 4 A	ddress Break
Table 4.1	Access and Data Bus Used
Section 5 C	lock Pulse Generators
Table 5.1	Crystal Resonator Parameters
Section 6 P	ower-Down Modes
Table 6.1	Operating Frequency and Waiting Time
Table 6.2	Transition Mode after SLEEP Instruction Execution and Interrupt Handl
Table 6.3	Internal State in Each Operating Mode
	OM
Table 7.1	Setting Programming Modes
Table 7.2	Boot Mode Operation
Table 7.3	System Clock Frequencies for which Automatic Adjustment of LSI Bit F
	Possible

Rev. 4.00 Sep. 23, 2005 Page

	Serial Communication Interface 5 (SCI5)
Table 13.1	Channel Configuration
Table 13.2	Pin Configuration
Table 13.3	Examples of BRR Settings for Various Bit Rates (Asynchronous Mode) (
Table 13.3	Examples of BRR Settings for Various Bit Rates (Asynchronous Mode) (
Table 13.3	Examples of BRR Settings for Various Bit Rates (Asynchronous Mode) (
Table 13.4	Maximum Bit Rate for Each Frequency (Asynchronous Mode)
Table 13.5	Examples of BRR Settings for Various Bit Rates (Clocked Synchronous N
	(1)
Table 13.5	Examples of BRR Settings for Various Bit Rates (Clocked Synchronous N
	(2)
Table 13.6	SSR Status Flags and Receive Data Handling
Table 13.7	SCI3 Interrupt Requests
Section 14	A/D Converter
Table 14.1	Pin Configuration
Table 14.2	Analog Input Channels and Corresponding ADDR Registers
Table 14.3	A/D Conversion Time (Single Mode)
Section 15	
Section 15	Power-On Reset and Low-Voltage Detection Circuits (Optional)
Table 15.1	Power-On Reset and Low-Voltage Detection Circuits (Optional) LVDCR Settings and Select Functions
Table 15.1	LVDCR Settings and Select Functions Electrical Characteristics
Table 15.1 Section 18	LVDCR Settings and Select Functions Electrical Characteristics Absolute Maximum Ratings
Table 15.1 Section 18 Table 18.1	LVDCR Settings and Select Functions Electrical Characteristics Absolute Maximum Ratings DC Characteristics (1)
Table 15.1 Section 18 Table 18.1 Table 18.2	LVDCR Settings and Select Functions Electrical Characteristics Absolute Maximum Ratings
Table 15.1 Section 18 Table 18.1 Table 18.2 Table 18.2	LVDCR Settings and Select Functions Electrical Characteristics Absolute Maximum Ratings DC Characteristics (1) DC Characteristics (2) AC Characteristics
Table 15.1 Section 18 Table 18.1 Table 18.2 Table 18.2 Table 18.3	LVDCR Settings and Select Functions Electrical Characteristics Absolute Maximum Ratings DC Characteristics (1) DC Characteristics (2)
Table 15.1 Section 18 Table 18.1 Table 18.2 Table 18.2 Table 18.3 Table 18.4	LVDCR Settings and Select Functions Electrical Characteristics Absolute Maximum Ratings DC Characteristics (1) DC Characteristics (2) AC Characteristics Serial Interface (SCI3) Timing
Table 15.1 Section 18 Table 18.1 Table 18.2 Table 18.2 Table 18.3 Table 18.4 Table 18.5	LVDCR Settings and Select Functions Electrical Characteristics Absolute Maximum Ratings DC Characteristics (1) DC Characteristics (2) AC Characteristics Serial Interface (SCI3) Timing A/D Converter Characteristics

Rev. 4.00 Sep. 23, 2005 Page xxiv of xxvi

Appendix

Table A.1	Instruction Set
Table A.2	Operation Code Map (1)
Table A.2	Operation Code Map (2)
Table A.2	Operation Code Map (3)
Table A.3	Number of Cycles in Each Instruction
Table A.4	Number of Cycles in Each Instruction
Table A.5	Combinations of Instructions and Addressing Modes

Rev. 4.00 Sep. 23, 2005 Pag

Rev. 4.00 Sep. 23, 2005 Page xxvi of xxvi

- Timer V (8-bit timer)
- Timer W (16-bit timer)
- Watchdog timer
- SCI3 (Asynchronous or clocked synchronous serial communication interface)
- 10-bit A/D converter
- On-chip memory

		M			
Product Classif	ication	Standard Version	On-Chip Power- On Reset and Low-Voltage Detecting Circuit Version	ROM	RAM
Flash memory	H8/36024F	HD64F36024	HD64F36024G	32 kbytes	2,048
version	H8/36022F	HD64F36022	HD64F36022G	16 kbytes	2,048
(F-ZTAT [™] version)	H8/36014F	HD64F36014	HD64F36014G	32 kbytes	2,048
	H8/36012F	HD64F36012	HD64F36012G	16 kbytes	2,048
Masked ROM	H8/36024	HD64336024	HD64336024G	32 kbytes	1,024
version	H8/36023	HD64336023	HD64336023G	24 kbytes	1,024
	H8/36022	HD64336022	HD64336022G	16 kbytes	512 by
	H8/36014	HD64336014	HD64336014G	32 kbytes	1,024
	H8/36013	HD64336013	HD64336013G	24 kbytes	1,024
	H8/36012	HD64336012	HD64336012G	16 kbytes	512 by
	H8/36011	HD64336011	HD64336011G	12 kbytes	512 by
	H8/36010	HD64336010	HD64336010G	8 kbytes	512 by

Rev. 4.00 Sep. 23, 2005 P REJ09

RENESAS

LQFP-48	FP-48F	10.0 imes 10.0 mm	0.65 mm
LQFP-48	FP-48B	7.0 imes 7.0 mm	0.5 mm
QFN-48	TNP-48	7.0 imes 7.0 mm	0.5 mm

Rev. 4.00 Sep. 23, 2005 Page 2 of 354 REJ09B0025-0400

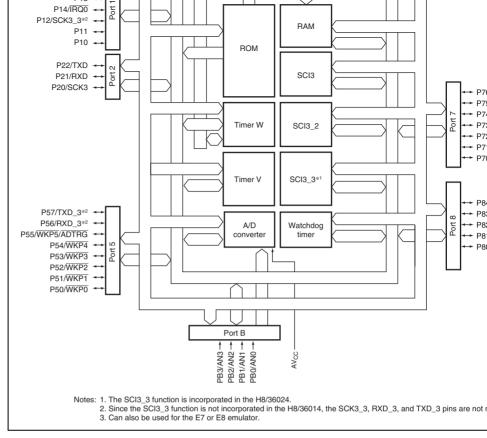


Figure 1.1 Internal Block Diagram

RENESAS

Rev. 4.00 Sep. 23, 2005 F REJ09

Figure 1.2 Pin Arrangement (FP-64E)

Rev. 4.00 Sep. 23, 2005 Page 4 of 354 REJ09B0025-0400

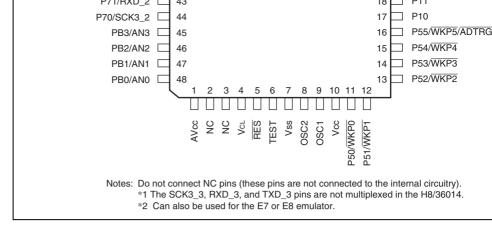


Figure 1.3 Pin Arrangement (FP-48F, FP-48B, TNP-48)

Rev. 4.00 Sep. 23, 2005 P REJ09

					system power supply (0v)
	AV _{cc}	3	1	Input	Analog power supply pin f converter. When the A/D o is not used, connect this p system power supply.
	V _{CL}	6	4	Input	Internal step-down power pin. Connect a capacitor of 0.1 μ F between this pin ar pin for stabilization.
Clock pins	OSC1	11	9	Input	These pins connect to a c
	OSC2	10	8	Output	ceramic resonator for syst clocks, or can be used to external clock.
					See section 5, Clock Pulse Generators, for a typical connection.
System control	RES	7	5	Input	Reset pin. The pull-up res $150 \text{ k}\Omega$) is incorporated. V driven low, the chip is rese
	TEST	8	6	Input	Test pin. Connect this pin
Interrupt pins	NMI	35	25	Input	Non-maskable interrupt re input pin. Be sure to pull-u pull-up resistor.
	IRQ0, IRQ3	51, 54	37, 40	Input	External interrupt request pins. Can select the rising edge.
	WKP0 to WKP5	13, 14, 19 to 22	11 to 16	Input	External interrupt request pins. Can select the rising edge.

Rev. 4.00 Sep. 23, 2005 Page 6 of 354 REJ09B0025-0400

RENESAS

i mer w	FICI	36	26	Input	External event input pin.					
	FTIOA to FTIOD	37 to 40	27 to 30	I/O	Output compare output/ i capture input/ PWM outp					
Serial com- munication interface	TXD, TXD_2, TXD_3*	46, 56, 27	36, 42, 21	Output	Transmit data output pin					
(SCI)	RXD, RXD_2, RXD_3*	45, 57, 26	35, 43, 20	Input	Receive data input pin					
	SCK3, SCK3_2, SCK3_3*	44, 58, 25	34, 44, 19	I/O	Clock I/O pin					
A/D	AN3 to AN0	59 to 62	45 to 48	Input	Analog input pin					
converter	ADTRG	22	16	Input	A/D converter trigger inpu					
I/O ports	PB3 to PB0	59 to 62	45 to 48	Input	4-bit input port.					
	P17 to P14, P12 to P10	54 to 51, 25 to 23	40 to 37, 19 to 17	I/O	7-bit I/O port.					
	P22 to P20	46 to 44	36 to 34	I/O	3-bit I/O port.					
	P57 to P50	27, 26, 22 to 19, 14, 13	21, 20, 16 to 11	I/O	8-bit I/O port					
	P76 to P70	30 to 28, 55 to 58	24 to 22, 41 to 44	I/O	7-bit I/O port					
	P84 to P80	40 to 36	30 to 26	I/O	5-bit I/O port.					
E10T	E10T _0, E10T _1, E10T _2	41, 42, 43	31, 32, 33		Interface pin for the E101 E7 emulator					
Note: * T	he SCK3_3, F	XD_3, and T	TXD_3 pins a	are not mu	Note: * The SCK3_3, RXD_3, and TXD_3 pins are not multiplexed in the H8/36014.					

RENESAS

Rev. 4.00 Sep. 23, 2005 P REJ09

Rev. 4.00 Sep. 23, 2005 Page 8 of 354 REJ09B0025-0400

• General-register architecture

- Sixteen 16-bit general registers also usable as sixteen 8-bit registers or eight 32-b

- Sixty-two basic instructions
 - 8/16/32-bit data transfer and arithmetic and logic instructions
 - Multiply and divide instructions
 - Powerful bit-manipulation instructions
- Eight addressing modes
 - Register direct [Rn]
 - Register indirect [@ERn]
 - Register indirect with displacement [@(d:16,ERn) or @(d:24,ERn)]
 - Register indirect with post-increment or pre-decrement [@ERn+ or @-ERn]
 - Absolute address [@aa:8, @aa:16, @aa:24]
 - Immediate [#xx:8, #xx:16, or #xx:32]
 - Program-counter relative [@(d:8,PC) or @(d:16,PC)]
 - Memory indirect [@@aa:8]
- 64-kbyte address space
- High-speed operation
 - All frequently-used instructions execute in one or two states
 - 8/16/32-bit register-register add/subtract : 2 state
 - 8 × 8-bit register-register multiply : 14 states
 - $-16 \div 8$ -bit register-register divide : 14 states
 - 16×16-bit register-register multiply : 22 states
 - $32 \div 16$ -bit register-register divide : 22 states
- Power-down state
 - Transition to power-down state by SLEEP instruction

CPU30H2E_000120030300

RENESAS

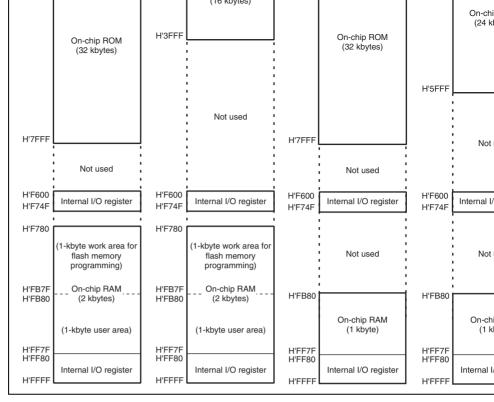


Figure 2.1 Memory Map (1)

Rev. 4.00 Sep. 23, 2005 Page 10 of 354 REJ09B0025-0400

RENESAS



Figure 2.1 Memory Map (2)

Renesas

ER3	E3	R3H	1	R3L
ER4	E4	R4H	1	R4L
ER5	E5	R5H	1	R5L
ER6	E6	R6H	1	R6L
ER7 (SP)	E7	R7H	1	R7L
Control Reg	jisters (CR) 23			0
		PC	;	
			CCR	7 6 5 4 3 2 1 0 I UI H U N Z V C
Legend				
SP PC CCR I UI	:Stack pointer :Program counter :Condition-code register :Interrupt mask bit :User bit	H U N Z V C	:Half-ca :User bi :Negativ :Zero fla :Overflo :Carry fl	t ve flag ag w flag

Rev. 4.00 Sep. 23, 2005 Page 12 of 354 REJ09B0025-0400

The R registers divide into 8-bit registers designated by the letters RH (R0H to R7H) and to R7L). These registers are functionally equivalent, providing a maximum of sixteen 8-registers.

The usage of each register can be selected independently.

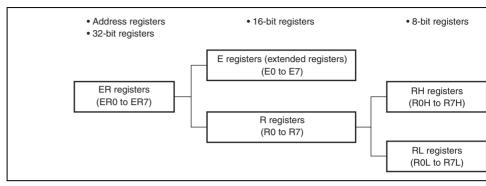


Figure 2.3 Usage of General Registers

General register ER7 has the function of stack pointer (SP) in addition to its general-reg function, and is used implicitly in exception handling and subroutine calls. Figure 2.4 sh stack.

Figure 2.4 Relationship between Stack Pointer and Stack Area

2.2.2 Program Counter (PC)

This 24-bit counter indicates the address of the next instruction the CPU will execute. The of all CPU instructions is 2 bytes (one word), so the least significant PC bit is ignored. (W instruction is fetched, the least significant PC bit is regarded as 0). The PC is initialized w start address is loaded by the vector address generated during reset exception-handling se

2.2.3 Condition-Code Register (CCR)

This 8-bit register contains internal CPU status information, including an interrupt mask half-carry (H), negative (N), zero (Z), overflow (V), and carry (C) flags. The I bit is initial by reset exception-handling sequence, but other bits are not initialized.

Some instructions leave flag bits unchanged. Operations can be performed on the CCR bit LDC, STC, ANDC, ORC, and XORC instructions. The N, Z, V, and C flags are used as be conditions for conditional branch (Bcc) instructions.

For the action of each instruction on the flag bits, see Appendix A.1, Instruction List.

Rev. 4.00 Sep. 23, 2005 Page 14 of 354 REJ09B0025-0400

				or NEG.B instruction is executed, this flag is a there is a carry or borrow at bit 3, and cleared otherwise. When the ADD.W, SUB.W, CMP.N NEG.W instruction is executed, the H flag is a there is a carry or borrow at bit 11, and cleared otherwise. When the ADD.L, SUB.L, CMP.L, instruction is executed, the H flag is set to 1 in carry or borrow at bit 27, and cleared to 0 oth
4	U	Undefined	R/W	User Bit
				Can be written and read by software using the STC, ANDC, ORC, and XORC instructions.
3	Ν	Undefined	R/W	Negative Flag
				Stores the value of the most significant bit of sign bit.
2	Z	Undefined	R/W	Zero Flag
				Set to 1 to indicate zero data, and cleared to indicate non-zero data.
1	V	Undefined	R/W	Overflow Flag
				Set to 1 when an arithmetic overflow occurs, cleared to 0 at other times.
0	С	Undefined	R/W	Carry Flag
				Set to 1 when a carry occurs, and cleared to otherwise. Used by:
				Add instructions, to indicate a carry
				Subtract instructions, to indicate a borrow
				• Shift and rotate instructions, to indicate a
				The carry flag is also used as a bit accumulat manipulation instructions.

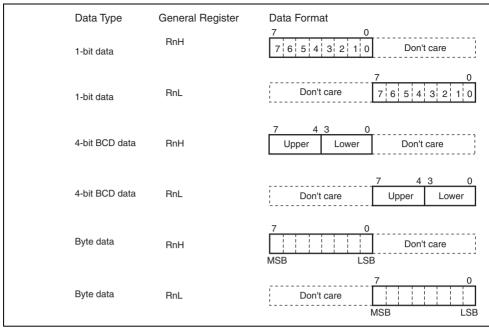


Figure 2.5 General Register Data Formats (1)

Rev. 4.00 Sep. 23, 2005 Page 16 of 354 REJ09B0025-0400

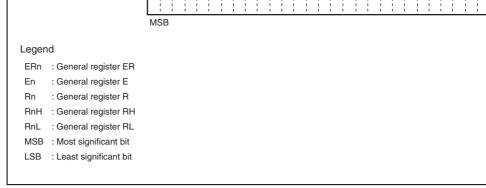


Figure 2.5 General Register Data Formats (2)

Data Type	Address	Data Format							
			_		_	-	_		_
		7							0
1-bit data	Address L	7	6	5	4	3	2	1	0
Byte data	Address L	MSB	s:					ļ	LSB
									<u> </u>
Word data	Address 2M	MSB	1	:				:	
	Address 2M+1	1		- - -		- - -			LSB
Longword data	Address 2N	MSB	i.	:			:	i	;
	Address 2N+1		-	:					
	Address 2N+2			1	1	1	1		
	Address 2N+3								LSB
			_	_	_	_			
								_	

Figure 2.6 Memory Data Formats

Rev. 4.00 Sep. 23, 2005 Page 18 of 354 REJ09B0025-0400

General register (source)*
General register*
General register (32-bit register or address register)
Destination operand
Source operand
Condition-code register
N (negative) flag in CCR
Z (zero) flag in CCR
V (overflow) flag in CCR
C (carry) flag in CCR
Program counter
Stack pointer
Immediate data
Displacement
Addition
Subtraction
Multiplication
Division
Logical AND
Logical OR
Logical XOR
Move
NOT (logical complement)

RENESAS

MOVF	PE	В	(EAs) \rightarrow Rd, Cannot be used in this LSI.
MOVT	PE	В	$\text{Rs} \rightarrow $ (EAs) Cannot be used in this LSI.
POP		W/L	$@SP+ \rightarrow Rn$ Pops a general register from the stack. POP.W Rn is identical t MOV.W @SP+, Rn. POP.L ERn is identical to MOV.L @SP+, E
PUSH		W/L	$Rn \rightarrow @-SP$ Pushes a general register onto the stack. PUSH.W Rn is identic MOV.W Rn, @-SP. PUSH.L ERn is identical to MOV.L ERn, @
Note:	* Ref	ers to the	operand size.
	B: Byte	•	
	W: Wo	rd	

L: Longword

Rev. 4.00 Sep. 23, 2005 Page 20 of 354 REJ09B0025-0400

DEC	_,	Increments or decrements a general register by 1 or 2. (Byte c can be incremented or decremented by 1 only.)
ADDS SUBS	L	$\label{eq:Rd_target} \begin{array}{l} Rd \pm 1 \to Rd, Rd \pm 2 \to Rd, Rd \pm 4 \to Rd \\ \text{Adds or subtracts the value 1, 2, or 4 to or from data in a 32-b} \end{array}$
DAA DAS	В	Rd decimal adjust \rightarrow Rd Decimal-adjusts an addition or subtraction result in a general r referring to the CCR to produce 4-bit BCD data.
MULXU	J B/W	$Rd \times Rs \rightarrow Rd$ Performs unsigned multiplication on data in two general regist 8 bits × 8 bits \rightarrow 16 bits or 16 bits × 16 bits \rightarrow 32 bits.
MULXS	S B/W	$Rd \times Rs \rightarrow Rd$ Performs signed multiplication on data in two general registers bits $\times 8$ bits $\rightarrow 16$ bits or 16 bits $\times 16$ bits $\rightarrow 32$ bits.
DIVXU	B/W	$Rd \div Rs \rightarrow Rd$ Performs unsigned division on data in two general registers: e bits ÷ 8 bits \rightarrow 8-bit quotient and 8-bit remainder or 32 bits ÷ 1 16-bit quotient and 16-bit remainder.
Note:	* Refers to the B: Byte	e operand size.

W: Word

L: Longword

RENESAS

		Takes the two's complement (arithmetic complement) of data in general register.
EXTU	W/L	Rd (zero extension) \rightarrow Rd Extends the lower 8 bits of a 16-bit register to word size, or the bits of a 32-bit register to longword size, by padding with zeros left.
EXTS	W/L	Rd (sign extension) \rightarrow Rd Extends the lower 8 bits of a 16-bit register to word size, or the bits of a 32-bit register to longword size, by extending the sign l
Note:	* Refers to the	operand size.
	B: Byte	

B: Byte

W: Word

L: Longword

Table 2.4 Logic Operations Instructions

Instruction	Size*	Function
AND	B/W/L	$Rd \wedge Rs \rightarrow Rd$, $Rd \wedge #IMM \rightarrow Rd$ Performs a logical AND operation on a general register and and general register or immediate data.
OR	B/W/L	$Rd \lor Rs \rightarrow Rd$, $Rd \lor \#IMM \rightarrow Rd$ Performs a logical OR operation on a general register and anot general register or immediate data.
XOR	B/W/L	$Rd \oplus Rs \rightarrow Rd$, $Rd \oplus #IMM \rightarrow Rd$ Performs a logical exclusive OR operation on a general register another general register or immediate data.
NOT	B/W/L	\neg (Rd) \rightarrow (Rd) Takes the one's complement of general register contents.

Rev. 4.00 Sep. 23, 2005 Page 22 of 354 REJ09B0025-0400

SHLR		Performs a logical shift on general register contents.
ROTL	B/W/L	$Rd (rotate) \to Rd$
ROTR		Rotates general register contents.
ROTXL	B/W/L	Rd (rotate) $\rightarrow Rd$
ROTXR		Rotates general register contents through the carry flag.
Note: * Re	efers to the	operand size.
B: By	te	

W: Word

L: Longword

	-	Inverts a specified bit in a general register or memory operand. number is specified by 3-bit immediate data or the lower three general register.
BTST	В	¬ (<bit-no.> of <ead>) → Z Tests a specified bit in a general register or memory operand a or clears the Z flag accordingly. The bit number is specified by immediate data or the lower three bits of a general register.</ead></bit-no.>
BAND	В	$C \land (\text{-bit-No.> of -EAd>}) \rightarrow C$ ANDs the carry flag with a specified bit in a general register or operand and stores the result in the carry flag.
BIAND	В	$C \land \neg$ (<bit-no.> of <ead>) $\rightarrow C$ ANDs the carry flag with the inverse of a specified bit in a gene register or memory operand and stores the result in the carry fl The bit number is specified by 3-bit immediate data.</ead></bit-no.>
BOR	В	$C \lor ($ bit-No.> of <ead>) $\rightarrow C$ ORs the carry flag with a specified bit in a general register or m operand and stores the result in the carry flag.</ead>
BIOR	В	$C \lor \neg$ (<bit-no.> of <ead>) $\rightarrow C$ ORs the carry flag with the inverse of a specified bit in a general or memory operand and stores the result in the carry flag. The bit number is specified by 3-bit immediate data.</ead></bit-no.>
Note: *	Refere to the	a onerand size

Note: * Refers to the operand size.

B: Byte

Rev. 4.00 Sep. 23, 2005 Page 24 of 354 REJ09B0025-0400

		carry flag.
BILD	В	\neg (<bit-no.> of <ead>) \rightarrow C Transfers the inverse of a specified bit in a general register or operand to the carry flag. The bit number is specified by 3-bit immediate data.</ead></bit-no.>
BST	В	$C \rightarrow$ (<bit-no.> of <ead>) Transfers the carry flag value to a specified bit in a general req memory operand.</ead></bit-no.>
BIST	В	$\neg C \rightarrow (\text{-bit-No.> of })$ Transfers the inverse of the carry flag value to a specified bit i general register or memory operand. The bit number is specified by 3-bit immediate data.
Note: *	Befers to the	e operand size.

Note: * Refers to the operand size.

B: Byte

BCC(BHS)	Carry clear (high or same)	C = 0
BCS(BLO)	Carry set (low)	C = 1
BNE	Not equal	Z = 0
BEQ	Equal	Z = 1
BVC	Overflow clear	V = 0
BVS	Overflow set	V = 1
BPL	Plus	N = 0
BMI	Minus	N = 1
BGE	Greater or equal	$N \oplus V = 0$
BLT	Less than	N ⊕ V = 1
BGT	Greater than	$Z \lor (N \oplus V) = 0$
BLE	Less or equal	$Z \vee (N \oplus V) = 1$

JMP	—	Branches unconditionally to a specified address.
BSR	—	Branches to a subroutine at a specified address.
JSR	—	Branches to a subroutine at a specified address.
RTS	—	Returns from a subroutine

Note: * Bcc is the general name for conditional branch instructions.

Rev. 4.00 Sep. 23, 2005 Page 26 of 354 REJ09B0025-0400

		code register size is one byte, but in transfer to memory, data by word access.
ANDC	В	CCR \land #IMM \rightarrow CCR, EXR \land #IMM \rightarrow EXR Logically ANDs the CCR with immediate data.
ORC	В	CCR \lor #IMM \rightarrow CCR, EXR \lor #IMM \rightarrow EXR Logically ORs the CCR with immediate data.
XORC	В	$CCR \oplus \#IMM \rightarrow CCR$, EXR $\oplus \#IMM \rightarrow EXR$ Logically XORs the CCR with immediate data.
NOP		$PC + 2 \rightarrow PC$ Only increments the program counter.
NI		

Note: * Refers to the operand size.

B: Byte

W: Word

else next;

Transfers a data block. Starting from the address set in ER5, tr data for the number of bytes set in R4L or R4 to the address loo in ER6.

Execution of the next instruction begins as soon as the transfer completed.

2.4.2 Basic Instruction Formats

H8/300H CPU instructions consist of 2-byte (1-word) units. An instruction consists of an operation field (op field), a register field (r field), an effective address extension (EA field condition field (cc).

Figure 2.7 shows examples of instruction formats.

• Operation Field

Indicates the function of the instruction, the addressing mode, and the operation to be out on the operand. The operation field always includes the first four bits of the instru Some instructions have two operation fields.

• Register Field

Specifies a general register. Address registers are specified by 3 bits, and data register bits or 4 bits. Some instructions have two register fields. Some have no register field.

• Effective Address Extension

8, 16, or 32 bits specifying immediate data, an absolute address, or a displacement. Az address or displacement is treated as a 32-bit data in which the first 8 bits are 0 (H'00)

• Condition Field

Specifies the branching condition of Bcc instructions.

Rev. 4.00 Sep. 23, 2005 Page 28 of 354 REJ09B0025-0400

(4) O	peration field, e	effective addre	ss extension, and condition fi	eld
	ор	сс	EA(disp)	BRA d:8
				•

Figure 2.7 Instruction Formats

Arithmetic and logic instructions can use the register direct and immediate modes. Data to instructions can use all addressing modes except program-counter relative and memory in Bit manipulation instructions use register direct, register indirect, or the absolute addressi to specify an operand, and register direct (BSET, BCLR, BNOT, and BTST instructions) immediate (3-bit) addressing mode to specify a bit number in the operand.

No.	Addressing Mode	Symbol
1	Register direct	Rn
2	Register indirect	@ERn
3	Register indirect with displacement	@(d:16,ERn)/@(d:24,ERn)
4	Register indirect with post-increment Register indirect with pre-decrement	@ERn+ @-ERn
5	Absolute address	@aa:8/@aa:16/@aa:24
6	Immediate	#xx:8/#xx:16/#xx:32
7	Program-counter relative	@(d:8,PC)/@(d:16,PC)
8	Memory indirect	@@aa:8

Table 2.10 Addressing Modes

Rev. 4.00 Sep. 23, 2005 Page 30 of 354 REJ09B0025-0400

A 16-bit or 24-bit displacement contained in the instruction is added to an address regist specified by the register field of the instruction, and the lower 24 bits of the sum the add memory operand. A 16-bit displacement is sign-extended when added.

(4) Register Indirect with Post-Increment or Pre-Decrement—@ERn+ or @-ER

• Register indirect with post-increment—@ERn+

The register field of the instruction code specifies an address register (ERn) the lower of which contains the address of a memory operand. After the operand is accessed, 1 added to the address register contents (32 bits) and the sum is stored in the address re The value added is 1 for byte access, 2 for word access, or 4 for longword access. For or longword access, the register value should be even.

Register indirect with pre-decrement—@-ERn
 The value 1, 2, or 4 is subtracted from an address register (ERn) specified by the reg
 in the instruction code, and the lower 24 bits of the result is the address of a memory
 The result is also stored in the address register. The value subtracted is 1 for byte acc
 word access, or 4 for longword access. For the word or longword access, the register
 should be even.

(5) Absolute Address—@aa:8, @aa:16, @aa:24

The instruction code contains the absolute address of a memory operand. The absolute a may be 8 bits long (@aa:8), 16 bits long (@aa:16), 24 bits long (@aa:24)

For an 8-bit absolute address, the upper 16 bits are all assumed to be 1 (H'FFFF). For a 2 absolute address the upper 8 bits are a sign extension. A 24-bit absolute address can accelentire address space.

RENESAS

(0) Infinediate #AA.0, #AA.10, 01 #AA.52

The instruction contains 8-bit (#xx:8), 16-bit (#xx:16), or 32-bit (#xx:32) immediate data operand.

The ADDS, SUBS, INC, and DEC instructions contain immediate data implicitly. Some manipulation instructions contain 3-bit immediate data in the instruction code, specifying number. The TRAPA instruction contains 2-bit immediate data in its instruction code, spevector address.

(7) Program-Counter Relative—@(d:8, PC) or @(d:16, PC)

This mode is used in the BSR instruction. An 8-bit or 16-bit displacement contained in the instruction is sign-extended and added to the 24-bit PC contents to generate a branch add PC value to which the displacement is added is the address of the first byte of the next instructions to possible branching range is -126 to +128 bytes (-63 to +64 words) or -32766 to +128 bytes (-16383 to +16384 words) from the branch instruction. The resulting value should even number.

(8) Memory Indirect—@@aa:8

This mode can be used by the JMP and JSR instructions. The instruction code contains ar absolute address specifying a memory operand. This memory operand contains a branch a The memory operand is accessed by longword access. The first byte of the memory operand ignored, generating a 24-bit branch address. Figure 2.8 shows how to specify branch address memory indirect mode. The upper bits of the absolute address are all assumed to be 0, so address range is 0 to 255 (H'0000 to H'00FF).

Note that the first part of the address range is also the exception vector area.

Rev. 4.00 Sep. 23, 2005 Page 32 of 354 REJ09B0025-0400

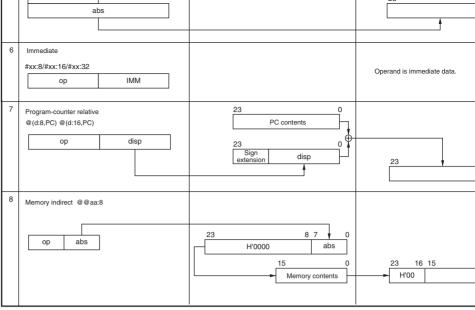

2.5.2 Effective Address Calculation

Table 2.12 indicates how effective addresses are calculated in each addressing mode. In the upper 8 bits of the effective address are ignored in order to generate a 16-bit effective

Table 2.12	Effective	Address	Calculation	(1)
				(-)

No	Addressing Mode and Instruction Format	Effective Address Calculation	Effective Address (E
1	Register direct(Rn) op rm rn		Operand is general register cor
2	Register indirect(@ERn)	31 0 General register contents	23
3	Register indirect with displacement @(d:16,ERn) or @(d:24,ERn)	31 0 General register contents 31 0 Sign extension disp	23
4	Register indirect with post-increment or pre-decrement •Register indirect with post-increment @ERn+ op r •Register indirect with pre-decrement @-ERn op r op r	31 General register contents 1, 2, or 4 General register contents 1, 2, or 4 The value to be added or subtracted is 1 when the operand is byte size, 2 for word size, and 4 for longword size.	23

RENESAS

Legend

r, rm,rn : Register field

op : Operation field

disp : Displacement

IMM : Immediate data

abs : Absolute address

Rev. 4.00 Sep. 23, 2005 Page 34 of 354 REJ09B0025-0400

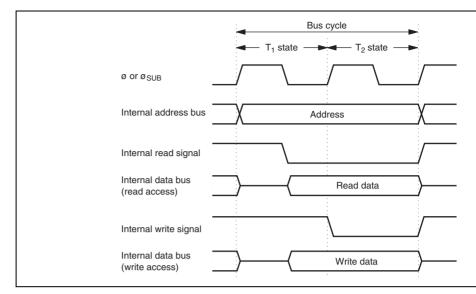


Figure 2.9 On-Chip Memory Access Cycle

Renesas

module.

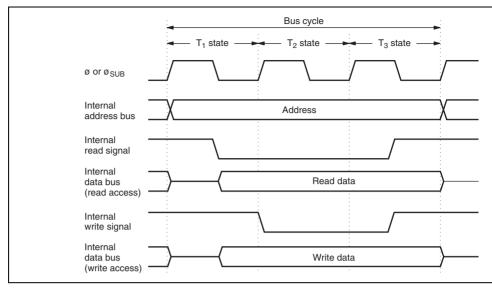


Figure 2.10 On-Chip Peripheral Module Access Cycle (3-State Access)

Rev. 4.00 Sep. 23, 2005 Page 36 of 354 REJ09B0025-0400

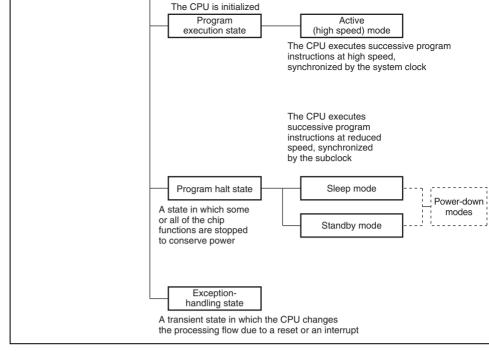


Figure 2.11 CPU Operation States

2.8 Usage Notes

2.8.1 Notes on Data Access to Empty Areas

The address space of this LSI includes empty areas in addition to the ROM, RAM, and or I/O registers areas available to the user. When data is transferred from CPU to empty area transferred data will be lost. This action may also cause the CPU to malfunction. When d transferred from an empty area to CPU, the contents of the data cannot be guaranteed.

2.8.2 EEPMOV Instruction

EEPMOV is a block-transfer instruction and transfers the byte size of data indicated by R which starts from the address indicated by R5, to the address indicated by R6. Set R4L ar that the end address of the destination address (value of R6 + R4L) does not exceed H'FF value of R6 must not change from H'FFFF to H'0000 during execution).

2.8.3 Bit Manipulation Instruction

The BSET, BCLR, BNOT, BST, and BIST instructions read data from the specified address byte units, manipulate the data of the target bit, and write data to the same address again is units. Special care is required when using these instructions in cases where two registers a assigned to the same address or when a bit is directly manipulated for a port, because this rewrite data of a bit other than the bit to be manipulated.

Rev. 4.00 Sep. 23, 2005 Page 38 of 354 REJ09B0025-0400

- 2. The CPU sets or resets the bit to be manipulated with the bit manipulation instruction
- 3. The written data is written again in byte units to the timer load register.

The timer is counting, so the value read is not necessarily the same as the value in the timer egister. As a result, bits other than the intended bit in the timer counter may be modified modified value may be written to the timer load register.

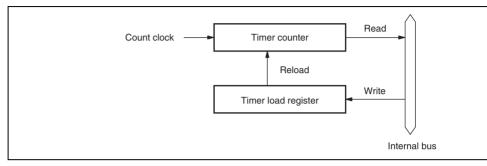


Figure 2.13 Example of Timer Configuration with Two Registers Allocated Same Address

PCR5	0	0	1	1	1	1	1	
PDR5	1	0	0	0	0	0	0	

• BSET instruction executed

BSET	#O,	@PDR5	

The BSET instruction is executed for port 5.

• After executing BSET

	P57	P56	P55	P54	P53	P52	P51
Input/output	Input	Input	Output	Output	Output	Output	Output
Pin state	Low level	High level	Low level	Low level	Low level	Low level	Low level
PCR5	0	0	1	1	1	1	1
PDR5	0	1	0	0	0	0	0

- Description on operation
- 1. When the BSET instruction is executed, first the CPU reads port 5.

Since P57 and P56 are input pins, the CPU reads the pin states (low-level and high-levinput).

P55 to P50 are output pins, so the CPU reads the value in PDR5. In this example PDF value of H'80, but the value read by the CPU is H'40.

- 2. Next, the CPU sets bit 0 of the read data to 1, changing the PDR5 data to H'41.
- 3. Finally, the CPU writes H'41 to PDR5, completing execution of BSET.

Rev. 4.00 Sep. 23, 2005 Page 40 of 354 REJ09B0025-0400

Input/output	Input	Input	Output	Output	Output	Output	Output
Pin state	Low level	High level	Low level	Low level	Low level	Low level	Low level
PCR5	0	0	1	1	1	1	1
PDR5	1	0	0	0	0	0	0
RAM0	1	0	0	0	0	0	0

• BSET instruction executed

BSET #0, @RAMO

The BSET instruction is executed designating the work area (RAM0).

• After executing BSET

MOV.B @RAM0, R0L MOV.B R0L, @PDR5 The work area (RAM0) value is written to PDR5

	P57	P56	P55	P54	P53	P52	P51
Input/output	Input	Input	Output	Output	Output	Output	Output
Pin state	Low level	High level	Low level	Low level	Low level	Low level	Low level
PCR5	0	0	1	1	1	1	1
PDR5	1	0	0	0	0	0	0
RAM0	1	0	0	0	0	0	0

Renesas

Input/output	Input	Input	Output	Output	Output	Output	Output
Pin state	Low level	High level	Low level	Low level	Low level	Low level	Low level
PCR5	0	0	1	1	1	1	1
PDR5	1	0	0	0	0	0	0

BCLR instruction executed

BCLR #0, @PCR5

The BCLR instruction is executed for PCR5.

• After executing BCLR

	P57	P56	P55	P54	P53	P52	P51
Input/output	Output	Output	Output	Output	Output	Output	Output
Pin state	Low level	High level	Low level	Low level	Low level	Low level	Low level
PCR5	1	1	1	1	1	1	1
PDR5	1	0	0	0	0	0	0

Description on operation

- 1. When the BCLR instruction is executed, first the CPU reads PCR5. Since PCR5 is a v register, the CPU reads a value of H'FF, even though the PCR5 value is actually H'3F
- 2. Next, the CPU clears bit 0 in the read data to 0, changing the data to H'FE.
- 3. Finally, H'FE is written to PCR5 and BCLR instruction execution ends. As a result of this operation, bit 0 in PCR5 becomes 0, making P50 an input port. How bits 7 and 6 in PCR5 change to 1, so that P57 and P56 change from input pins to outp To prevent this problem, store a copy of the PCR5 data in a work area in memory and manipulate data of the bit in the work area, then write this data to PCR5.

Rev. 4.00 Sep. 23, 2005 Page 42 of 354 REJ09B0025-0400

RENESAS

PDR5	1	0	0	0	0	0	0	
RAM0	0	0	1	1	1	1	1	

• BCLR instruction executed

BCLR #0, @RAMO

The BCLR instructions executed for the PCR5 w (RAM0).

• After executing BCLR

MOV.B	@RAMO, ROL	
MOV.B	ROL, @PCR5	

The work area (RAM0) value is written to PCR5

	P57	P56	P55	P54	P53	P52	P51
Input/output	Input	Input	Output	Output	Output	Output	Output
Pin state	Low level	High level	Low level	Low level	Low level	Low level	Low level
PCR5	0	0	1	1	1	1	1
PDR5	1	0	0	0	0	0	0
RAM0	0	0	1	1	1	1	1

RENESAS

Rev. 4.00 Sep. 23, 2005 Page 44 of 354 REJ09B0025-0400

Exception nationing starts when a trap instruction (TKAFA) is executed. The TKAFA in generates a vector address corresponding to a vector number from 0 to 3, as specified in instruction code. Exception handling can be executed at all times in the program execution

• Interrupts

External interrupts other than NMI and internal interrupts other than address break are n the I bit in CCR, and kept masked while the I bit is set to 1. Exception handling starts w current instruction or exception handling ends, if an interrupt request has been issued.

3.1 **Exception Sources and Vector Address**

Table 3.1 shows the vector addresses and priority of each exception handling. When mo one interrupt is requested, handling is performed from the interrupt with the highest price

Relative Module	Exception Sources	Vector Number	Vector Address
RES pin Watchdog timer	Reset	0	H'0000 to H'0001
—	Reserved for system use	1 to 6	H'0002 to H'000D
External interrupt pin	NMI	7	H'000E to H'000F
CPU	Trap instruction (#0)	8	H'0010 to H'0011
	(#1)	9	H'0012 to H'0013
	(#2)	10	H'0014 to H'0015
	(#3)	11	H'0016 to H'0017
Address break	Break conditions satisfied	12	H'0018 to H'0019

Table 3.1 **Exception Sources and Vector Address**

Rev. 4.00 Sep. 23, 2005 Pa

RENESAS

REJ09

	Timer W input capture B /compare match B Timer W input capture C /compare match C Timer W input capture D /compare match D Timer W overflow		
Timer V	Timer V compare match A Timer V compare match B Timer V overflow	22	H'002C to H'002D
SCI3	SCI3 receive data full SCI3 transmit data empty SCI3 transmit end SCI3 receive error	23	H'002E to H'002F
A/D converter	A/D conversion end	25	H'0032 to H'0033
SCI3_2	SCI3_2 receive data full SCI3_2 transmit data empty SCI3_2 transmit end SCI3_2 receive error	32	H'0040 to H'0041
SCI3_3* ²	SCI3_3 receive data full SCI3_3 transmit data empty SCI3_3 transmit end SCI3_3 receive error	34	H'0044 to H'0045

on reset and low-voltage detection circuit.

2. The SCI3_3 function is incorporated in the H8/36024.

Rev. 4.00 Sep. 23, 2005 Page 46 of 354 REJ09B0025-0400

5.2.1 Interrupt Euge Select Register 1 (IEGR1)

IEGR1 selects the direction of an edge that generates interrupt requests of pins and $\overline{IRQ0}$.

Bit Name	Initial Value	R/W	Description
_	0	-	Reserved
			This bit is always read as 0.
_	All 1		Reserved
			These bits are always read as 1.
IEG3	0	R/W	IRQ3 Edge Select
			0: Falling edge of IRQ3 pin input is detected
			1: Rising edge of $\overline{IRQ3}$ pin input is detected
_	All 0		Reserved
			These bits are always read as 0.
IEG0	0	R/W	IRQ0 Edge Select
			0: Falling edge of IRQ0 pin input is detected
			1: Rising edge of $\overline{IRQ0}$ pin input is detected
	 IEG3 	Bit Name Value 0 All 1 IEG3 0 All 0	Bit Name Value R/W 0 - All 1 IEG3 0 R/W All 0

RENESAS

				0: Falling edge of WKP5 (ADTRG) pin input is de
				1: Rising edge of $\overline{WKP5}$ (\overline{ADTRG}) pin input is de
4	WPEG4	0	R/W	WKP4 Edge Select
				0: Falling edge of WKP4 pin input is detected
				1: Rising edge of $\overline{WKP4}$ pin input is detected
3	WPEG3	0	R/W	WKP3 Edge Select
				0: Falling edge of $\overline{WKP3}$ pin input is detected
				1: Rising edge of $\overline{WKP3}$ pin input is detected
2	WPEG2	0	R/W	WKP2 Edge Select
				0: Falling edge of WKP2 pin input is detected
				1: Rising edge of $\overline{WKP2}$ pin input is detected
1	WPEG1	0	R/W	WKP1Edge Select
				0: Falling edge of WKP1 pin input is detected
				1: Rising edge of $\overline{WKP1}$ pin input is detected
0	WPEG0	0	R/W	WKP0 Edge Select
				0: Falling edge of WKP0 pin input is detected
				1: Rising edge of $\overline{WKP0}$ pin input is detected

Rev. 4.00 Sep. 23, 2005 Page 48 of 354 REJ09B0025-0400

5	IENWP	0	R/W	Wakeup Interrupt Enable
				This bit is an enable bit, which is common to th $\overline{WKP5}$ to $\overline{WKP0}$. When the bit is set to 1, interrace requests are enabled.
4		1	—	Reserved
				This bit is always read as 1.
3	IEN3	0	R/W	IRQ3 Interrupt Enable
				When this bit is set to 1, interrupt requests of th are enabled.
2, 1	_	All 0	_	Reserved
				These bits are always read as 0.
0	IEN0	0	R/W	IRQ0 Interrupt Enable
				When this bit is set to 1, interrupt requests of th are enabled.

When disabling interrupts by clearing bits in an interrupt enable register, or when clearing an interrupt flag register, always do so while interrupts are masked (I = 1). If the above operations are performed while I = 0, and as a result a conflict arises between the clear if and an interrupt request, exception handling for the interrupt will be executed after the client instruction has been executed.

				When IRRDT is cleared by writing 0
6	_	0	_	Reserved
				This bit is always read as 0.
5, 4	_	All 1	_	Reserved
				These bits are always read as 1.
3	IRRI3	0	R/W	IRQ3 Interrupt Request Flag
				[Setting condition]
				When IRQ3 pin is designated for interrupt input a designated signal edge is detected.
				[Clearing condition]
				When IRRI3 is cleared by writing 0
2, 1	_	All 0	_	Reserved
				These bits are always read as 0.
0	IRRI0	0	R/W	IRQ0 Interrupt Request Flag
				[Setting condition]
				When IRQ0 pin is designated for interrupt input a designated signal edge is detected.
				[Clearing condition]
				When IRRI0 is cleared by writing 0

Rev. 4.00 Sep. 23, 2005 Page 50 of 354 REJ09B0025-0400

				[Clearing condition]
				When IWPF5 is cleared by writing 0.
4	IWPF4	0	R/W	WKP4 Interrupt Request Flag
				[Setting condition]
				When $\overline{WKP4}$ pin is designated for interrupt inp designated signal edge is detected.
				[Clearing condition]
				When IWPF4 is cleared by writing 0.
3	IWPF3	0	R/W	WKP3 Interrupt Request Flag
				[Setting condition]
				When $\overline{WKP3}$ pin is designated for interrupt input designated signal edge is detected.
				[Clearing condition]
				When IWPF3 is cleared by writing 0.
2	IWPF2	0	R/W	WKP2 Interrupt Request Flag
				[Setting condition]
				When $\overline{WKP2}$ pin is designated for interrupt input designated signal edge is detected.
				[Clearing condition]
				When IWPF2 is cleared by writing 0.
1	IWPF1	0	R/W	WKP1 Interrupt Request Flag
				[Setting condition]
				When $\overline{WKP1}$ pin is designated for interrupt input designated signal edge is detected.
				[Clearing condition]
				When IWPF1 is cleared by writing 0.
				Rev. 4.00 Sep. 23, 2005 Pa REJOS

Sis Reset Exception Hundring

When the $\overline{\text{RES}}$ pin goes low, all processing halts and this LSI enters the reset. The internative CPU and the registers of the on-chip peripheral modules are initialized by the reset. That this LSI is reset at power-up, hold the $\overline{\text{RES}}$ pin low until the clock pulse generator out stabilizes. To reset the chip during operation, hold the $\overline{\text{RES}}$ pin low for at least 10 system cycles. When the $\overline{\text{RES}}$ pin goes high after being held low for the necessary time, this LSI reset exception handling. The reset exception handling sequence is shown in figure 3.1.

The reset exception handling sequence is as follows. However, for the reset exception has sequence of the product with on-chip power-on reset circuit, refer to section 15, Power-O and Low-Voltage Detection Circuits (Optional).

- 1. Set the I bit in the condition code register (CCR) to 1.
- 2. The CPU generates a reset exception handling vector address (from H'0000 to H'0001 data in that address is sent to the program counter (PC) as the start address, and program execution starts from that address.

Rev. 4.00 Sep. 23, 2005 Page 52 of 354 REJ09B0025-0400

CCR.

(2) IRQ3 to IRQ0 Interrupts

IRQ3 to IRQ0 interrupts are requested by input signals to pins $\overline{IRQ3}$ to $\overline{IRQ0}$. These four interrupts are given different vector addresses, and are detected individually by either riss sensing or falling edge sensing, depending on the settings of bits IEG3 to IEG0 in IEGR

When pins $\overline{IRQ3}$ to $\overline{IRQ0}$ are designated for interrupt input in PMR1 and the designated edge is input, the corresponding bit in IRR1 is set to 1, requesting the CPU of an interru IRQ3 to IRQ0 interrupt is accepted, the I bit is set to 1 in CCR. These interrupts can be setting bits IEN3 to IEN0 in IENR1.

(3) WKP5 to WKP0 Interrupts

WKP5 to WKP0 interrupts are requested by input signals to pins $\overline{WKP5}$ to $\overline{WKP0}$. These interrupts have the same vector addresses, and are detected individually by either rising sensing or falling edge sensing, depending on the settings of bits WPEG5 to WPEG0 in

When pins $\overline{WKP5}$ to $\overline{WKP0}$ are designated for interrupt input in PMR5 and the designated edge is input, the corresponding bit in IWPR is set to 1, requesting the CPU of an interrupt interrupts can be masked by setting bit IENWP in IENR1.

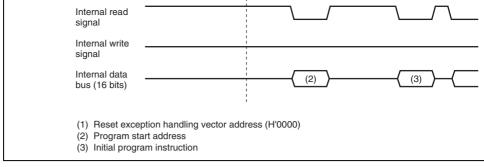


Figure 3.1 Reset Sequence

3.4.2 Internal Interrupts

Each on-chip peripheral module has a flag to show the interrupt request status and the ena enable or disable the interrupt. For direct transfer interrupt requests generated by execution SLEEP instruction, this function is included in IRR1 and IENR1.

When an on-chip peripheral module requests an interrupt, the corresponding interrupt req status flag is set to 1, requesting the CPU of an interrupt. When this interrupt is accepted, is set to 1 in CCR. These interrupts can be masked by writing 0 to clear the corresponding bit.

Rev. 4.00 Sep. 23, 2005 Page 54 of 354 REJ09B0025-0400

- 3. The CPU accepts the NMI or address break without depending on the I bit value. Oth interrupt requests are accepted, if the I bit is cleared to 0 in CCR; if the I bit is set to interrupt request is held pending.
- 4. If the CPU accepts the interrupt after processing of the current instruction is complete interrupt exception handling will begin. First, both PC and CCR are pushed onto the state of the stack at this time is shown in figure 3.2. The PC value pushed onto the st address of the first instruction to be executed upon return from interrupt handling.
- 5. Then, the I bit of CCR is set to 1, masking further interrupts excluding the NMI and break. Upon return from interrupt handling, the values of I bit and other bits in CCR restored and returned to the values prior to the start of interrupt exception handling.
- 6. Next, the CPU generates the vector address corresponding to the accepted interrupt, transfers the address to PC as a start address of the interrupt handling-routine. Then starts executing from the address indicated in PC.

Figure 3.3 shows a typical interrupt sequence where the program area is in the on-chip F the stack area is in the on-chip RAM.

PCL:	nd: Upper 8 bits of program counter (PC) Lower 8 bits of program counter (PC) Condition code register Stack pointer
Notes	 PC shows the address of the first instruction to be executed upon return from the interrupt handling routine. Register contents must always be saved and restored by word length, starting from an even-numbered address. Ignored when returning from the interrupt handling routine.

Figure 3.2 Stack Status after Exception Handling

3.4.4 Interrupt Response Time

Table 3.2 shows the number of wait states after an interrupt request flag is set until the fir instruction of the interrupt handling-routine is executed.

Table 3.2Interrupt Wait States

Item	States	Total
Waiting time for completion of executing instruction*	1 to 23	15 to 37
Saving of PC and CCR to stack	4	
Vector fetch	2	
Instruction fetch	4	
Internal processing	4	

Note: * Not including EEPMOV instruction.

Rev. 4.00 Sep. 23, 2005 Page 56 of 354 REJ09B0025-0400

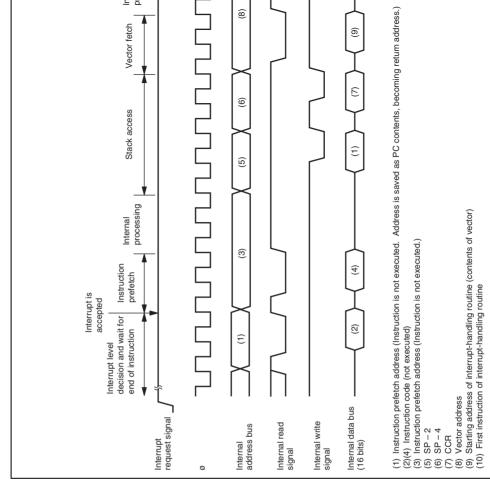


Figure 3.3 Interrupt Sequence

Renesas

3.5.2 Notes on Stack Area Use

When word data is accessed, the least significant bit of the address is regarded as 0. Access stack always takes place in word size, so the stack pointer (SP: R7) should never indicate address. Use PUSH Rn (MOV.W Rn, @-SP) or POP Rn (MOV.W @SP+, Rn) to save or register values.

3.5.3 Notes on Rewriting Port Mode Registers

When a port mode register is rewritten to switch the functions of external interrupt pins, \overline{I} IRQ0, and WKP5 to WKP0, the interrupt request flag may be set to 1.

Figure 3.4 shows a port mode register setting and interrupt request flag clearing procedur

When switching a pin function, mask the interrupt before setting the bit in the port mode After accessing the port mode register, execute at least one instruction (e.g., NOP), then c interrupt request flag from 1 to 0.

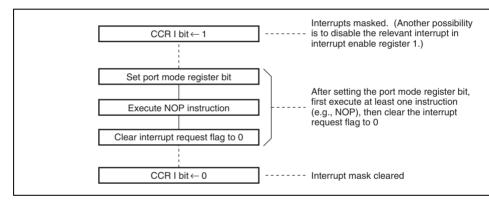


Figure 3.4 Port Mode Register Setting and Interrupt Request Flag Clearing Pro

Rev. 4.00 Sep. 23, 2005 Page 58 of 354 REJ09B0025-0400

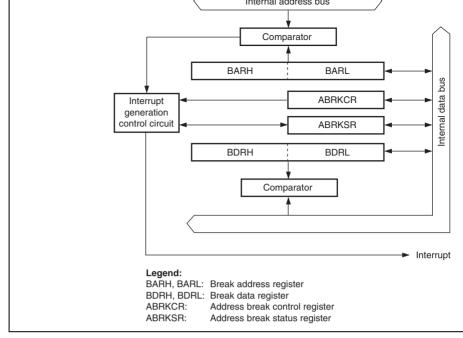


Figure 4.1 Block Diagram of Address Break

4.1 **Register Descriptions**

Address break has the following registers.

- Address break control register (ABRKCR)
- Address break status register (ABRKSR)
- Break address register (BARH, BARL)

ABK0001A_000020020200

RENESAS

				masked.
6	CSEL1	0	R/W	Condition Select 1 and 0
5	CSEL0	0	R/W	These bits set address break conditions.
				00: Instruction execution cycle
				01: CPU data read cycle
				10: CPU data write cycle
				11: CPU data read/write cycle
4	ACMP2	0	R/W	Address Compare Condition Select 2 to 0
3	ACMP1	0	R/W	These bits comparison condition between the ac
2	ACMP0	0	R/W	in BAR and the internal address bus.
				000: Compares 16-bit addresses
				001: Compares upper 12-bit addresses
				010: Compares upper 8-bit addresses
				011: Compares upper 4-bit addresses
				1XX: Reserved (setting prohibited)
1	DCMP1	0	R/W	Data Compare Condition Select 1 and 0
0	DCMP0	0	R/W	These bits set the comparison condition between set in BDR and the internal data bus.
				00: No data comparison
				01: Compares lower 8-bit data between BDRL a bus
				10: Compares upper 8-bit data between BDRH a bus
				11: Compares 16-bit data between BDR and data
Leger	nd: X: Don't ca	are.		

Legend: X: Don't care.

Rev. 4.00 Sep. 23, 2005 Page 60 of 354 REJ09B0025-0400

RENESAS

RAM space	Upper 8 bits	Lower 8 bits	Upper 8 bits	Uppe
I/O register with 8-bit data bus width	Upper 8 bits	Upper 8 bits	Upper 8 bits	Uppe
I/O register with 16-bit data bus width	Upper 8 bits	Lower 8 bits	—	_

4.1.2 Address Break Status Register (ABRKSR)

ABRKSR consists of the address break interrupt flag and the address break interrupt ena

		Initial		
Bit	Bit Name	Value	R/W	Description
7	ABIF	0	R/W	Address Break Interrupt Flag
				[Setting condition]
				When the condition set in ABRKCR is satisfied
				[Clearing condition]
				When 0 is written after ABIF=1 is read
6	ABIE	0	R/W	Address Break Interrupt Enable
				When this bit is 1, an address break interrupt re enabled.
5 to 0	_	All 1	_	Reserved
				These bits are always read as 1.

RENESAS

even and odd addresses in the data transmission. Therefore, comparison data must be set BDRH for byte access. For word access, the data bus used depends on the address. See 9 4.1.1, Address Break Control Register (ABRKCR), for details. The initial value of this reundefined.

4.2 **Operation**

When the ABIF and ABIE bits in ABRKSR are set to 1, the address break function gener interrupt request to the CPU. The ABIF bit in ABRKSR is set to 1 by the combination of address set in BAR, the data set in BDR, and the conditions set in ABRKCR. When the i request is accepted, interrupt exception handling starts after the instruction being execute. The address break interrupt is not masked because of the I bit in CCR of the CPU.

Rev. 4.00 Sep. 23, 2005 Page 62 of 354 REJ09B0025-0400

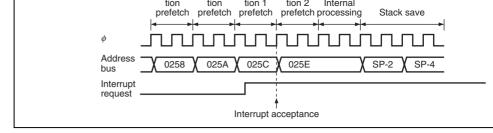


Figure 4.2 Address Break Interrupt Operation Example (1)

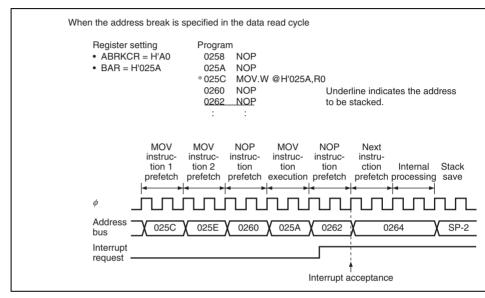


Figure 4.2 Address Break Interrupt Operation Example (2)

Renesas

Rev. 4.00 Sep. 23, 2005 Page 64 of 354 REJ09B0025-0400

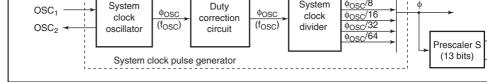


Figure 5.1 Block Diagram of Clock Pulse Generators

The basic clock signals that drive the CPU and on-chip peripheral modules are system c. The system clock is divided into $\phi/8192$ to $\phi/2$ by prescaler S and they are supplied to reperipheral modules.

5.1 System Clock Generator

Clock pulses can be supplied to the system clock divider either by connecting a crystal or resonator, or by providing external clock input. Figure 5.2 shows a block diagram of the clock generator.

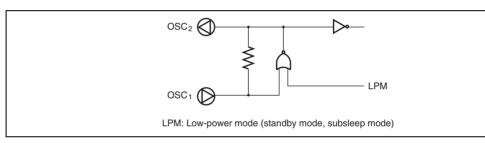
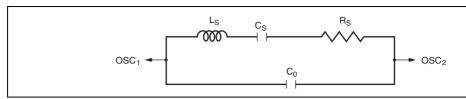


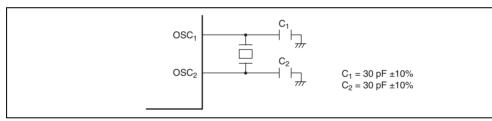
Figure 5.2 Block Diagram of System Clock Generator

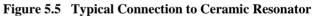
CPG0200A_000020020200

Renesas

Figure 5.3 Typical Connection to Crystal Resonator




Figure 5.4 Equivalent Circuit of Crystal Resonator


Table 5.1 Crystal Resonator Parameters

Frequency (MHz)	2	4	8	10	16	20
R _s (max)	500 Ω	120 Ω	80 Ω	60 Ω	50 Ω	40 Ω
C ₀ (max)	7 pF	7 pF	7 pF	7 pF	7 pF	7 pF

5.1.2 Connecting Ceramic Resonator

Figure 5.5 shows a typical method of connecting a ceramic resonator.

Rev. 4.00 Sep. 23, 2005 Page 66 of 354 REJ09B0025-0400

5.2 Prescalers

5.2.1 Prescaler S

Prescaler S is a 13-bit counter using the system clock (ϕ) as its input clock. It is increme per clock period. Prescaler S is initialized to H'0000 by a reset, and starts counting on exthe reset state. In standby mode and subsleep mode, the system clock pulse generator stor Prescaler S also stops and is initialized to H'0000. The CPU cannot read or write prescal

The output from prescaler S is shared by the on-chip peripheral modules. The divider raset separately for each on-chip peripheral function. In active mode and sleep mode, the or to prescaler S is determined by the division factor designated by MA2 to MA0 in SYSC

5.3 Usage Notes

5.3.1 Note on Resonators

Resonator characteristics are closely related to board design and should be carefully eva the user, referring to the examples shown in this section. Resonator circuit constants wil depending on the resonator element, stray capacitance in its interconnecting circuit, and factors. Suitable constants should be determined in consultation with the resonator element manufacturer. Design the circuit so that the resonator element never receives voltages ev its maximum rating.

RENESAS

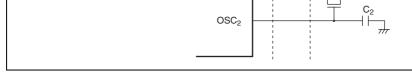


Figure 5.7 Example of Incorrect Board Design

Rev. 4.00 Sep. 23, 2005 Page 68 of 354 REJ09B0025-0400

The CPU halts. On-chip peripheral modules are operable on the system clock.

• Standby mode

The CPU and all on-chip peripheral modules halt.

• Subsleep mode

The CPU and all on-chip peripheral modules halt. I/O ports keep the same states as b transition.

• Module standby mode

Independent of the above modes, power consumption can be reduced by halting onperipheral modules that are not used in module units.

6.1 **Register Descriptions**

The registers related to power-down modes are listed below.

- System control register 1 (SYSCR1)
- System control register 2 (SYSCR2)
- Module standby control register 1 (MSTCR1)
- Module standby control register 2 (MSTCR2)

LPW3003A_000020020200

RENESAS

				T. a transition is made to standby mode.
				For details, see table 6.2.
6	STS2	0	R/W	Standby Timer Select 2 to 0
5	STS1	0	R/W	These bits designate the time the CPU and perip
4	STS0	0	R/W	modules wait for stable clock operation after exit standby mode, to active mode or sleep mode du interrupt. The designation should be made accor the clock frequency so that the waiting time is at ms. The relationship between the specified value number of wait states is shown in table 6.1. Whe external clock is to be used, the minimum value STS1 = STS0 =1) is recommended.
3 to 0	_	All 0	_	Reserved
				These bits are always read as 0.

Table 6.1 Operating Frequency and Waiting Time

I	Bit Nam	e				Оре	rating F	requen	су	
STS2	STS1	STS0	Waiting Time	20 MHz	16 MHz	10 MHz	8 MHz	4 MHz	2 MHz	1 MHz
0	0	0	8,192 states	0.4	0.5	0.8	1.0	2.0	4.1	8.1
		1	16,384 states	0.8	1.0	1.6	2.0	4.1	8.2	16.4
	1	0	32,768 states	1.6	2.0	3.3	4.1	8.2	16.4	32.8
		1	65,536 states	3.3	4.1	6.6	8.2	16.4	32.8	65.5
1	0	0	131,072 states	6.6	8.2	13.1	16.4	32.8	65.5	131.1
		1	1,024 states	0.05	0.06	0.10	0.13	0.26	0.51	1.02
	1	0	128 states	0.00	0.00	0.01	0.02	0.03	0.06	0.13
		1	16 states	0.00	0.00	0.00	0.00	0.00	0.01	0.02

Note: Time unit is ms.

Rev. 4.00 Sep. 23, 2005 Page 70 of 354 REJ09B0025-0400

RENESAS

				This bit is always read as 0.
5	DTON	0	R/W	Direct Transfer on Flag
				This bit selects the mode to transit after the exe a SLEEP instruction, as well as bit SSBY of SY
				For details, see table 6.2.
4	MA2	0	R/W	Active Mode Clock Select 2 to 0
3	MA1	0	R/W	These bits select the operating clock frequency
2	MA0	0	R/W	and sleep modes. The operating clock frequenc changes to the set frequency after the SLEEP i is executed.
				OXX: $\phi_{ m osc}$
				100:
				101:
				110:
				111: ф _{оsc} /64
1, 0		All 0	—	Reserved
				These bits are always read as 0.

Legend: X : Don't care.

RENESAS

4	MSTAD	0	R/W	A/D Converter Module Standby
				A/D converter enters standby mode when this bi 1.
3	MSTWD	0	R/W	Watchdog Timer Module Standby
				Watchdog timer enters standby mode when this to 1. When the internal oscillator is selected for the watchdog timer clock, the watchdog timer operative regardless of the setting of this bit.
2	MSTTW	0	R/W	Timer W Module Standby
				Timer W enters standby mode when this bit is se
1	MSTTV	0	R/W	Timer V Module Standby
				Timer V enters standby mode when this bit is se
0	_	0	_	Reserved
				This bit is always read as 0.

6.1.4 Module Standby Control Register 2 (MSTCR2)

MSTCR2 allows the on-chip peripheral modules to enter a standby state in module units.

		Initial		
Bit	Bit Name	Value	R/W	Description
7	MSTS3_2	0	R/W	SCI3_2 Module Standby
				SCI3_2 enters standby mode when this bit is set
6 to 0	_	All 0	_	Reserved
				These bits are always read as 0.

Rev. 4.00 Sep. 23, 2005 Page 72 of 354 REJ09B0025-0400

RENESAS

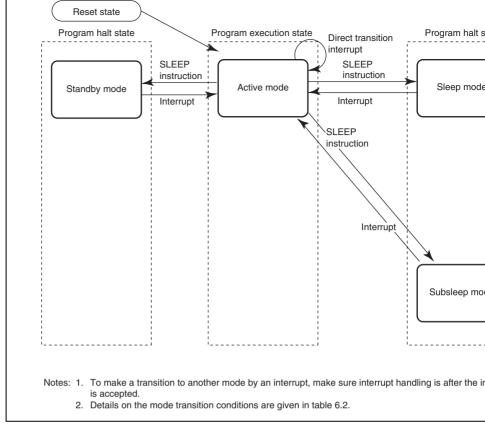


Figure 6.1 Mode Transition Diagram

RENESAS

initial values. To use these functions after entering active mode, reset the regis

Function		Active Mode	Sleep Mode	Subsleep Mode	Standby Mode
System clock oscillator		Functioning	Functioning	Halted	Halted
CPU Instructions		Functioning	Halted	Halted	Halted
operations	Registers	Functioning	Retained	Retained	Retained
RAM		Functioning	Retained	Retained	Retained
IO ports		Functioning	Retained	Retained	Register conten retained, but ou high-impedance
External	IRQ3, IRQ0	Functioning	Functioning	Functioning	Functioning
interrupts	WKP5 to WKP0	Functioning	Functioning	Functioning	Functioning
Peripheral	Timer V	Functioning	Functioning	Reset	Reset
functions Timer W	Timer W	Functioning	Functioning	Retained	Retained (if inte
	Watchdog timer	Functioning	Functioning	Retained	Retained (functi internal oscillato selected as a co
	SCI3	Functioning	Functioning	Reset	Reset
	A/D converter	Functioning	Functioning	Reset	Reset

Table 6.3 Internal State in Each Operating Mode

Rev. 4.00 Sep. 23, 2005 Page 74 of 354 REJ09B0025-0400

0.2.2 Stanuby Mode

In standby mode, the clock pulse generator stops, so the CPU and on-chip peripheral mot functioning. However, as long as the rated voltage is supplied, the contents of CPU regist chip RAM, and some on-chip peripheral module registers are retained. On-chip RAM co will be retained as long as the voltage set by the RAM data retention voltage is provided ports go to the high-impedance state.

Standby mode is cleared by an interrupt. When an interrupt is requested, the system cloar generator starts. After the time set in bits STS2–STS0 in SYSCR1 has elapsed, and interest exception handling starts. Standby mode is not cleared if the I bit of CCR is set to 1 or the requested interrupt is disabled in the interrupt enable register.

When the $\overline{\text{RES}}$ pin goes low, the system clock pulse generator starts. Since system clock are supplied to the entire chip as soon as the system clock pulse generator starts function $\overline{\text{RES}}$ pin must be kept low until the pulse generator output stabilizes. After the pulse generator output has stabilized, the CPU starts reset exception handling if the $\overline{\text{RES}}$ pin is driven hi

6.2.3 Subsleep Mode

In subsleep mode, the system clock oscillator is halted, and operation of the CPU and or peripheral modules is halted. As long as a required voltage is applied, the contents of CI registers, the on-chip RAM, and some registers of the on-chip peripheral modules are re ports keep the same states as before the transition.

Subsleep mode is cleared by an interrupt. When an interrupt is requested, the system clo oscillator starts to oscillate. Subsleep mode is cleared and an interrupt exception handlin when the time set in bits STS2 to STS0 in SYSCR1 elapses. Subsleep mode is not cleared bit of CCR is 1 or the interrupt is disabled in the interrupt enable bit.

RENESAS

also enables operating frequency modification in active mode. After the mode transition, transition interrupt exception handling starts.

If the direct transition interrupt is disabled in interrupt enable register 1, a transition is mainstead to sleep mode. Note that if a direct transition is attempted while the I bit in CCR is sleep mode will be entered, and the resulting mode cannot be cleared by means of an interval.

6.5 Module Standby Function

The module-standby function can be set to any peripheral module. In module standby mode clock supply to modules stops to enter the power-down mode. Module standby mode ena on-chip peripheral module to enter the standby state by setting a bit that corresponds to encode module in MSTCR1 and MSTCR2 to 1 and cancels the mode by clearing the bit to 0.

Rev. 4.00 Sep. 23, 2005 Page 76 of 354 REJ09B0025-0400

- The flash memory can be reprogrammed up to 1,000 times.
- On-board programming
 - On-board programming/erasing can be done in boot mode, in which the boot pro into the chip is started to erase or program of the entire flash memory. In normal program mode, individual blocks can be erased or programmed.
- Automatic bit rate adjustment
 - For data transfer in boot mode, this LSI's bit rate can be automatically adjusted to the transfer bit rate of the host.
- Programming/erasing protection
 - Sets software protection against flash memory programming/erasing.

ROM3321A_000120030300

RENESAS

1kbyte					
	H'0380	H'0381	H'0382	1 	H'03FF
	H'0400	H'0401	H'0402	← Programming unit: 128 bytes →	H'047F
Erase unit	H'0480	H'0481	H'0481		H'04FF
1kbyte					
	H'0780	H'0781	H'0782		H'07FF
	H'0800	H'0801	H'0802	← Programming unit: 128 bytes →	H'087F
Erase unit	H'0880	H'0881	H'0882	- - 	H'08FF
1kbyte					
	H'0B80	H'0B81	H'0B82		H'0BFF
	H'0C00	H'0C01	H'0C02	← Programming unit: 128 bytes →	H'0C7F
Erase unit	H'0C80	H'0C81	H'0C82	- - 	H'0CFF
1kbyte					1
				1 1 1	1
	H'0F80	H'0F81	H'0F82		H'0FFF
	H'1000	H'1001	H'1002	← Programming unit: 128 bytes →	H'107F
Erase unit	H'1080	H'1081	H'1082		H'10FF
28 kbytes					-
				1 1 1	
	H'7F80	H'7F81	H'7F82	1	H'7FFF

Figure 7.1 Flash Memory Block Configuration

Rev. 4.00 Sep. 23, 2005 Page 78 of 354 REJ09B0025-0400

FLMCR1 is a register that makes the flash memory change to program mode, programmode, erase mode, or erase-verify mode. For details on register setting, refer to section 7 Memory Programming/Erasing.

		Initial		
Bit	Bit Name	Value	R/W	Description
7	_	0	_	Reserved
				This bit is always read as 0.
6	SWE	0	R/W	Software Write Enable
				When this bit is set to 1, flash memory programming/erasing is enabled. When this bit to 0, other FLMCR1 register bits and all EBR1 I be set.
5	ESU	0	R/W	Erase Setup
				When this bit is set to 1, the flash memory char erase setup state. When it is cleared to 0, the e state is cancelled. Set this bit to 1 before setting to 1 in FLMCR1.
4	PSU	0	R/W	Program Setup
				When this bit is set to 1, the flash memory char program setup state. When it is cleared to 0, th setup state is cancelled. Set this bit to 1 before P bit in FLMCR1.
3	EV	0	R/W	Erase-Verify
				When this bit is set to 1, the flash memory char erase-verify mode. When it is cleared to 0, eras mode is cancelled.

When this bit is set to 1, and while the SWE = 1 = 1 bits are 1, the flash memory changes to prog mode. When it is cleared to 0, program mode is cancelled.

7.2.2 Flash Memory Control Register 2 (FLMCR2)

FLMCR2 is a register that displays the state of flash memory programming/erasing. FLM read-only register, and should not be written to.

Bit	Bit Name	Initial Value	R/W	Description
7	FLER	0	R	Flash Memory Error
				Indicates that an error has occurred during an op on flash memory (programming or erasing). Whe is set to 1, flash memory goes to the error-protect state.
				See 7.5.3, Error Protection, for details.
6 to 0	_	All 0	_	Reserved
				These bits are always read as 0.

Rev. 4.00 Sep. 23, 2005 Page 80 of 354 REJ09B0025-0400

4	ED4	0	R/ W	when this bit is set to 1, 28 kbytes of H 1000 to will be erased.
3	EB3	0	R/W	When this bit is set to 1, 1 kbyte of H'0C00 to H be erased.
2	EB2	0	R/W	When this bit is set to 1, 1 kbyte of H'0800 to H be erased.
1	EB1	0	R/W	When this bit is set to 1, 1 kbyte of H'0400 to H be erased.
0	EB0	0	R/W	When this bit is set to 1, 1 kbyte of H'0000 to H be erased.

7.2.4 Flash Memory Enable Register (FENR)

Bit 7 (FLSHE) in FENR enables or disables the CPU access to the flash memory control FLMCR1, FLMCR2, and EBR1.

		Initial		
Bit	Bit Name	Value	R/W	Description
7	FLSHE	0	R/W	Flash Memory Control Register Enable
				Flash memory control registers can be accesse this bit is set to 1. Flash memory control registe be accessed when this bit is set to 0.
6 to 0		All 0	_	Reserved
				These bits are always read as 0.

RENESAS

This can be used for programming initial values in the on-board state or for a forcible retr programming/erasing can no longer be done in user program mode. In user program mod individual blocks can be erased and programmed by branching to the user program/erase program prepared by the user.

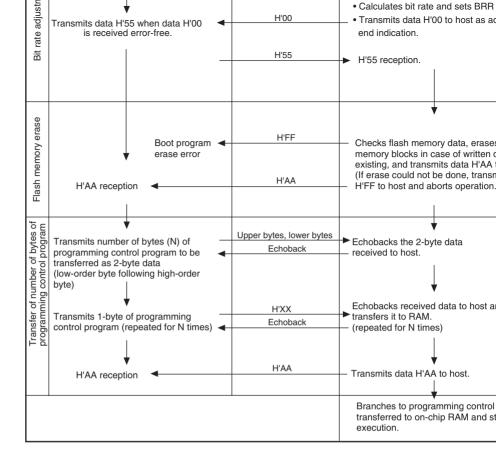
Table 7.1	Setting Progra	amming Modes
-----------	----------------	--------------

TEST	NMI	E10T_0	PB0	PB1	PB2	LSI State after Reset End
0	1	Х	Х	Х	Х	User Mode
0	0	1	Х	Х	Х	Boot Mode

Legend: X: Don't care.

7.3.1 Boot Mode

Table 7.2 shows the boot mode operations between reset end and branching to the progra control program.


- 1. When boot mode is used, the flash memory programming control program must be pr the host beforehand. Prepare a programming control program in accordance with the description in section 7.4, Flash Memory Programming/Erasing.
- 2. SCI3 should be set to asynchronous mode, and the transfer format as follows: 8-bit da bit, and no parity.
- 3. When the boot program is initiated, the chip measures the low-level period of asynchr SCI communication data (H'00) transmitted continuously from the host. The chip ther calculates the bit rate of transmission from the host, and adjusts the SCI3 bit rate to m of the host. The reset should end with the RxD pin high. The RxD and TxD pins shou pulled up on the board if necessary. After the reset is complete, it takes approximately states before the chip is ready to measure the low-level period.

Rev. 4.00 Sep. 23, 2005 Page 82 of 354 REJ09B0025-0400

- 6. Before branching to the programming control program, the chip terminates transfer of by SCI3 (by clearing the RE and TE bits in SCR3 to 0), however the adjusted bit rate remains set in BRR. Therefore, the programming control program can still use it for write data or verify data with the host. The TxD pin is high (PCR22 = 1, P22 = 1). T contents of the CPU general registers are undefined immediately after branching to t programming control program. These registers must be initialized at the beginning o programming control program, as the stack pointer (SP), in particular, is used implic subroutine calls, etc.
- Boot mode can be cleared by a reset. End the reset after driving the reset pin low, wa least 20 states, and then setting the NMI pin. Boot mode is also cleared when a WDT occurs.
- 8. Do not change the TEST pin and $\overline{\text{NMI}}$ pin input levels in boot mode.

Rev. 4.00 Sep. 23, 2005 Page 84 of 354 REJ09B0025-0400

7.5.2 I Togramming/Erasing in Oser I Togram Mode

On-board programming/erasing of an individual flash memory block can also be perform program mode by branching to a user program/erase control program. The user must set conditions and provide on-board means of supplying programming data. The flash mem contain the user program/erase control program or a program that provides the user program from external memory. As the flash memory itself cannot be read durin programming/erasing, transfer the user program/erase control program to on-chip RAM, mode. Figure 7.2 shows a sample procedure for programming/erasing in user program n Prepare a user program/erase control program in accordance with the description in sect Flash Memory Programming/Erasing.

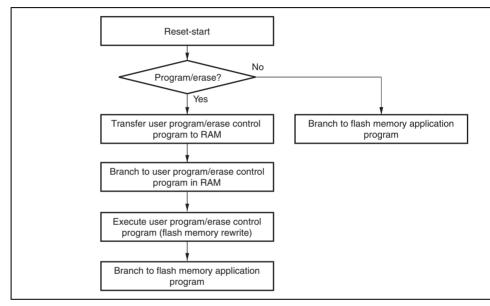


Figure 7.2 Programming/Erasing Flowchart Example in User Program Me

7.4.1 Program/Program-Verify

When writing data or programs to the flash memory, the program/program-verify flowch in figure 7.3 should be followed. Performing programming operations according to this fl will enable data or programs to be written to the flash memory without subjecting the chi voltage stress or sacrificing program data reliability.

- 1. Programming must be done to an empty address. Do not reprogram an address to whi programming has already been performed.
- 2. Programming should be carried out 128 bytes at a time. A 128-byte data transfer mus performed even if writing fewer than 128 bytes. In this case, H'FF data must be writte extra addresses.
- 3. Prepare the following data storage areas in RAM: A 128-byte programming data area byte reprogramming data area, and a 128-byte additional-programming data area. Per reprogramming data computation according to table 7.4, and additional programming computation according to table 7.5.
- 4. Consecutively transfer 128 bytes of data in byte units from the reprogramming data are additional-programming data area to the flash memory. The program address and 128 data are latched in the flash memory. The lower 8 bits of the start address in the flash destination area must be H'00 or H'80.
- 5. The time during which the P bit is set to 1 is the programming time. Table 7.6 shows allowable programming times.
- 6. The watchdog timer (WDT) is set to prevent overprogramming due to program runaw An overflow cycle of approximately 6.6 ms is allowed.
- For a dummy write to a verify address, write 1-byte data H'FF to an address whose lobits are B'00. Verify data can be read in words or in longwords from the address to w dummy write was performed.

Rev. 4.00 Sep. 23, 2005 Page 86 of 354 REJ09B0025-0400

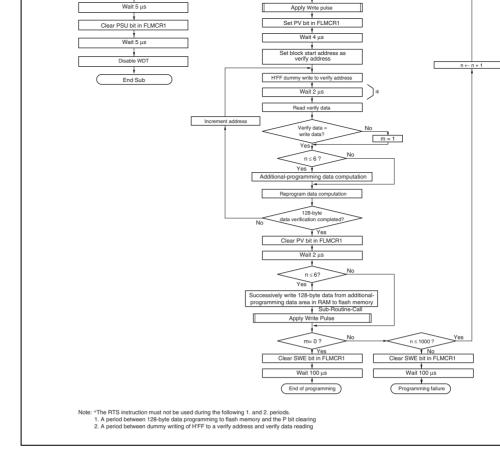


Figure 7.3 Program/Program-Verify Flowchart

Reprogram Data	Verify Data	Data	Comments
0	0	0	Additional-program I
0	1	1	No additional progra
1	0	1	No additional progra
1	1	1	No additional progra

Table 7.6Programming Time

n (Number of Writes)	Programming Time	In Additional Programming	Comments
1 to 6	30	10	
7 to 1,000	200	—	

Note: Time shown in μ s.

7.4.2 Erase/Erase-Verify

When erasing flash memory, the erase/erase-verify flowchart shown in figure 7.4 should followed.

- 1. Prewriting (setting erase block data to all 0s) is not necessary.
- 2. Erasing is performed in block units. Make only a single-bit specification in the erase bregister (EBR1). To erase multiple blocks, each block must be erased in turn.
- 3. The time during which the E bit is set to 1 is the flash memory erase time.
- 4. The watchdog timer (WDT) is set to prevent overerasing due to program runaway, etc overflow cycle of approximately 19.8 ms is allowed.

Rev. 4.00 Sep. 23, 2005 Page 88 of 354 REJ09B0025-0400

- or erased, or while are coor program is encedaning, for are roused wing and roused
- 1. Interrupt during programming/erasing may cause a violation of the programming or algorithm, with the result that normal operation cannot be assured.
- 2. If interrupt exception handling starts before the vector address is written or during programming/erasing, a correct vector cannot be fetched and the CPU malfunctions.
- 3. If an interrupt occurs during boot program execution, normal boot mode sequence ca carried out.

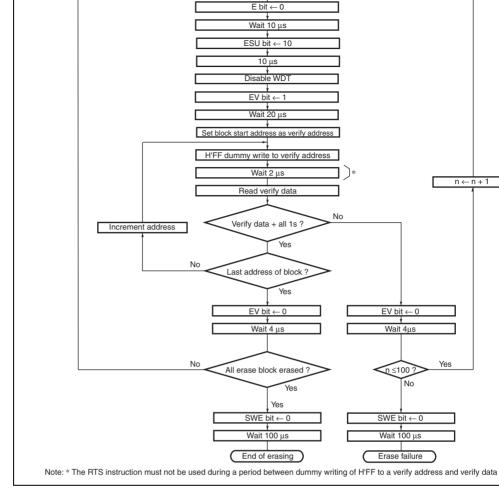


Figure 7.4 Erase/Erase-Verify Flowchart

Rev. 4.00 Sep. 23, 2005 Page 90 of 354 REJ09B0025-0400

unless the $\overline{\text{RES}}$ pin is held low until oscillation stabilizes after powering on. In the case of during operation, hold the $\overline{\text{RES}}$ pin low for the $\overline{\text{RES}}$ pulse width specified in the AC Characteristics section.

7.5.2 Software Protection

Software protection can be implemented against programming/erasing of all flash memory by clearing the SWE bit in FLMCR1. When software protection is in effect, setting the 1 in FLMCR1 does not cause a transition to program mode or erase mode. By setting the or register 1 (EBR1), erase protection can be set for individual blocks. When EBR1 is set the erase protection is set for all blocks.

7.5.3 Error Protection

In error protection, an error is detected when CPU runaway occurs during flash memory programming/erasing, or operation is not performed in accordance with the program/eras algorithm, and the program/erase operation is aborted. Aborting the program/erase operation prevents damage to the flash memory due to overprogramming or overerasing.

When the following errors are detected during programming/erasing of flash memory, the bit in FLMCR2 is set to 1, and the error protection state is entered.

- When the flash memory of the relevant address area is read during programming/era (including vector read and instruction fetch)
- Immediately after exception handling excluding a reset during programming/erasing
- When a SLEEP instruction is executed during programming/erasing

RENESAS

Rev. 4.00 Sep. 23, 2005 Page 92 of 354 REJ09B0025-0400

		•	
	H8/36022, H8/36012	512 bytes	H'FD80 to H'FF7F
	H8/36011	512 bytes	H'FD80 to H'FF7F
	H8/36010	512 bytes	H'FD80 to H'FF7F
Nata: *	TO is used, sweet UICZOO to		nat ha anananal

Note: * When the E7 or E8 is used, area H'F780 to H'FB7F must not be accessed.

RAM0400A_000020020200

RENESAS

Rev. 4.00 Sep. 23, 2005 Page 94 of 354 REJ09B0025-0400

manipulation instructions to the port control register and port data register, see section 2 Manipulation Instruction.

9.1 Port 1

Port 1 is a general I/O port also functioning as IRQ interrupt input pins, timer V input pins SCI3 I/O pin. Figure 9.1 shows its pin configuration.

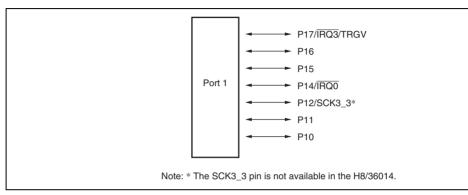


Figure 9.1 Port 1 Pin Configuration

Port 1 has the following registers.

- Port mode register 1 (PMR1)
- Port control register 1 (PCR1)
- Port data register 1 (PDR1)
- Port pull-up control register 1 (PUCR1)

RENESAS

6, 5	—	All 0	—	Reserved
				These bits are always read as 0.
4	IRQ0	0	R/W	P14/IRQ0 Pin Function Switch
				This bit selects whether pin P14/IRQ0 is used as as IRQ0.
				0: General I/O port
				1: IRQ0 input pin
3	TXD2	0	R/W	P72/TXD_2 Pin Function Switch
				This bit selects whether pin P72/TXD_2 is used as TXD_2.
				0: General I/O port
				1: TXD_2 output pin
2	_	0	R/W	Reserved
				This bit must always be cleared to 0 (setting to 1 disabled).
1	TXD	0	R/W	P22/TXD Pin Function Switch
				This bit selects whether pin P22/TXD is used as as TXD.
				0: General I/O port
				1: TXD output pin
0	_	0	_	Reserved
				This bit is always read as 0.

Rev. 4.00 Sep. 23, 2005 Page 96 of 354 REJ09B0025-0400

3	_	_	_
2	PCR12	0	W
1	PCR11	0	W
0	PCR10	0	W

9.1.3 Port Data Register 1 (PDR1)

PDR1 is a general I/O port data register of port 1.

		Initial		
Bit	Bit Name	Value	R/W	Description
7	P17	0	R/W	PDR1 stores output data for port 1 pins.
6	P16	0	R/W	If PDR1 is read while PCR1 bits are set to 1, th
5	P15	0	R/W	stored in PDR1 are read. If PDR1 is read while
4	P14	0	R/W	are cleared to 0, the pin states are read regard value stored in PDR1.
3		1		Bit 3 is a reserved bit. This bit is always read as
2	P12	0	R/W	
1	P11	0	R/W	
0	P10	0	R/W	

RENESAS

3	—	1		
2	PUCR12	0	R/W	
1	PUCR11	0	R/W	
0	PUCR10	0	R/W	

9.1.5 Pin Functions

The correspondence between the register specification and the port functions is shown be

• P17/IRQ3/TRGV pin

Register	PMR1	PCR1	
Bit Name	IRQ3	PCR17	Pin Function
Setting value	0	0	P17 input pin
		1	P17 output pin
	1	Х	IRQ3 input/TRGV input pin

Legend X: Don't care.

• P16 pin

Register	PCR1	
Bit Name	PCR16	Pin Function
Setting value	0	P16 input pin
	1	P16 output pin

Rev. 4.00	Sep. 23, 2005	Page 98 of 354
REJ09B00	25-0400	

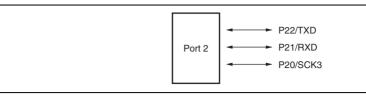
Bit Name	IRQ0	PCR14	Pin Function
Setting value	0	0	P14 input pin
		1	P14 output pin
	1	Х	IRQ0 input pin

Legend X: Don't care.

• P12/SCK3_3* pin

Register	SC	R3_3*	SMR_3	* PCR1	
Bit Name	CKE1	CKE0	СОМ	PCR12	Pin Function
Setting value	0	0	0	0	P12 input pin
				1	P12 output pin
			1	Х	SCK3_3 output pin*
	0	1	Х	Х	SCK3_3 output pin*
	1	Х	Х	Х	SCK3_3 input pin*

Legend X: Don't care.


Note: * Not available in the H8/36014.

• P11 pin

Register	PCR1	
Bit Name	PCR11	Pin Function
Setting value	0	P11 input pin
	1	P11 output pin

RENESAS

figure 9.2. The register settings of PMR1 and SCI3 have priority for functions of the pins uses.

Figure 9.2 Port 2 Pin Configuration

Port 2 has the following registers.

- Port control register 2 (PCR2)
- Port data register 2 (PDR2)

9.2.1 Port Control Register 2 (PCR2)

PCR2 selects inputs/outputs in bit units for pins to be used as general I/O ports of port 2.

		Initial		
Bit	Bit Name	Value	R/W	Description
7 to 3			—	Reserved
2	PCR22	0	W	When each of the port 2 pins P22 to P20 functio
1	PCR21	0	W	general I/O port, setting a PCR2 bit to 1 makes t
0	PCR20	0	W	corresponding pin an output port, while clearing 0 makes the pin an input port.

Rev. 4.00 Sep. 23, 2005 Page 100 of 354 REJ09B0025-0400

RENESAS

	0	P20	0	R/W	are cleared to 0, the pin states are read regard value stored in PDR2.
--	---	-----	---	-----	--

9.2.3 Pin Functions

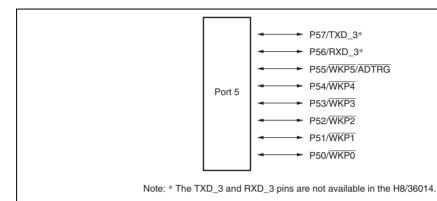
The correspondence between the register specification and the port functions is shown b

• P22/TXD pin

Register	PMR1	PCR2	
Bit Name	TXD	PCR22	Pin Function
Setting Value	0	0	P22 input pin
		1	P22 output pin
	1	Х	TXD output pin

Legend X: Don't care.

• P21/RXD pin


Register	SCR3	PCR2	
Bit Name	RE	PCR21	Pin Function
Setting Value	0	0	P21 input pin
		1	P21 output pin
	1	Х	RXD input pin

Legend X: Don't care.

RENESAS

9.3 Port 5

Port 5 is a general I/O port also functioning as an SCI3 I/O pins, A/D trigger input pin, an wakeup interrupt input pins. Each pin of the port 5 is shown in figure 9.3.

Figure 9.3 Port 5 Pin Configuration

Port 5 has the following registers.

- Port mode register 5 (PMR5)
- Port control register 5 (PCR5)
- Port data register 5 (PDR5)
- Port pull-up control register 5 (PUCR5)

Rev. 4.00 Sep. 23, 2005 Page 102 of 354 REJ09B0025-0400

				o. denerarivo por
				1: NMOS open-drain output
5	WKP5	0	R/W	P55/WKP5/ADTRG Pin Function Switch
				Selects whether pin P55/WKP5/ADTRG is used as WKP5/ADTRG input.
				0: General I/O port
				1: WKP5/ADTRG input pin
4	WKP4	0	R/W	P54/WKP4 Pin Function Switch
				Selects whether pin P54/ $\overline{WKP4}$ is used as P54 or a
				0: General I/O port
				1: WKP4 input pin
3	WKP3	0	R/W	P53/WKP3 Pin Function Switch
				Selects whether pin P53/WKP3 is used as P53 or a
				0: General I/O port
				1: WKP3 input pin
2	WKP2	0	R/W	P52/WKP2 Pin Function Switch
				Selects whether pin P52/ $\overline{\text{WKP2}}$ is used as P52 or a
				0: General I/O port
				1: WKP2 input pin
1	WKP1	0	R/W	P51/WKP1 Pin Function Switch
				Selects whether pin P51/ $\overline{WKP1}$ is used as P51 or a
				0: General I/O port
				1: WKP1 input pin

Renesas

		Initial		
Bit	Bit Name	Value	R/W	Description
7	PCR57	0	W	When each of the port 5 pins P57 to P50 functions as
6	PCR56	0	W	general I/O port, setting a PCR5 bit to 1 makes the
5	PCR55	0	W	corresponding pin an output port, while clearing the b makes the pin an input port.
4	PCR54	0	W	
3	PCR53	0	W	
2	PCR52	0	W	
1	PCR51	0	W	
0	PCR50	0	W	

Rev. 4.00 Sep. 23, 2005 Page 104 of 354 REJ09B0025-0400

3	P53	0	R/W
2	P52	0	R/W
1	P51	0	R/W
0	P50	0	R/W

9.3.4 Port Pull-Up Control Register 5 (PUCR5)

PUCR5 controls the pull-up MOS in bit units of the pins set as the input ports.

		Initial		
Bit	Bit Name	Value	R/W	Description
7, 6	_	All 0		Reserved
				These bits are always read as 0.
5	PUCR55	0	R/W	Only bits for which PCR5 is cleared are valid. T
4	PUCR54	0	R/W	MOS of the corresponding pins enter the on-sta these bits are set to 1, while they enter the off-s
3	PUCR53	0	R/W these bits are cleared to 0.	· · ·
2	PUCR52	0	R/W	
1	PUCR51	0	R/W	
0	PUCR50	0	R/W	

RENESAS

1	1 X	

TXD_3 output pin*

Legend X: Don't care.

Note: * Not available in the H8/36014.

• P56/RXD_3* pin

Register	SCR3_3*	PCR5	
Bit Name	RE	PCR56	Pin Function
Setting Value	0	0	P56 input pin
		1	P56 output pin
	1	Х	RXD_3 input pin*

Legend X: Don't care.

Note: * Not available in the H8/36014.

• P55/WKP5/ADTRG pin

Register	PMR5	PCR5	
Bit Name	WKP5	PCR55	Pin Function
Setting Value	0	0	P55 input pin
		1	P55 output pin
	1	Х	WKP5/ADTRG input pin

Legend X: Don't care.

Rev. 4.00 Sep. 23, 2005 Page 106 of 354 REJ09B0025-0400

Register	PMR5	PCR5	
Bit Name	WKP3	PCR53	Pin Function
Setting Value	0	0	P53 input pin
		1	P53 output pin
	1	Х	WKP3 input pin

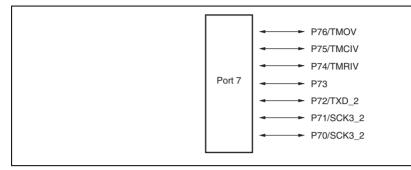
Legend X: Don't care.

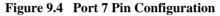
• P52/WKP2 pin

Register	PMR5	PCR5	
Bit Name	WKP2	PCR52	Pin Function
Setting Value	0	0	P52 input pin
		1	P52 output pin
	1	Х	WKP2 input pin

Legend X: Don't care.

• P51/WKP1 pin


Register	PMR5	PCR5	
Bit Name	WKP1	PCR51	Pin Function
Setting Value	0	0	P51 input pin
		1	P51 output pin
	1	Х	WKP1 input pin
	•		


Legend X: Don't care.

RENESAS

9.4 POrt /

Port 7 is a general I/O port also functioning as a timer V I/O pin. Each pin of the port 7 is in figure 9.4. The register setting of TCSRV in timer V has priority for functions of pin P76/TMOV. The pins, P75/TMCIV and P74/TMRIV, are also functioning as timer V inp that are connected to the timer V regardless of the register setting of port 7.

Port 7 has the following registers.

- Port control register 7 (PCR7)
- Port data register 7 (PDR7)

Rev. 4.00 Sep. 23, 2005 Page 108 of 354 REJ09B0025-0400

3	PCR73	0	W	P76/TMOV pin.
2	PCR72	0	W	
1	PCR71	0	W	
0	PCR70	0	W	

9.4.2 Port Data Register 7 (PDR7)

PDR7 is a general I/O port data register of port 7.

Bit	Bit Name	Initial Value	R/W	Description
7		1		Reserved
				This bit is always read as 1.
6	P76	0	R/W	PDR7 stores output data for port 7 pins.
5	P75	0	R/W	If PDR7 is read while PCR7 bits are set to 1, th
4	P74	0	R/W	stored in PDR7 is read. If PDR7 is read while P
3	P73	0	R/W value stored in PDR7.	are cleared to 0, the pin states are read regardl value stored in PDR7.
2	P72	0	R/W	
1	P71	0	R/W	
0	P70	0	R/W	

RENESAS

Other than	Х	TMOV output pin
the above		
values		

Legend X: Don't care.

• P75/TMCIV pin

Register	PCR7	
Bit Name	PCR75	Pin Function
Setting Value	0	P75 input/TMCIV input pin
	1	P75 output/TMCIV input pin

• P74/TMRIV pin

Register	PCR7	
Bit Name	PCR74	Pin Function
Setting Value	0	P74 input/TMRIV input pin
	1	P74 output/TMRIV input pin

• P73 pin

Register	PCR7	
Bit Name	PCR73	Pin Function
Setting Value	0	P73 input pin
	1	P73 output pin

Rev. 4.00 Sep. 23, 2005 Page 110 of 354	_
REJ09B0025-0400	í

Register	SCR3_2	PCR7	
Bit Name	RE	PCR71	Pin Function
Setting Value	0	0	P71 input pin
		1	P71 output pin
	1	Х	RXD_2 input pin

Legend X: Don't care.

• P70/SCK3_2 pin

Register	SCR3_2		SMR_2	PCR7	
Bit Name	CKE1	CKE0	COM	PCR70	Pin Function
Setting Value	0	0	0	0	P70 input pin
				1	P70 output pin
			1	Х	SCK3_2 output
	0	1	Х	Х	SCK3_2 output
	1	Х	Х	Х	SCK3_2 input

Legend X: Don't care.

RENESAS

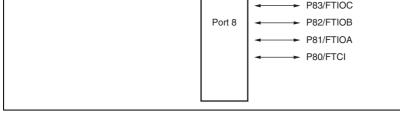


Figure 9.5 Port 8 Pin Configuration

Port 8 has the following registers.

- Port control register 8 (PCR8)
- Port data register 8 (PDR8)

9.5.1 Port Control Register 8 (PCR8)

PCR8 selects inputs/outputs in bit units for pins to be used as general I/O ports of port 8.

		Initial		
Bit	Bit Name	Value	R/W	Description
7 to 5	_		_	Reserved
4	PCR84	0	W	When each of the port 8 pins P84 to P80 functio
3	PCR83	0	W	general I/O port, setting a PCR8 bit to 1 makes t corresponding pin an output port, while clearing
2	PCR82	0	W	0 makes the pin an input port.
1	PCR81	0	W	
0	PCR80	0	W	

Rev. 4.00 Sep. 23, 2005 Page 112 of 354 REJ09B0025-0400

RENESAS

1	P81	0	R/W	value stored in PDR8.
0	P80	0	R/W	

9.5.3 Pin Functions

The correspondence between the register specification and the port functions is shown b

• P84/FTIOD pin

Register	TIOR1			PCR8	
Bit Name	IOD2	IOD1	IOD0	PCR84	Pin Function
Setting Value	0	0	0	0	P84 input/FTIOD input pin
				1	P84 output/FTIOD input pin
	0	0	1	Х	FTIOD output pin
	0	1	Х	Х	FTIOD output pin
	1	Х	Х	0	P84 input/FTIOD input pin
				1	P84 output/FTIOD input pin

Legend X: Don't care.

Renesas

Legend X: Don't care.

• P82/FTIOB pin

Register	TIOR0			PCR8	
Bit Name	IOB2	IOB1	IOB0	PCR82	Pin Function
Setting Value	0	0	0	0	P82 input/FTIOB input pin
				1	P82 output/FTIOB input pin
	0	0	1	Х	FTIOB output pin
	0	1	Х	Х	FTIOB output pin
	1	Х	Х	0	P82 input/FTIOB input pin
				1	P82 output/FTIOB input pin

Legend X: Don't care.

• P81/FTIOA pin

Register	TIOR0			PCR8	
Bit Name	IOA2	IOA1	IOA0	PCR81	Pin Function
Setting Value	0	0	0	0	P81 input/FTIOA input pin
				1	P81 output/FTIOA input pin
	0	0	1	Х	FTIOA output pin
	0	1	Х	Х	FTIOA output pin
	1	Х	Х	0	P81 input/FTIOA input pin
				1	P81 output/FTIOA input pin

Legend X: Don't care.

Rev. 4.00 Sep. 23, 2005 Page 114 of 354 REJ09B0025-0400

RENESAS

B is shown in figure 9.6.

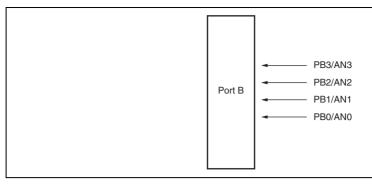


Figure 9.6 Port B Pin Configuration

Port B has the following register.

• Port data register B (PDRB)

0 PB0 — R

Rev. 4.00 Sep. 23, 2005 Page 116 of 354 REJ09B0025-0400

• Choice of seven clock signals is available.

Choice of six internal clock sources ($\phi/128$, $\phi/64$, $\phi/32$, $\phi/16$, $\phi/8$, $\phi/4$) or an external

- Counter can be cleared by compare match A or B, or by an external reset signal. If the stop function is selected, the counter can be halted when cleared.
- Timer output is controlled by two independent compare match signals, enabling puls with an arbitrary duty cycle, PWM output, and other applications.
- Three interrupt sources: compare match A, compare match B, timer overflow
- Counting can be initiated by trigger input at the TRGV pin. The rising edge, falling e both edges of the TRGV input can be selected.

TIM08V0A_000120030300

RENESAS

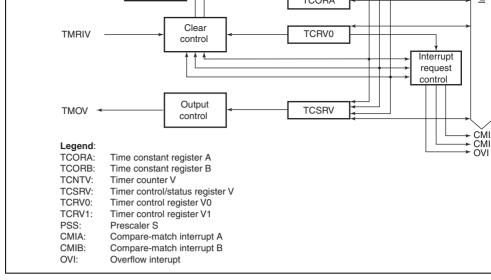


Figure 10.1 Block Diagram of Timer V

Rev. 4.00 Sep. 23, 2005 Page 118 of 354 REJ09B0025-0400

10.3 Register Descriptions

Time V has the following registers.

- Timer counter V (TCNTV)
- Timer constant register A (TCORA)
- Timer constant register B (TCORB)
- Timer control register V0 (TCRV0)
- Timer control/status register V (TCSRV)
- Timer control register V1 (TCRV1)

10.3.1 Timer Counter V (TCNTV)

TCNTV is an 8-bit up-counter. The clock source is selected by bits CKS2 to CKS0 in ti control register V0 (TCRV0). The TCNTV value can be read and written by the CPU at TCNTV can be cleared by an external reset input signal, or by compare match A or B. T clearing signal is selected by bits CCLR1 and CCLR0 in TCRV0.

When TCNTV overflows, OVF is set to 1 in timer control/status register V (TCSRV).

TCNTV is initialized to H'00.

RENESAS

and the settings of bits OS3 to OS0 in TCSRV.

TCORA and TCORB are initialized to H'FF.

Rev. 4.00 Sep. 23, 2005 Page 120 of 354 REJ09B0025-0400

0		0	11/99	Compare materianter Enable A
				When this bit is set to 1, interrupt request from bit in TCSRV is enabled.
5	OVIE	0	R/W	Timer Overflow Interrupt Enable
				When this bit is set to 1, interrupt request from bit in TCSRV is enabled.
4	CCLR1	0	R/W	Counter Clear 1 and 0
3	CCLR0	0	R/W	These bits specify the clearing conditions of TC
				00: Clearing is disabled
				01: Cleared by compare match A
				10: Cleared by compare match B
				 Cleared on the rising edge of the TMRIV pin operation of TCNTV after clearing depends in TCRV1.
2	CKS2	0	R/W	Clock Select 2 to 0
1	CKS1	0	R/W	These bits select clock signals to input to TCNT
0	CKS0	0	R/W	counting condition in combination with ICKS0 ir
				Refer to table 10.2.

Renesas

		1	0	Internal clock: counts on $\phi/64$, falling ϕ
			1	Internal clock: counts on $\phi/128$, falling
1	0	0	_	Clock input prohibited
		1	_	External clock: counts on rising edge
	1	0	_	External clock: counts on falling edge
		1		External clock: counts on rising and fa edge

Rev. 4.00 Sep. 23, 2005 Page 122 of 354 REJ09B0025-0400

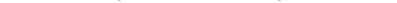
_				After reading CMFB = 1, cleared by writing 0 to
6	CMFA	0	R/W	Compare Match Flag A
				Setting condition:
				When the TCNTV value matches the TCORA v
				Clearing condition:
				After reading CMFA = 1, cleared by writing 0 to
5	OVF	0	R/W	Timer Overflow Flag
				Setting condition:
				When TCNTV overflows from H'FF to H'00
				Clearing condition:
				After reading OVF = 1, cleared by writing 0 to 0
4	_	1		Reserved
				This bit is always read as 1.
3	OS3	0	R/W	Output Select 3 and 2
2	OS2	0	R/W	These bits select an output method for the TMC the compare match of TCORB and TCNTV.
				00: No change
				01: 0 output
				10: 1 output
				11: Output toggles

RENESAS

OS3 and OS2 select the output level for compare match B. OS1 and OS0 select the output for compare match A. The two output levels can be controlled independently. After a reset timer output is 0 until the first compare match.

Rev. 4.00 Sep. 23, 2005 Page 124 of 354 REJ09B0025-0400

3	TVEG0	0	R/W	These bits select the TRGV input edge.
				00: TRGV trigger input is prohibited
				01: Rising edge is selected
				10: Falling edge is selected
				11: Rising and falling edges are both selected
2	TRGE	0	R/W	TCNT starts counting up by the input of the edg selected by TVEG1 and TVEG0.
				0: Disables starting counting-up TCNTV by the the TRGV pin and halting counting-up TCNT TCNTV is cleared by a compare match.
				1: Enables starting counting-up TCNTV by the i the TRGV pin and halting counting-up TCNT TCNTV is cleared by a compare match.
1	_	1	_	Reserved
				This bit is always read as 1.
0	ICKS0	0	R/W	Internal Clock Select 0
				This bit selects clock signals to input to TCNTV combination with CKS2 to CKS0 in TCRV0.
				Refer to table 10.2.



will be set. The timing at this time is shown in figure 10.4. An interrupt request is sen CPU when OVIE in TCRV0 is 1.

- 3. TCNTV is constantly compared with TCORA and TCORB. Compare match flag A or (CMFA or CMFB) is set to 1 when TCNTV matches TCORA or TCORB, respectivel compare-match signal is generated in the last state in which the values match. Figure shows the timing. An interrupt request is generated for the CPU when CMIEA or CM TCRV0 is 1.
- 4. When a compare match A or B is generated, the TMOV responds with the output value selected by bits OS3 to OS0 in TCSRV. Figure 10.6 shows the timing when the output toggled by compare match A.
- 5. When CCLR1 or CCLR0 in TCRV0 is 01 or 10, TCNTV can be cleared by the corres compare match. Figure 10.7 shows the timing.
- When CCLR1 or CCLR0 in TCRV0 is 11, TCNTV can be cleared by the rising edge input of TMRIV pin. A TMRIV input pulse-width of at least 1.5 system clocks is nece Figure 10.8 shows the timing.
- When a counter-clearing source is generated with TRGE in TCRV1 set to 1, the coun halted as soon as TCNTV is cleared. TCNTV resumes counting-up when the edge sel TVEG1 or TVEG0 in TCRV1 is input from the TGRV pin.

Rev. 4.00 Sep. 23, 2005 Page 126 of 354 REJ09B0025-0400

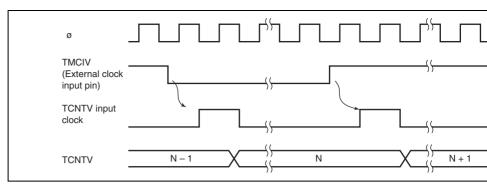


Figure 10.3 Increment Timing with External Clock

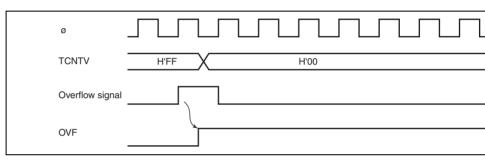
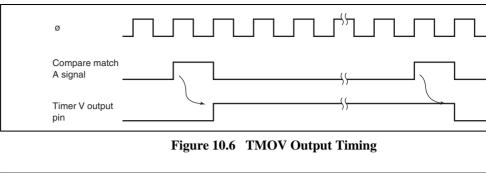



Figure 10.4 OVF Set Timing

Figure 10.5 CMFA and CMFB Set Timing

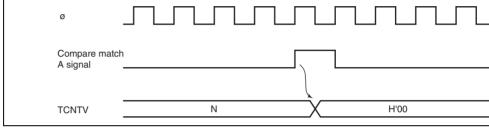
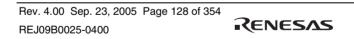



Figure 10.7 Clear Timing by Compare Match

- 3. Set bits CKS2 to CKS0 in TCRV0 and bit ICKS0 in TCRV1 to select the desired cloc
- 4. With these settings, a waveform is output without further software intervention, with determined by TCORA and a pulse width determined by TCORB.

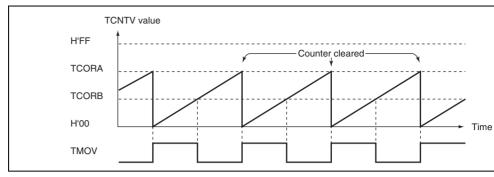


Figure 10.9 Pulse Output Example

Rev. 4.00 Sep. 23, 2005 Page 130 of 354 REJ09B0025-0400

- mput.
- 4. Set bits CKS2 to CKS0 in TCRV0 and bit ICKS0 in TCRV1 to select the desired clo
- After these settings, a pulse waveform will be output without further software intervawith a delay determined by TCORA from the TRGV input, and a pulse width determ (TCORB – TCORA).

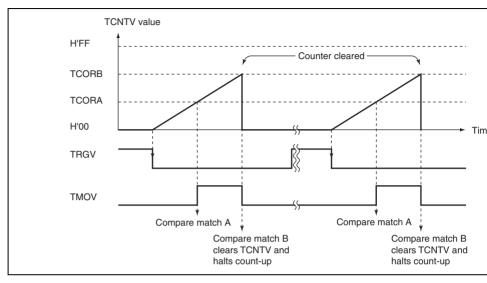


Figure 10.10 Example of Pulse Output Synchronized to TRGV Input

- 3. If compare matches A and B occur simultaneously, any conflict between the output s for compare match A and compare match B is resolved by the following priority: tog output > output 1 > output 0.
- 4. Depending on the timing, TCNTV may be incremented by a switch between differen clock sources. When TCNTV is internally clocked, an increment pulse is generated f falling edge of an internal clock signal, that is divided system clock (φ). Therefore, a in figure 10.3 the switch is from a high clock signal to a low clock signal, the switch seen as a falling edge, causing TCNTV to increment. TCNTV can also be increment switch between internal and external clocks.

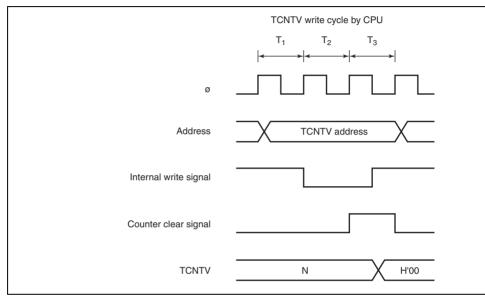
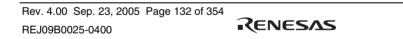



Figure 10.11 Contention between TCNTV Write and Clear

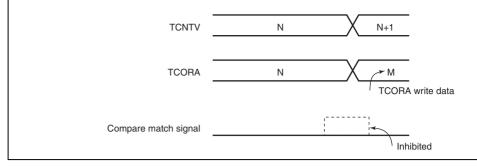


Figure 10.12 Contention between TCORA Write and Compare Match

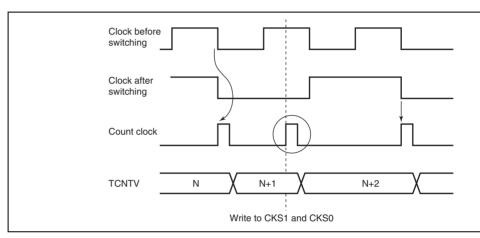


Figure 10.13 Internal Clock Switching and TCNTV Operation

REJ09

Rev. 4.00 Sep. 23, 2005 Page 134 of 354 REJ09B0025-0400

- Capability to process up to four pulse outputs or four pulse inputs
- Four general registers:
 - Independently assignable output compare or input capture functions
 - Usable as two pairs of registers; one register of each pair operates as a buffer for compare or input capture register
- Four selectable operating modes :
 - Waveform output by compare match

Selection of 0 output, 1 output, or toggle output

- Input capture function

Rising edge, falling edge, or both edges

— Counter clearing function

Counters can be cleared by compare match

— PWM mode

Up to three-phase PWM output can be provided with desired duty ratio.

- Any initial timer output value can be set
- Five interrupt sources

Four compare match/input capture interrupts and an overflow interrupt.

Table 11.1 summarizes the timer W functions, and figure 11.1 shows a block diagram o W.

TIM08W0A_000020020200

RENESAS

		compare match	compare match			
Initial output value setting function		_	Yes	Yes	Yes	Yes
Buffer function		_	Yes	Yes	_	_
Compare	0	_	Yes	Yes	Yes	Yes
match output	1	_	Yes	Yes	Yes	Yes
	Toggle	_	Yes	Yes	Yes	Yes
Input capture fu	Inction	_	Yes	Yes	Yes	Yes
PWM mode		_	_	Yes	Yes	Yes
Interrupt sources		Overflow	Compare match/input capture	Compare match/input capture	Compare match/input capture	Con mat cap

Rev. 4.00 Sep. 23, 2005 Page 136 of 354 REJ09B0025-0400

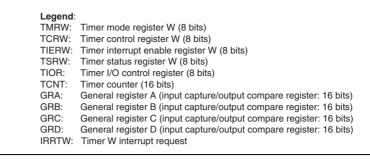


Figure 11.1 Timer W Block Diagram

compare B			PWM output pin in PWM mo
Input capture/output compare C	FTIOC	Input/output	Output pin for GRC output co input pin for GRC input captu PWM output pin in PWM mo
Input capture/output compare D	FTIOD	Input/output	Output pin for GRD output co input pin for GRD input captu PWM output pin in PWM mo

11.3 Register Descriptions

The timer W has the following registers.

- Timer mode register W (TMRW)
- Timer control register W (TCRW)
- Timer interrupt enable register W (TIERW)
- Timer status register W (TSRW)
- Timer I/O control register 0 (TIOR0)
- Timer I/O control register 1 (TIOR1)
- Timer counter (TCNT)
- General register A (GRA)
- General register B (GRB)
- General register C (GRC)
- General register D (GRD)

Rev. 4.00 Sep. 23, 2005 Page 138 of 354 REJ09B0025-0400

				This bit is always read as T.
5	BUFEB	0	R/W	Buffer Operation B
				Selects the GRD function.
				0: GRD operates as an input capture/output co register
				1: GRD operates as the buffer register for GRB
4	BUFEA	0	R/W	Buffer Operation A
				Selects the GRC function.
				0: GRC operates as an input capture/output co register
				1: GRC operates as the buffer register for GRA
3	_	1	_	Reserved
				This bit is always read as 1.
2	PWMD	0	R/W	PWM Mode D
				Selects the output mode of the FTIOD pin.
				0: FTIOD operates normally (output compare o
				1: PWM output
1	PWMC	0	R/W	PWM Mode C
				Selects the output mode of the FTIOC pin.
				0: FTIOC operates normally (output compare o
				1: PWM output
0	PWMB	0	R/W	PWM Mode B
				Selects the output mode of the FTIOB pin.
				0: FTIOB operates normally (output compare o
				1: PWM output

Renesas

5	CKS1	0	R/W	Select the TCNT clock source.
4	CKS0	0	R/W	000: Internal clock: counts on $\boldsymbol{\phi}$
				001: Internal clock: counts on \u00f6/2
				010: Internal clock: counts on $\phi/4$
				011: Internal clock: counts on $\phi/8$
				1XX: Counts on rising edges of the external even
				When the internal clock source (ϕ) is selected, s sources are counted in subactive and subsleep r
3	TOD	0	R/W	Timer Output Level Setting D
				Sets the output value of the FTIOD pin until the f compare match D is generated.
				0: Output value is 0*
				1: Output value is 1*
2	TOC	0	R/W	Timer Output Level Setting C
				Sets the output value of the FTIOC pin until the f compare match C is generated.
				0: Output value is 0*
				1: Output value is 1*
1	TOB	0	R/W	Timer Output Level Setting B
				Sets the output value of the FTIOB pin until the f compare match B is generated.
				0: Output value is 0*
				1: Output value is 1*

Rev. 4.00 Sep. 23, 2005 Page 140 of 354 REJ09B0025-0400

11.3.3 Timer Interrupt Enable Register W (TIERW)

D:4	Dit Nome	Initial		Description
Bit	Bit Name	Value	R/W	Description
7	OVIE	0	R/W	Timer Overflow Interrupt Enable
				When this bit is set to 1, FOVI interrupt request flag in TSRW is enabled.
6 to 4	_	All 1	_	Reserved
				These bits are always read as 1.
3	IMIED	0	R/W	Input Capture/Compare Match Interrupt Enable
				When this bit is set to 1, IMID interrupt requeste IMFD flag in TSRW is enabled.
2	IMIEC	0	R/W	Input Capture/Compare Match Interrupt Enable
				When this bit is set to 1, IMIC interrupt requeste IMFC flag in TSRW is enabled.
1	IMIEB	0	R/W	Input Capture/Compare Match Interrupt Enable
				When this bit is set to 1, IMIB interrupt requester IMFB flag in TSRW is enabled.
0	IMIEA	0	R/W	Input Capture/Compare Match Interrupt Enable
				When this bit is set to 1, IMIA interrupt requester IMFA flag in TSRW is enabled.

TIERW controls the timer W interrupt request.

Renesas

				Read OVF when OVF = 1, then write 0 in OVF
6 to 4		All 1		Reserved
				These bits are always read as 1.
3	IMFD	0	R/W	Input Capture/Compare Match Flag D
				[Setting conditions]
				TCNT = GRD when GRD functions as an ou compare register
				• The TCNT value is transferred to GRD by an
				capture signal when GRD functions as an inp
				capture register
				[Clearing condition]
				Read IMFD when IMFD = 1, then write 0 in IMFI
2	IMFC	0	R/W	Input Capture/Compare Match Flag C
				[Setting conditions]
				TCNT = GRC when GRC functions as an ou compare register
				 The TCNT value is transferred to GRC by an capture signal when GRC functions as an inp capture register
				[Clearing condition]
				Read IMFC when IMFC = 1, then write 0 in IMFC

Rev. 4.00 Sep. 23, 2005 Page 142 of 354 REJ09B0025-0400

			Read IMFB when IMFB = 1, then write 0 in IMF
0 IMFA	0	R/W	Input Capture/Compare Match Flag A
			[Setting conditions]
			 TCNT = GRA when GRA functions as an ou compare register
			 The TCNT value is transferred to GRA by a capture signal when GRA functions as an ir capture register [Clearing condition] Read IMFA when IMFA = 1, then write 0 in IMFA
-			

				0: GRB functions as an output compare register
				1: GRB functions as an input capture register
5	IOB1	0	R/W	I/O Control B1 and B0
4	IOB0	0	R/W	When IOB2 = 0,
				00: No output at compare match
				01: 0 output to the FTIOB pin at GRB compare r
				10: 1 output to the FTIOB pin at GRB compare r
				11: Output toggles to the FTIOB pin at GRB con match
				When IOB2 = 1,
				00: Input capture at rising edge at the FTIOB pir
				01: Input capture at falling edge at the FTIOB pi
				1X: Input capture at rising and falling edges of th pin
3		1		Reserved
				This bit is always read as 1.
2	IOA2	0	R/W	I/O Control A2
				Selects the GRA function.
				0: GRA functions as an output compare register
				1: GRA functions as an input capture register

Rev. 4.00 Sep. 23, 2005 Page 144 of 354 REJ09B0025-0400

00: Input capture at rising edge of the FTIOA p01: Input capture at falling edge of the FTIOA p1X: Input capture at rising and falling edges of pin

Legend X: Don't care.

11.3.6 Timer I/O Control Register 1 (TIOR1)

TIOR1 selects the functions of GRC and GRD, and specifies the functions of the FTIOC FTIOD pins.

		Initial		
Bit	Bit Name	Value	R/W	Description
7	_	1	_	Reserved
				This bit is always read as 1.
6	IOD2	0	R/W	I/O Control D2
				Selects the GRD function.
				0: GRD functions as an output compare registe
				1: GRD functions as an input capture register

				00: Input capture at rising edge at the FTIOD pir	
				01: Input capture at falling edge at the FTIOD pi	
				1X: Input capture at rising and falling edges at th pin	
3	—	1	—	Reserved	
				This bit is always read as 1.	
2	IOC2	IOC2 0 R/W I		I/O Control C2	
				Selects the GRC function.	
				0: GRC functions as an output compare register	
				1: GRC functions as an input capture register	
1	IOC1	0	R/W	I/O Control C1 and C0	
0	IOC0	0	R/W	When $IOC2 = 0$,	
				00: No output at compare match	
				01: 0 output to the FTIOC pin at GRC compare i	
				10: 1 output to the FTIOC pin at GRC compare	
				11: Output toggles to the FTIOC pin at GRC con match	
				When IOC2 = 1,	
				00: Input capture to GRC at rising edge of the F	
				01: Input capture to GRC at falling edge of the F	
				1X: Input capture to GRC at rising and falling ed the FTIOC pin	
Logor	d X. Don't	aro			

Legend X: Don't care.

Rev. 4.00 Sep. 23, 2005 Page 146 of 354 REJ09B0025-0400

Each general register is a 16-bit readable/writable register that can function as either an compare register or an input-capture register. The function is selected by settings in TIO TIOR1.

When a general register is used as an input-compare register, its value is constantly com the TCNT value. When the two values match (a compare match), the corresponding flag IMFB, IMFC, or IMFD) in TSRW is set to 1. An interrupt request is generated at this tin IMIEA, IMIEB, IMIEC, or IMIED is set to 1. Compare match output can be selected in

When a general register is used as an input-capture register, an external input-capture signed detected and the current TCNT value is stored in the general register. The corresponding (IMFA, IMFB, IMFC, or IMFD) in TSRW is set to 1. If the corresponding interrupt-ena (IMIEA, IMIEB, IMIEC, or IMIED) in TSRW is set to 1 at this time, an interrupt requer generated. The edge of the input-capture signal is selected in TIOR.

GRC and GRD can be used as buffer registers of GRA and GRB, respectively, by settin and BUFEB in TMRW.

For example, when GRA is set as an output-compare register and GRC is set as the buff for GRA, the value in the buffer register GRC is sent to GRA whenever compare match generated.

When GRA is set as an input-capture register and GRC is set as the buffer register for G value in TCNT is transferred to GRA and the value in the buffer register GRC is transfe GRA whenever an input capture is generated.

GRA to GRD must be written or read in 16-bit units; 8-bit access is not allowed. GRA to initialized to H'FFFF by a reset.

RENESAS

When the count overflows from H'FFFF to H'0000, the OVF flag in TSRW is set to 1. If in TIERW is set to 1, an interrupt request is generated. Figure 11.2 shows free-running co

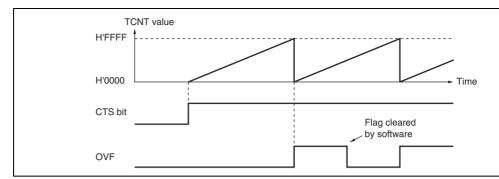


Figure 11.2 Free-Running Counter Operation

Rev. 4.00 Sep. 23, 2005 Page 148 of 354 REJ09B0025-0400

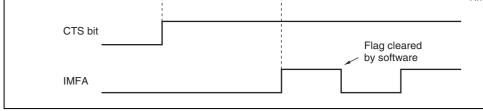


Figure 11.3 Periodic Counter Operation

By setting a general register as an output compare register, compare match A, B, C, or E the output at the FTIOA, FTIOB, FTIOC, or FTIOD pin to output 0, output 1, or toggle. 11.4 shows an example of 0 and 1 output when TCNT operates as a free-running counte is selected for compare match A, and 0 output is selected for compare match B. When si already at the selected output level, the signal level does not change at compare match.

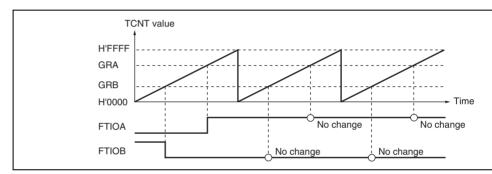


Figure 11.4 0 and 1 Output Example (TOA = 0, TOB = 1)

RENESAS

FTIOB		Toggle output
	•	

Figure 11.5 Toggle Output Example (TOA = 0, TOB = 1)

Figure 11.6 shows another example of toggle output when TCNT operates as a periodic c cleared by compare match A. Toggle output is selected for both compare match A and B.

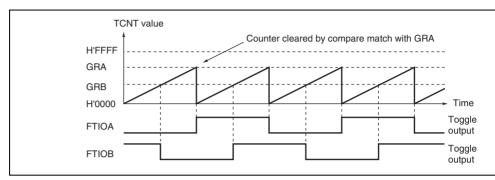


Figure 11.6 Toggle Output Example (TOA = 0, TOB = 1)

Rev. 4.00 Sep. 23, 2005 Page 150 of 354 REJ09B0025-0400

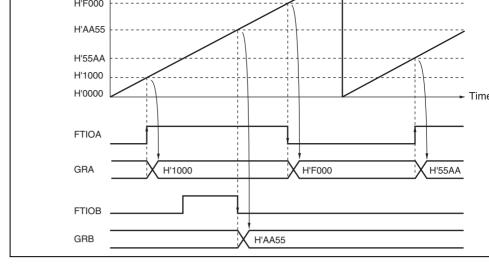
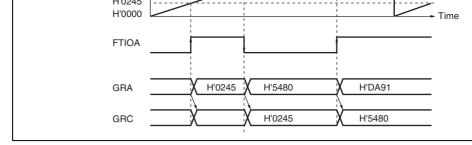
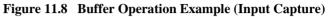




Figure 11.7 Input Capture Operating Example

Rev. 4.00 Sep. 23, 2005 Page 152 of 354 REJ09B0025-0400

a compare match occurs.

Figure 11.9 shows an example of operation in PWM mode. The output signals go to 1 at is cleared at compare match A, and the output signals go to 0 at compare match B, C, an TOC, and TOD = 1: initial output values are set to 1).

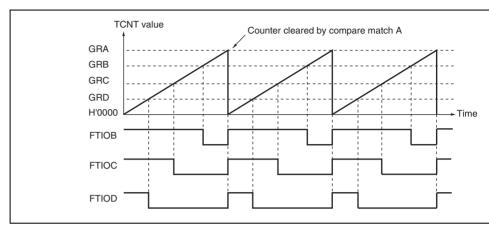


Figure 11.9 PWM Mode Example (1)

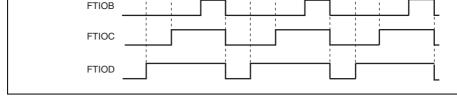


Figure 11.10 PWM Mode Example (2)

Rev. 4.00 Sep. 23, 2005 Page 154 of 354 REJ09B0025-0400

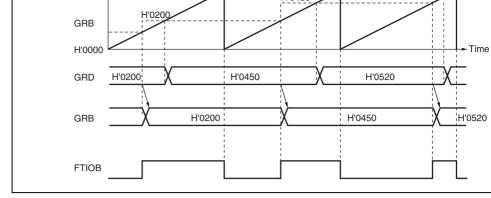


Figure 11.11 Buffer Operation Example (Output Compare)

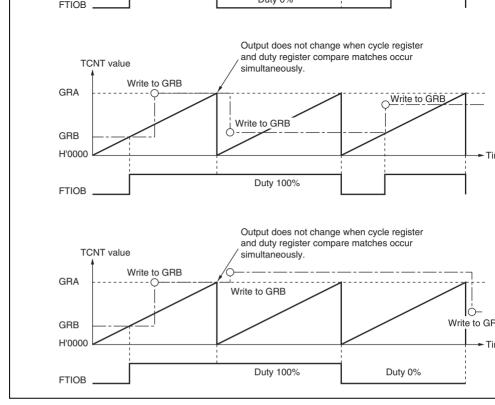
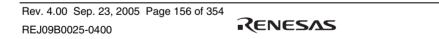



Figure 11.12 PWM Mode Example (TOB, TOC, and TOD = 0: initial output values are set to 0)

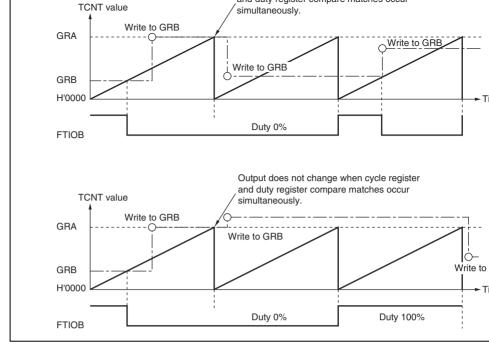


Figure 11.13 PWM Mode Example (TOB, TOC, and TOD = 1: initial output values are set to 1)

RENESAS

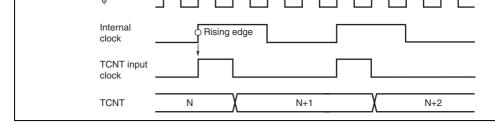


Figure 11.14 Count Timing for Internal Clock Source

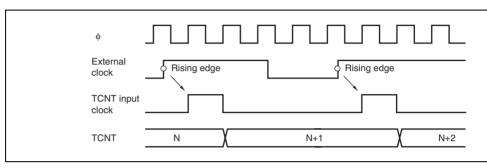


Figure 11.15 Count Timing for External Clock Source

Rev. 4.00 Sep. 23, 2005 Page 158 of 354 REJ09B0025-0400

ф	
TCNT input clock	
TCNT	N X N+1
GRA to GRD	Ν
Compare match signal	
FTIOA to FTIOD	χ

Figure 11.16 Output Compare Output Timing

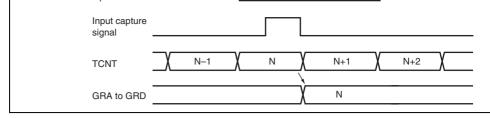


Figure 11.17 Input Capture Input Signal Timing

11.5.4 Timing of Counter Clearing by Compare Match

Figure 11.18 shows the timing when the counter is cleared by compare match A. When the value is N, the counter counts from 0 to N, and its cycle is N + 1.

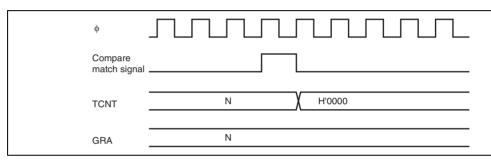
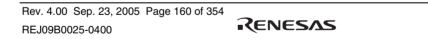



Figure 11.18 Timing of Counter Clearing by Compare Match

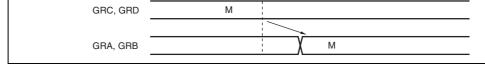


Figure 11.19 Buffer Operation Timing (Compare Match)

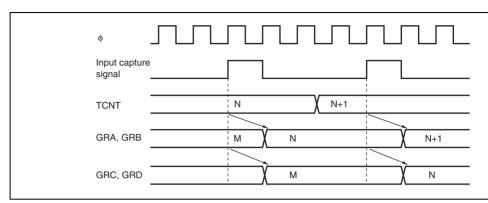


Figure 11.20 Buffer Operation Timing (Input Capture)

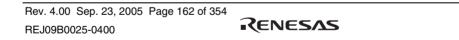
11.5.6 Timing of IMFA to IMFD Flag Setting at Compare Match

If a general register (GRA, GRB, GRC, or GRD) is used as an output compare register, corresponding IMFA, IMFB, IMFC, or IMFD flag is set to 1 when TCNT matches the g register.

The compare match signal is generated in the last state in which the values match (when updated from the matching count to the next count). Therefore, when TCNT matches a gregister, the compare match signal is generated only after the next TCNT clock pulse is

Renesas

match signal	
IMFA to IMFD	
IRRTW	


Figure 11.21 Timing of IMFA to IMFD Flag Setting at Compare Match

11.5.7 Timing of IMFA to IMFD Setting at Input Capture

If a general register (GRA, GRB, GRC, or GRD) is used as an input capture register, the corresponding IMFA, IMFB, IMFC, or IMFD flag is set to 1 when an input capture occur 11.22 shows the timing of the IMFA to IMFD flag setting at input capture.

φ	
Input capture signal	
TCNT	Ν
GRA to GRD	X N
IMFA to IMFD	
IRRTW	

Figure 11.22 Timing of IMFA to IMFD Flag Setting at Input Capture

Write signal	
IMFA to IMFD	
IRRTW	

Figure 11.23 Timing of Status Flag Clearing by CPU

11.6 Usage Notes

The following types of contention or operation can occur in timer W operation.

- The pulse width of the input clock signal and the input capture signal must be at leas system clock (φ) cycles; shorter pulses will not be detected correctly.
- 2. Writing to registers is performed in the T2 state of a TCNT write cycle. If counter clear signal occurs in the T2 state of a TCNT write cycle, clearing of the c takes priority and the write is not performed, as shown in figure 11.24. If counting-u generated in the TCNT write cycle to contend with the TCNT counting-up, writing t precedence.
- 3. Depending on the timing, TCNT may be incremented by a switch between different clock sources. When TCNT is internally clocked, an increment pulse is generated from rising edge of an internal clock signal, that is divided system clock (φ). Therefore, as figure 11.25 the switch is from a low clock signal to a high clock signal, the switch as a rising edge, causing TCNT to increment.
- 4. If timer W enters module standby mode while an interrupt request is generated, the i request cannot be cleared. Before entering module standby mode, disable interrupt re

RENESAS

Figure 11.24 Contention between TCNT Write and Clear

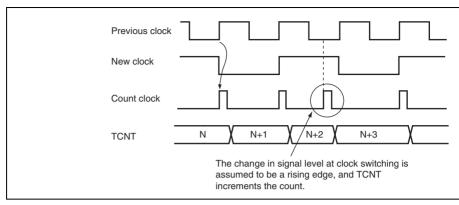


Figure 11.25 Internal Clock Switching and TCNT Operation

Rev. 4.00 Sep. 23, 2005 Page 164 of 354 REJ09B0025-0400

bit manipulation instruction to TCRW occur at the same timing.

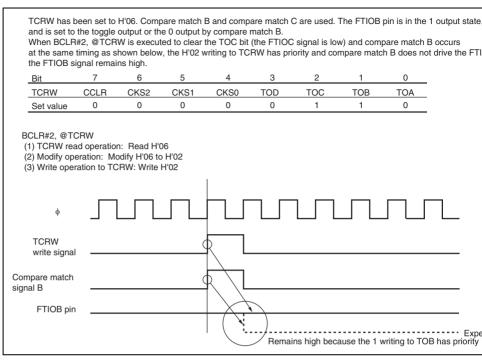


Figure 11.26 When Compare Match and Bit Manipulation Instruction to TO Occur at the Same Timing

RENESAS

Rev. 4.00 Sep. 23, 2005 Page 166 of 354 REJ09B0025-0400

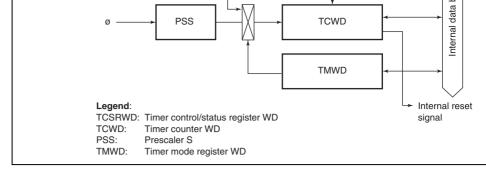


Figure 12.1 Block Diagram of Watchdog Timer

12.1 Features

- Selectable from nine counter input clocks.
 Eight clock sources (φ/64, φ/128, φ/256, φ/512, φ/1024, φ/2048, φ/4096, and φ/8192) internal oscillator can be selected as the timer-counter clock. When the internal oscill selected, it can operate as the watchdog timer in any operating mode.
- Reset signal generated on counter overflow An overflow period of 1 to 256 times the selected clock can be set.

WDT0110A_000020020200

RENESAS

watchdog timer operation and indicates the operating state. TCSRWD must be rewritten the MOV instruction. The bit manipulation instruction cannot be used to change the setting

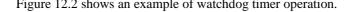
		Initial		
Bit	Bit Name	Value	R/W	Description
7	B6WI	1	R/W	Bit 6 Write Inhibit
				The TCWE bit can be written only when the write the B6WI bit is 0.
				This bit is always read as 1.
6	TCWE	0	R/W	Timer Counter WD Write Enable
				TCWD can be written when the TCWE bit is set
				When writing data to this bit, the value for bit 7 n
5	B4WI	1	R/W	Bit 4 Write Inhibit
				The TCSRWE bit can be written only when the v value of the B4WI bit is 0. This bit is always read
4	TCSRWE	0	R/W	Timer Control/Status Register WD Write Enable
				The WDON and WRST bits can be written when TCSRWE bit is set to 1.
				When writing data to this bit, the value for bit 5 n
3	B2WI	1	R/W	Bit 2 Write Inhibit
				This bit can be written to the WDON bit only whe write value of the B2WI bit is 0.
				This bit is always read as 1.

Rev. 4.00 Sep. 23, 2005 Page 168 of 354 REJ09B0025-0400

				 When 0 is written to the WDON bit while wr the B2WI when the TCSRWE bit=1
1	B0WI	1	R/W	Bit 0 Write Inhibit
				This bit can be written to the WRST bit only wh write value of the B0WI bit is 0. This bit is alway 1.
0	WRST	0	R/W	Watchdog Timer Reset
				[Setting condition]
				When TCWD overflows and an internal reset si generated
				[Clearing condition]
				Reset by RES pin
				 When 0 is written to the WRST bit while written B0WI bit when the TCSRWE bit=1

12.2.2 Timer Counter WD (TCWD)

TCWD is an 8-bit readable/writable up-counter. When TCWD overflows from H'FF to 1 internal reset signal is generated and the WRST bit in TCSRWD is set to 1. TCWD is in H'00.



1	CKS1	1	R/W	1000: Internal clock: counts on \u00f6/64
0	CKS0	1	R/W	1001: Internal clock: counts on $\phi/128$
				1010: Internal clock: counts on $\phi/256$
				1011: Internal clock: counts on $\phi/512$
				1100: Internal clock: counts on $\phi/1024$
				1101: Internal clock: counts on $\phi/2048$
				1110: Internal clock: counts on $\phi/4096$
				1111: Internal clock: counts on ϕ 8192
				0XXX: Internal oscillator
				For the internal oscillator overflow periods, see s 18, Electrical Characteristics.

Legend X: Don't care.

Rev. 4.00 Sep. 23, 2005 Page 170 of 354 REJ09B0025-0400

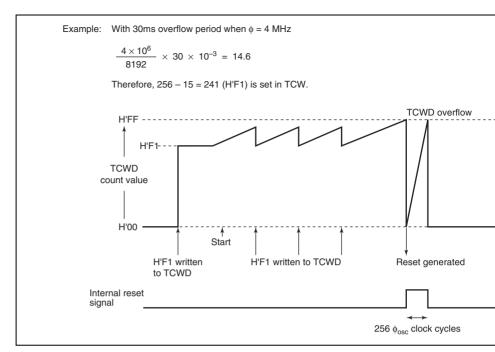


Figure 12.2 Watchdog Timer Operation Example

Rev. 4.00 Sep. 23, 2005 Page 172 of 354 REJ09B0025-0400

explanations are not given in this section.

13.1 Features

- Choice of asynchronous or clocked synchronous serial communication mode
- Full-duplex communication capability

The transmitter and receiver are mutually independent, enabling transmission and re be executed simultaneously.

Double-buffering is used in both the transmitter and the receiver, enabling continuou transmission and continuous reception of serial data.

- On-chip baud rate generator allows any bit rate to be selected
- External clock or on-chip baud rate generator can be selected as a transfer clock sour
- Six interrupt sources

Transmit-end, transmit-data-empty, receive-data-full, overrun error, framing error, a error.

Asynchronous mode

- Data length: 7 or 8 bits
- Stop bit length: 1 or 2 bits
- Parity: Even, odd, or none
- Receive error detection: Parity, overrun, and framing errors
- Break detection: Break can be detected by reading the RXD pin level directly in the framing error

SCI0010A_000120030300

RENESAS

Rev. 4.00 Sep. 23, 2005 Page 174 of 354 REJ09B0025-0400

			TSR	
Channel 2	SCI3_2	SCK3_2	SMR_2	H'F740
		RXD_2 TXD_2	BRR_2	H'F741
		1770 <u>-</u> L	SCR3_2	H'F742
			TDR_2	H'F743
			SSR_2	H'F744
			RDR_2	H'F745
			RSR_2	_
			TSR_2	
Channel 3* ²	SCI3_3	SCK3_3* ³ RXD_3 TXD_3	SMR_3	H'F600
			BRR_3	H'F601
		170_0	SCR3_3	H'F602
			TDR_3	H'F603
			SSR_3	H'F604
			RDR_3	H'F605
			RSR_3	_
			TSR_3	
			SMCR	H'F608

Notes: 1. The channel 1 of the SCI3 is used in on-board programming mode by boot m 2. The SCI3_3 function is incorporated in the H8/36024.

3. When this pin is used as the SCI3_3 function with the emulator used, the com PCR value must be cleared to 0.

RENESAS

Figure 13.1 Block Diagram of SCI3

Rev. 4.00 Sep. 23, 2005 Page 176 of 354 REJ09B0025-0400

13.3 Register Descriptions

The SCI3 has the following registers for each channel.

- Receive Shift Register (RSR)
- Receive Data Register (RDR)
- Transmit Shift Register (TSR)
- Transmit Data Register (TDR)
- Serial Mode Register (SMR)
- Serial Control Register 3 (SCR3)
- Serial Status Register (SSR)
- Bit Rate Register (BRR)
- SCI3_3 Module Control Register (SMCR)

operations are possible. After confirming that the RDRF bit in SSR is set to 1, read RDR once. RDR cannot be written to by the CPU. RDR is initialized to H'00.

13.3.3 Transmit Shift Register (TSR)

TSR is a shift register that transmits serial data. To perform serial data transmission, the s transfers transmit data from TDR to TSR automatically, then sends the data that starts fro LSB to the TXD pin. TSR cannot be directly accessed by the CPU.

13.3.4 Transmit Data Register (TDR)

TDR is an 8-bit register that stores data for transmission. When the SCI3 detects that TSF empty, it transfers the transmit data written in TDR to TSR and starts transmission. The obuffered structure of TDR and TSR enables continuous serial transmission. If the next transdata has already been written to TDR during transmission of one-frame data, the SCI3 transmit data to TSR to continue transmission. To achieve reliable serial transmission, transmit data to TDR only once after confirming that the TDRE bit in SSR is set to 1. TD initialized to H'FF.

Rev. 4.00 Sep. 23, 2005 Page 178 of 354 REJ09B0025-0400

6	CHR	0	R/W	Character Length (enabled only in asynchronou
				0: Selects 8 bits as the data length.
				1: Selects 7 bits as the data length.
5	PE	0	R/W	Parity Enable (enabled only in asynchronous m
				When this bit is set to 1, the parity bit is added data before transmission, and the parity bit is c reception.
4	РМ	0	R/W	Parity Mode (enabled only when the PE bit is 1 asynchronous mode)
				0: Selects even parity.
				1: Selects odd parity.
3	STOP	0	R/W	Stop Bit Length (enabled only in asynchronous
				Selects the stop bit length in transmission.
				0: 1 stop bit
				1: 2 stop bits
				For reception, only the first stop bit is checked, of the value in the bit. If the second stop bit is 0 treated as the start bit of the next transmit char
2	MP	0	R/W	Multiprocessor Mode
				When this bit is set to 1, the multiprocessor communication function is enabled. The PE bit bit settings are invalid in multiprocessor mode. synchronous mode, clear this bit to 0.

RENESAS

13.3.6 Serial Control Register 3 (SCR3)

SCR3 is a register that enables or disables SCI3 transfer operations and interrupt requests also used to select the transfer clock source. For details on interrupt requests, refer to sect Interrupts.

Bit	Bit Name	Initial Value	R/W	Description
7	TIE	0	R/W	Transmit Interrupt Enable
				When this bit is set to 1, the TXI interrupt reques enabled.
6	RIE	0	R/W	Receive Interrupt Enable
				When this bit is set to 1, RXI and ERI interrupt reare enabled.
5	TE	0	R/W	Transmit Enable
				When this bit s set to 1, transmission is enabled.
4	RE	0	R/W	Receive Enable
				When this bit is set to 1, reception is enabled.

Rev. 4.00 Sep. 23, 2005 Page 180 of 354 REJ09B0025-0400

_		•		
				When this bit is set to 1, TEI interrupt request is
1	CKE1	0	R/W	Clock Enable 0 and 1
0	CKE0	0	R/W	Selects the clock source.
				Asynchronous mode
				00: On-chip baud rate generator
				01: On-chip baud rate generator
				Outputs a clock of the same frequency as the from the SCK3 pin.
				10: External clock
				Inputs a clock with a frequency 16 times the from the SCK3 pin.
				11:Reserved
				Clocked synchronous mode
				00: On-chip clock (SCK3 pin functions as clock
				01:Reserved
				10: External clock (SCK3 pin functions as clock
				11:Reserved

				 When the TE bit in SCR3 is 0
				When data is transferred from TDR to TSR
				[Clearing conditions]
				• When 0 is written to TDRE after reading TDF
				When the transmit data is written to TDR
6	RDRF	0	R/W	Receive Data Register Full
				Indicates that the received data is stored in RDF
				[Setting condition]
				 When serial reception ends normally and rec is transferred from RSR to RDR
				[Clearing conditions]
				When 0 is written to RDRF after reading RDI
				When data is read from RDR
5	OER	0	R/W	Overrun Error
				[Setting condition]
				When an overrun error occurs in reception
				[Clearing condition]
				When 0 is written to OER after reading OER
4	FER	0	R/W	Framing Error
				[Setting condition]
				When a framing error occurs in reception
				[Clearing condition]
				• When 0 is written to FER after reading FER :

Rev. 4.00 Sep. 23, 2005 Page 182 of 354 REJ09B0025-0400

				• When TDRE = 1 at transmission of the last frame serial transmit character
				[Clearing conditions]
				• When 0 is written to TDRE after reading TD
				• When the transmit data is written to TDR
1	MPBR	0	R	Multiprocessor Bit Receive
				MPBR stores the multiprocessor bit in the recei character data. When the RE bit in SCR3 is cle its state is retained.
0	MPBT	0	R/W	Multiprocessor Bit Transfer
_				MPBT stores the multiprocessor bit to be added transmit character data.

[Asynchronous Mode]

$$\mathsf{N} = \frac{\phi}{64 \times 2^{2\mathsf{n}-1} \times \mathsf{B}} \times 10^6 - 1$$

$$\text{Error (\%)} = \left\{ \frac{\phi \times 10^6}{(N+1) \times B \times 64 \times 2^{2n-1}} - 1 \right\} \times 100$$

[Clocked Synchronous Mode]

$$\mathsf{N} = \frac{\phi}{8 \times 2^{2\mathsf{n}-1} \times \mathsf{B}} \times 10^6 - 1$$

[Legend]

B: Bit rate (bit/s)

N: BRR setting for baud rate generator ($0 \le N \le 255$)

φ: Operating frequency (MHz)

n: CSK1 and CSK0 settings in SMR ($0 \le n \le 3$)

Rev. 4.00 Sep. 23, 2005 Page 184 of 354 REJ09B0025-0400

1200	0	51	0.16	0	54	-0.70	0	63	0.00	0	77
2400	0	25	0.16	0	26	1.14	0	31	0.00	0	38
4800	0	12	0.16	0	13	-2.48	0	15	0.00	0	19
9600	0	6	-6.99	0	6	-2.48	0	7	0.00	0	9
19200	0	2	8.51	0	2	13.78	0	3	0.00	0	4
31250	0	1	0.00	0	1	4.86	0	1	22.88	0	2
38400	0	1	-18.62	0	1	-14.67	0	1	0.00	_	_

					Oper	ating Fre	quenc	су ф (М	Hz)		
	3.6864			4			4.91	52			
Bit Rate (bits/s)	n	N	Error (%)	n	N	Error (%)	n	N	Error (%)	n	N
110	2	64	0.70	2	70	0.03	2	86	0.31	2	88
150	1	191	0.00	1	207	0.16	1	255	0.00	2	64
300	1	95	0.00	1	103	0.16	1	127	0.00	1	12
600	0	191	0.00	0	207	0.16	0	255	0.00	1	64
1200	0	95	0.00	0	103	0.16	0	127	0.00	0	12
2400	0	47	0.00	0	51	0.16	0	63	0.00	0	64
4800	0	23	0.00	0	25	0.16	0	31	0.00	0	32
9600	0	11	0.00	0	12	0.16	0	15	0.00	0	15
19200	0	5	0.00	0	6	-6.99	0	7	0.00	0	7
31250		—	_	0	3	0.00	0	4	-1.70	0	4
38400	0	2	0.00	0	2	8.51	0	3	0.00	0	3

Legend

---: A setting is available but error occurs

RENESAS

1200	0	155	0.16	0	159	0.00	0	191
2400	0	77	0.16	0	79	0.00	0	95
4800	0	38	0.16	0	39	0.00	0	47
9600	0	19	-2.34	0	19	0.00	0	23
19200	0	9	-2.34	0	9	0.00	0	11
31250	0	5	0.00	0	5	2.40	0	6
38400	0	4	-2.34	0	4	0.00	0	5

	Operating Frequency φ (MHz)											
		8			9.8304			10			1:	
Bit Rate (bit/s)	n	N	Error (%)	n	N	Error (%)	n	N	Error (%)	n	N	
110	2	141	0.03	2	174	-0.26	2	177	-0.25	2	212	
150	2	103	0.16	2	127	0.00	2	129	0.16	2	155	
300	1	207	0.16	1	255	0.00	2	64	0.16	2	77	
600	1	103	0.16	1	127	0.00	1	129	0.16	1	155	
1200	0	207	0.16	0	255	0.00	1	64	0.16	1	77	
2400	0	103	0.16	0	127	0.00	0	129	0.16	0	155	
4800	0	51	0.16	0	63	0.00	0	64	0.16	0	77	
9600	0	25	0.16	0	31	0.00	0	32	-1.36	0	38	
19200	0	12	0.16	0	15	0.00	0	15	1.73	0	19	
31250	0	7	0.00	0	9	-1.70	0	9	0.00	0	11	
38400	0	6	-6.99	0	7	0.00	0	7	1.73	0	9	
L a sua su al												

Legend

---: A setting is available but error occurs.

Rev. 4.00 Sep. 23, 2005 Page 186 of 354 REJ09B0025-0400

RENESAS

1200	1	79	0.00	1	90	0.16	1	95	0.00	1	10
2400	0	159	0.00	0	181	0.16	0	191	0.00	0	20
4800	0	79	0.00	0	90	0.16	0	95	0.00	0	10
9600	0	39	0.00	0	45	-0.93	0	47	0.00	0	51
19200	0	19	0.00	0	22	-0.93	0	23	0.00	0	25
31250	0	11	2.40	0	13	0.00	0	14	-1.70	0	15
38400	0	9	0.00	_	—	—	0	11	0.00	0	12

		Operating Frequency φ (MHz)										
		18		20								
Bit Rate (bit/s)	n	N	Error (%)	n	N	Error (%)						
110	3	79	-0.12	3	88	-0.25						
150	2	233	0.16	3	64	0.16						
300	2	116	0.16	2	129	0.16						
600	1	233	0.16	2	64	0.16						
1200	1	116	0.16	1	129	0.16						
2400	0	233	0.16	1	64	0.16						
4800	0	116	0.16	0	129	0.16						
9600	0	58	-0.96	0	64	0.16						
19200	0	28	1.02	0	32	-1.36						
31250	0	17	0.00	0	19	0.00						
38400	0	14	-2.34	0	15	1.73						

Legend

-: A setting is available but error occurs.

RENESAS

4.9152	153600	0	0	14.7456 460800 0
5	156250	0	0	16 500000 0
6	187500	0	0	17.2032 537600 0
6.144	192000	0	0	18 562500 0
7.3728	230400	0	0	20 625000 0

Rev. 4.00 Sep. 23, 2005 Page 188 of 354 REJ09B0025-0400

2.5k	0	199	1	99	1	199	1	249	2
5k	0	99	0	199	1	99	1	124	1
10k	0	49	0	99	0	199	0	249	1
25k	0	19	0	39	0	79	0	99	0
50k	0	9	0	19	0	39	0	49	0
100k	0	4	0	9	0	19	0	24	0
250k	0	1	0	3	0	7	0	9	0
500k	0	0*	0	1	0	3	0	4	0
1M			0	0*	0	1	_	_	0
2M					0	0*	_	_	0
2.5M							0	0*	_
4M									0

Legend

Blank : No setting is available.

- : A setting is available but error occurs.

* : Continuous transfer is not possible.

2.5k	2	112	2	124
5k	1	224	1	249
10k	1	112	1	124
25k	0	179	0	199
50k	0	89	0	99
100k	0	44	0	49
250k	0	17	0	19
500k	0	8	0	9
1M	0	4	0	4
2M	_	_	_	_
2.5M	_	_	0	1
4M	_	_	_	_

Legend

Blank : No setting is available.

- : A setting is available but error occurs.

* : Continuous transfer is not possible.

Rev. 4.00 Sep. 23, 2005 Page 190 of 354 REJ09B0025-0400

				used, these bits must be cleared to 0.
1	TXD_3	0	R/W	TXD_3 Output Select
				Selects the function of the P57/TXD_3 pin.
				0: General I/O port
				1: TXD_3 output pin
0	MSTS3_3	0	R/W	SCI3_3 Module Standby
				When this bit is set to 1, the SCI3_3 enters th state.

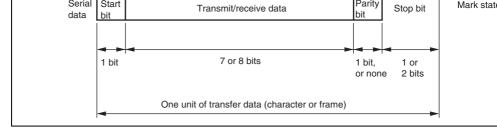


Figure 13.2 Data Format in Asynchronous Communication

13.4.1 Clock

Either an internal clock generated by the on-chip baud rate generator or an external clock the SCK3 pin can be selected as the SCI3's serial clock, according to the setting of the CC SMR and the CKE0 and CKE1 bits in SCR3. When an external clock is input at the SCK clock frequency should be 16 times the bit rate used.

When the SCI3 is operated on an internal clock, the clock can be output from the SCK3 p frequency of the clock output in this case is equal to the bit rate, and the phase is such that rising edge of the clock is in the middle of the transmit data, as shown in figure 13.3.

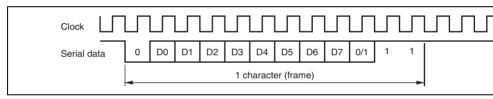
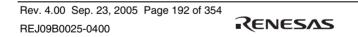
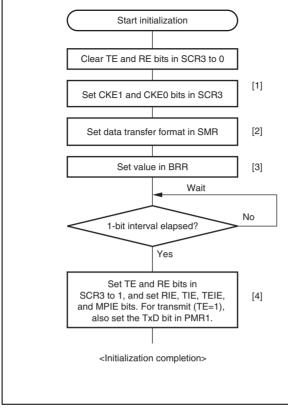




Figure 13.3 Relationship between Output Clock and Transfer Data Phase (Asynchronous Mode)(Example with 8-Bit Data, Parity, Two Stop Bits)

 Set the clock selection in SCR3.
 Be sure to clear bits RIE, TIE, TEIE, and MPIE, and bits TE and RE, to 0.

When the clock output is selected in asynchronous mode, clock is output immediately after CKE1 and CKE0 settings are made. When the clock output is selected at reception in clocked synchronous mode, clock is output immediately after CKE1, CKE0, and RE are set to 1.

- [2] Set the data transfer format in SMR.
- [3] Write a value corresponding to the bit rate to BRR. Not necessary if an external clock is used.
- [4] Wait at least one bit interval, then set the TE bit or RE bit in SCR3 to 1. RE settings enable the RXD pin to be used. For transmission, set the TXD bit in PMR1 to 1 to enable the TXD output pin to be used. Also set the RIE, TIE, TEIE, and MPIE bits, depending on whether interrupts are required. In asynchronous mode, the bits are marked at transmission and idled at reception to wait for the start bit.

Figure 13.4 Sample SCI3 Initialization Flowchart

Renesas

- 3. The SCI3 checks the TDRE flag at the timing for sending the stop bit.
- 4. If the TDRE flag is 0, the data is transferred from TDR to TSR, the stop bit is sent, an serial transmission of the next frame is started.
- 5. If the TDRE flag is 1, the TEND flag in SSR is set to 1, the stop bit is sent, and then t state" is entered, in which 1 is output. If the TEIE bit in SCR3 is set to 1 at this time, a interrupt request is generated.
- 6. Figure 13.6 shows a sample flowchart for transmission in asynchronous mode.

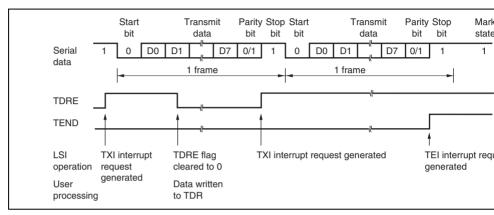
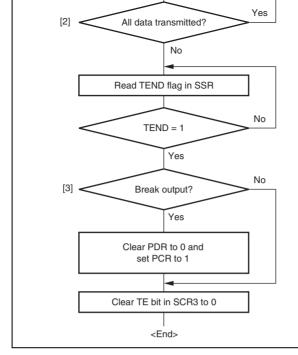



Figure 13.5 Example of SCI3 Transmission in Asynchronous Mode (8-Bit Data, Parity, One Stop Bit)

Rev. 4.00 Sep. 23, 2005 Page 194 of 354 REJ09B0025-0400

and PDR to 0, clear TxD in PMF to 0, then clear the TE bit in SCI to 0.

- RDR. If the RIE bit in SCR3 is set to 1 at this time, an ERI interrupt request is genera
- 4. If a framing error is detected (when the stop bit is 0), the FER bit in SSR is set to 1 and data is transferred to RDR. If the RIE bit in SCR3 is set to 1 at this time, an ERI interview request is generated.
- 5. If reception is completed successfully, the RDRF bit in SSR is set to 1, and receive da transferred to RDR. If the RIE bit in SCR3 is set to 1 at this time, an RXI interrupt rec generated. Continuous reception is possible because the RXI interrupt routine reads th data transferred to RDR before reception of the next receive data has been completed.

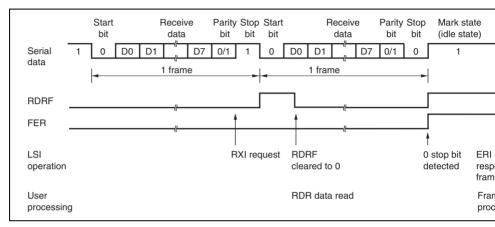


Figure 13.7 Example of SCI3 Reception in Asynchronous Mode (8-Bit Data, Parity, One Stop Bit)

Rev. 4.00 Sep. 23, 2005 Page 196 of 354 REJ09B0025-0400

0	0	1	0	Transferred to RDR	Framing error
0	0	0	1	Transferred to RDR	Parity error
1	1	1	0	Lost	Overrun error + frami
1	1	0	1	Lost	Overrun error + parity
0	0	1	1	Transferred to RDR	Framing error + parity
1	1	1	1	Lost	Overrun error + frami parity error

Note: * The RDRF flag retains the state it had before data reception.

the error. After performing the appropriate error processing, en that the OER, PER, and FER fla all cleared to 0. Reception cann resumed if any of these flags are 1. In the case of a framing error break can be detected by readin value of the input port correspon the RxD pin.

Figure 13.8 Sample Serial Reception Data Flowchart (Asynchronous Mode)

Rev. 4.00 Sep. 23, 2005 Page 198 of 354 REJ09B0025-0400

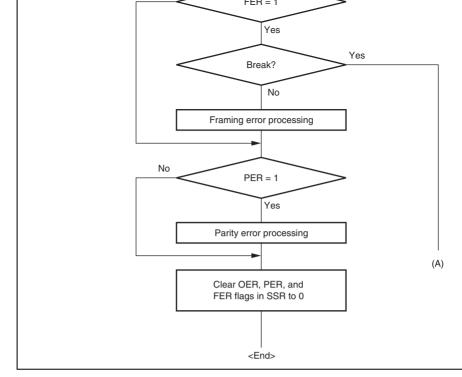


Figure 13.8 Sample Serial Reception Data Flowchart (Asynchronous Mode

also have a double-buffered structure, so data can be read or written during transmission or reception, enabling continuous data transfer.

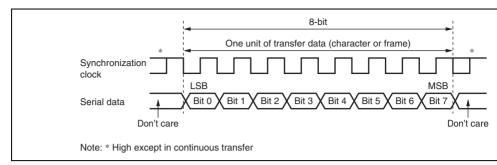
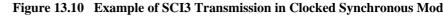


Figure 13.9 Data Format in Clocked Synchronous Communication

13.5.1 Clock

Either an internal clock generated by the on-chip baud rate generator or an external synchronization clock input at the SCK3 pin can be selected, according to the setting of t bit in SMR and CKE0 and CKE1 bits in SCR3. When the SCI3 is operated on an internal the synchronization clock is output from the SCK3 pin. Eight synchronization clock pulse output in the transfer of one character, and when no transfer is performed the clock is fixed.

Rev. 4.00 Sep. 23, 2005 Page 200 of 354 REJ09B0025-0400



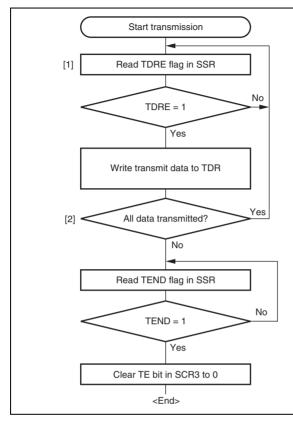

- has been written to TDR, and transfers the data from TDR to TSR.
- 2. The SCI3 sets the TDRE flag to 1 and starts transmission. If the TIE bit in SCR3 is s this time, a transmit data empty interrupt (TXI) is generated.
- 3. 8-bit data is sent from the TXD pin synchronized with the output clock when output mode has been specified, and synchronized with the input clock when use of an exte has been specified. Serial data is transmitted sequentially from the LSB (bit 0), from pin.
- 4. The SCI3 checks the TDRE flag at the timing for sending the MSB (bit 7).
- 5. If the TDRE flag is cleared to 0, data is transferred from TDR to TSR, and serial tran of the next frame is started.
- 6. If the TDRE flag is set to 1, the TEND flag in SSR is set to 1, and the TDRE flag m the output state of the last bit. If the TEIE bit in SCR3 is set to 1 at this time, a TEI request is generated.
- 7. The SCK3 pin is fixed high at the end of transmission.

Figure 13.11 shows a sample flow chart for serial data transmission. Even if the TDRE to cleared to 0, transmission will not start while a receive error flag (OER, FER, or PER) is Make sure that the receive error flags are cleared to 0 before starting transmission.

processing to TDR	User	Data written	
	processing	to TDR	

- Read SSR and check that the TDRE flag is set to 1, then write transmit data to TDR. When data is written to TDR, the TDRE flag is automatically cleared to 0 and clocks are output to start the data transmission.
- [2] To continue serial transmission, be sure to read 1 from the TDRE flag to confirm that writing is possible, then write data to TDR. When data is written to TDR, the TDRE flag is automatically cleared to 0.

Rev. 4.00 Sep. 23, 2005 Page 202 of 354 REJ09B0025-0400

- RDRF flag remains to be set to 1.
- 4. If reception is completed successfully, the RDRF bit in SSR is set to 1, and receive transferred to RDR. If the RIE bit in SCR3 is set to 1 at this time, an RXI interrupt regenerated.

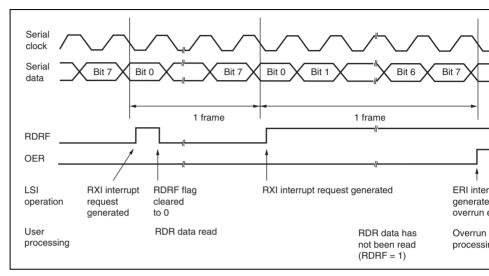
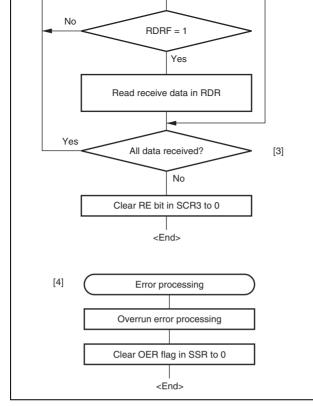



Figure 13.12 Example of SCI3 Reception in Clocked Synchronous Mode

Reception cannot be resumed while a receive error flag is set to 1. Accordingly, clear the FER, PER, and RDRF bits to 0 before resuming reception. Figure 13.13 shows a sample chart for serial data reception.

RENESAS

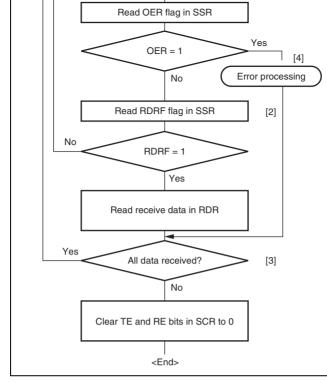
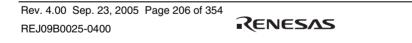

- cleared to 0.
- [4] If an overrun error occurs, read the O flag in SSR, and after performing the appropriate error processing, clear th flag to 0. Reception cannot be resum the OER flag is set to 1.

Figure 13.13 Sample Serial Reception Flowchart (Clocked Synchronous Mod

Rev. 4.00 Sep. 23, 2005 Page 204 of 354 REJ09B0025-0400



reading the RDRF flag, reading Also, before the MSB (bit 7) of th current frame is transmitted, rea from the TDRE flag to confirm th writing is possible. Then write d TDR.

When data is written to TDR, the TDRE flag is automatically clear 0. When data is read from RDR, RDRF flag is automatically clear 0.

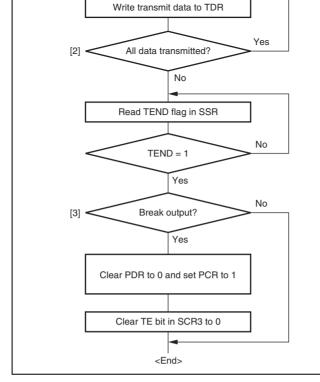
[4] If an overrun error occurs, read to OER flag in SSR, and after performing the appropriate error processing, clear the OER flag to Transmission/reception cannot be resumed if the OER flag is set to For overrun error processing, set figure 13.13.

Figure 13.14 Sample Flowchart of Simultaneous Serial Transmit and Receive Ope (Clocked Synchronous Mode)

communication using the multiprocessor format. The transmitting station first sends the of the receiving station with which it wants to perform serial communication as data wit multiprocessor bit added. It then sends transmit data as data with a 0 multiprocessor bit a When data with a 1 multiprocessor bit is received, the receiving station compares that da own ID. The station whose ID matches then receives the data sent next. Stations whose match continue to skip data until data with a 1 multiprocessor bit is again received.

The SCI3 uses the MPIE bit in SCR3 to implement this function. When the MPIE bit is transfer of receive data from RSR to RDR, error flag detection, and setting the SSR state RDRF, FER, and OER, to 1, are inhibited until data with a 1 multiprocessor bit is receive reception of a receive character with a 1 multiprocessor bit, the MPBR bit in SSR is set the MPIE bit is automatically cleared, thus normal reception is resumed. If the RIE bit is set to 1 at this time, an RXI interrupt is generated.

When the multiprocessor format is selected, the parity bit setting is rendered invalid. Al settings are the same as those in normal asynchronous mode. The clock used for multiple communication is the same as that in normal asynchronous mode.


Figure 13.15 Example of Inter-Processor Communication Using Multiprocessor (Transmission of Data H'AA to Receiving Station A)

13.6.1 Multiprocessor Serial Data Transmission

Figure 13.16 shows a sample flowchart for multiprocessor serial data transmission. For an transmission cycle, set the MPBT bit in SSR to 1 before transmission. For a data transmis cycle, clear the MPBT bit in SSR to 0 before transmission. All other SCI3 operations are as those in asynchronous mode.

Rev. 4.00 Sep. 23, 2005 Page 208 of 354 REJ09B0025-0400

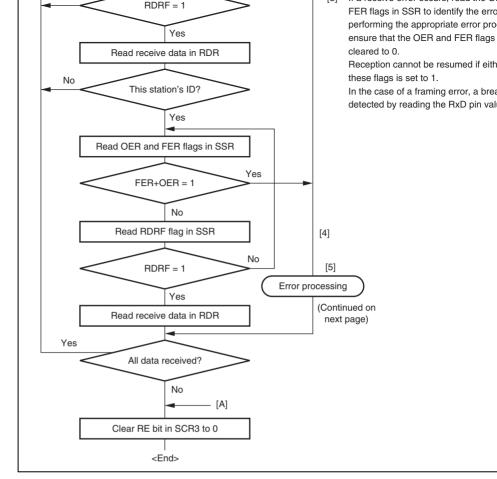

- transmission, set the port PCR to 1,
 - clear PDR to 0, then clear the TE bi in SCR3 to 0.

Figure 13.16 Sample Multiprocessor Serial Transmission Flowchart

Rev. 4.00 Sep. 23, 2005 Page 210 of 354 REJ09B0025-0400

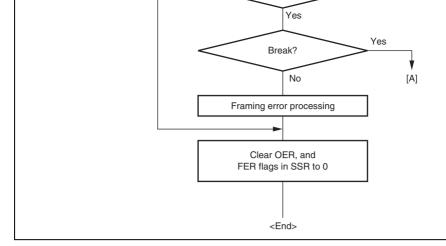


Figure 13.17 Sample Multiprocessor Serial Reception Flowchart (2)

Rev. 4.00 Sep. 23, 2005 Page 212 of 354 REJ09B0025-0400

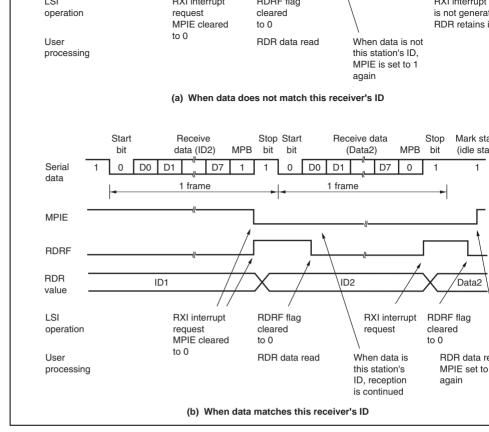


Figure 13.18 Example of SCI3 Reception Using Multiprocessor Format (Example with 8-Bit Data, Multiprocessor Bit, One Stop Bit)

RENESAS

Transmission End	TEI	Setting TEND in SSR
Receive Error	ERI	Setting OER, FER, and PER in SSR

The initial value of the TDRE flag in SSR is 1. Thus, when the TIE bit in SCR3 is set to a transferring the transmit data to TDR, a TXI interrupt request is generated even if the trans is not ready. The initial value of the TEND flag in SSR is 1. Thus, when the TEIE bit in S set to 1 before transferring the transmit data to TDR, a TEI interrupt request is generated the transmit data has not been sent. It is possible to make use of the most of these interrupt requests efficiently by transferring the transmit data to TDR in the interrupt routine. To p generation of these interrupt requests (TXI and TEI), set the enable bits (TIE and TEIE) t correspond to these interrupt requests to 1, after transferring the transmit data to TDR.

Rev. 4.00 Sep. 23, 2005 Page 214 of 354 REJ09B0025-0400

When TE is 0, the TXD pin is used as an I/O port whose direction (input or output) and determined by PCR and PDR. This can be used to set the TXD pin to mark state (high le send a break during serial data transmission. To maintain the communication line at mar until TE is set to 1, set both PCR and PDR to 1. As TE is cleared to 0 at this point, the T becomes an I/O port, and 1 is output from the TXD pin. To send a break during serial transmission, first set PCR to 1 and clear PDR to 0, and then clear TE to 0. When TE is 0, the transmitter is initialized regardless of the current transmission state, the TXD pin an I/O port, and 0 is output from the TXD pin.

13.8.3 Receive Error Flags and Transmit Operations (Clocked Synchronous Mo

Transmission cannot be started when a receive error flag (OER, PER, or FER) is set to 1 the TDRE flag is cleared to 0. Be sure to clear the receive error flags to 0 before starting transmission. Note also that receive error flags cannot be cleared to 0 even if the RE bit to 0.

... Formula (1)

[Legend\ N: Ratio of bit rate to clock (N = 16) D: Clock duty (D = 0.5 to 1.0) L: Frame length (L = 9 to 12) F: Absolute value of clock rate deviation

Assuming values of F (absolute value of clock rate deviation) = 0 and D (clock duty) = 0. formula (1), the reception margin can be given by the formula.

 $M = \{0.5 - 1/(2 \times 16)\} \times 100 \ [\%] = 46.875\%$

However, this is only the computed value, and a margin of 20% to 30% should be allowe system design.

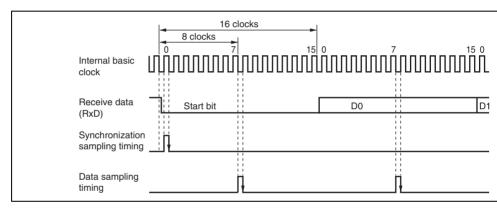


Figure 13.19 Receive Data Sampling Timing in Asynchronous Mode

Rev. 4.00 Sep. 23, 2005 Page 216 of 354 REJ09B0025-0400

- Conversion time: at least 3.5 µs per channel (at 20 MHz operation)
- Two operating modes
 - Single mode: Single-channel A/D conversion
 - Scan mode: Continuous A/D conversion on 1 to 4 channels
- Four data registers
 - Conversion results are held in a 16-bit data register for each channel
- Sample and hold function
- Two conversion start methods
 - Software
 - External trigger signal
- Interrupt request
 - An A/D conversion end interrupt request (ADI) can be generated

ADCMS32A_000020020200

RENESAS

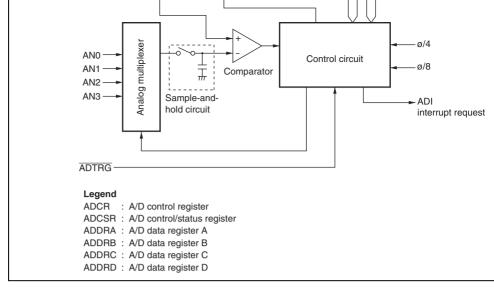


Figure 14.1 Block Diagram of A/D Converter

Rev. 4.00 Sep. 23, 2005 Page 218 of 354 REJ09B0025-0400

Analog input pin 2	ANZ	input	
Analog input pin 3	AN3	Input	_
A/D external trigger input pin	ADTRG	Input	External trigger input pin for sta conversion

Renesas

14.3.1 A/D Data Registers A to D (ADDRA to ADDRD)

There are four 16-bit read-only ADDR registers; ADDRA to ADDRD, used to store the r A/D conversion. The ADDR registers, which store a conversion result for each channel, shown in table 14.2.

The converted 10-bit data is stored in bits 6 to 15. The lower 6 bits are always read as 0.

The data bus between the CPU and the A/D converter is 8 bits wide. The upper byte can be directly from the CPU, however the lower byte should be read via a temporary register. The temporary register contents are transferred from the ADDR when the upper byte data is referred byte access to ADDR should be done by reading the upper byte first then the low Word access is also possible. ADDR is initialized to H'0000.

Table 14.2 Analog Input Channels and Corresponding ADDR Registers

Analog Input Channel	A/D Data Register to Be Stored Results of A/D Conversion
ANO	ADDRA
AN1	ADDRB
AN2	ADDRC
AN3	ADDRD

Rev. 4.00 Sep. 23, 2005 Page 220 of 354 REJ09B0025-0400

				selected in scan mode
				[Clearing conditions]
				• When 0 is written after reading ADF = 1
6	ADIE	0	R/W	A/D Interrupt Enable
				A/D conversion end interrupt (ADI) request enal ADF when 1 is set
5	ADST	0	R/W	A/D Start
				Setting this bit to 1 starts A/D conversion. In sir this bit is cleared to 0 automatically when conver the specified channel is complete. In scan mode conversion continues sequentially on the specifi channels until this bit is cleared to 0 by software or a transition to standby mode.
4	SCAN	0	R/W	Scan Mode
				Selects single mode or scan mode as the A/D c operating mode.
				0: Single mode
				1: Scan mode
3	CKS	0	R/W	Clock Select
				Selects the A/D conversions time
				0: Conversion time = 134 states (max.)
				1: Conversion time = 70 states (max.)
				Clear the ADST bit to 0 before switching the cor time.

Renesas

14.3.3 A/D Control Register (ADCR)

ADCR enables A/D conversion started by an external trigger signal.

		Initial		
Bit	Bit Name	Value	R/W	Description
7	TRGE	0	R/W	Trigger Enable
				A/D conversion is started at the falling edge and t edge of the external trigger signal (ADTRG) wher is set to 1.
				The selection between the falling edge and rising the external trigger pin (\overline{ADTRG}) conforms to the bit in the interrupt edge select register 2 (IEGR2)
6 to 1	_	All 1	_	Reserved
				These bits are always read as 1.
0	_	0	R/W	Reserved
				Do not set this bit to 1, though the bit is readable/

Rev. 4.00 Sep. 23, 2005 Page 222 of 354 REJ09B0025-0400

channel as follows:

- 1. A/D conversion is started from the first channel when the ADST bit in ADCSR is s according to software or external trigger input.
- 2. When A/D conversion is completed, the result is transferred to the corresponding A register to the channel.
- 3. On completion of conversion, the ADF bit in ADCSR is set to 1. If the ADIE bit is this time, an ADI interrupt request is generated.
- 4. The ADST bit remains set to 1 during A/D conversion. When A/D conversion ends ADST bit is automatically cleared to 0 and the A/D converter enters the wait state.

14.4.2 Scan Mode

In scan mode, A/D conversion is performed sequentially for the analog input on the spec channels (four channels maximum) as follows:

- 1. When the ADST bit is set to 1 by software, or external trigger input, A/D conversion the first channel in the group.
- 2. When A/D conversion for each channel is completed, the result is sequentially transfit the A/D data register corresponding to each channel.
- 3. When conversion of all the selected channels is completed, the ADF flag in ADCSR If the ADIE bit is set to 1 at this time, an ADI interrupt is requested. Conversion of channel in the group starts again.
- 4. The ADST bit is not automatically cleared to 0. Steps [2] to [3] are repeated as long ADST bit remains set to 1. When the ADST bit is cleared to 0, A/D conversion stops

RENESAS

In scan mode, the values given in table 14.3 apply to the first conversion time. In the second subsequent conversions, the conversion time is 128 states (fixed) when CKS = 0 and 66 s (fixed) when CKS = 1.

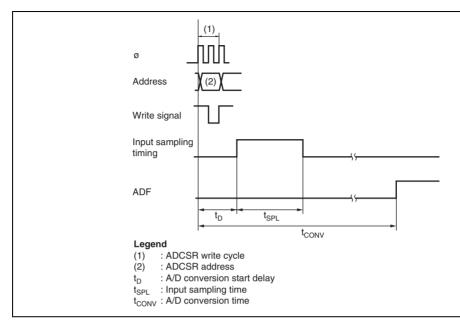


Figure 14.2 A/D Conversion Timing

Rev. 4.00 Sep. 23, 2005 Page 224 of 354 REJ09B0025-0400

14.4.4 External frigger input finning

A/D conversion can also be started by an external trigger input. When the TRGE bit is s ADCR, external trigger input is enabled at the $\overline{\text{ADTRG}}$ pin. A falling edge at the $\overline{\text{ADTR}}$ pin sets the ADST bit to 1 in ADCSR, starting A/D conversion. Other operations, in bo and scan modes, are the same as when the bit ADST has been set to 1 by software. Figure shows the timing.

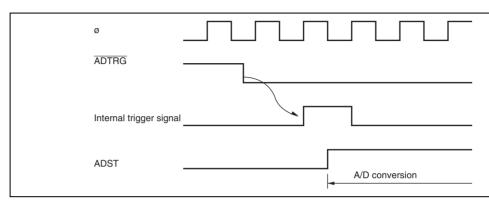


Figure 14.3 External Trigger Input Timing

when the digital output changes from the minimum voltage value 0000000000 to 000 (see figure 14.5).

• Full-scale error

The deviation of the analog input voltage value from the ideal A/D conversion charac when the digital output changes from 1111111110 to 111111111 (see figure 14.5).

• Nonlinearity error

The error with respect to the ideal A/D conversion characteristics between zero voltage full-scale voltage. Does not include offset error, full-scale error, or quantization error.

• Absolute accuracy

The deviation between the digital value and the analog input value. Includes offset er scale error, quantization error, and nonlinearity error.

Rev. 4.00 Sep. 23, 2005 Page 226 of 354 REJ09B0025-0400

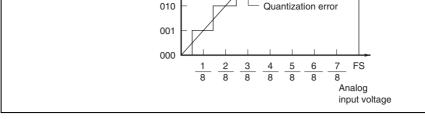


Figure 14.4 A/D Conversion Accuracy Definitions (1)

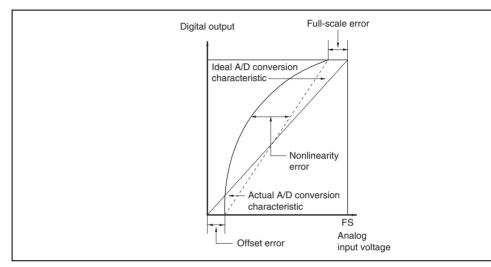


Figure 14.5 A/D Conversion Accuracy Definitions (2)

filter effect is obtained in this case, it may not be possible to follow an analog signal with differential coefficient (e.g., 5 mV/ μ s or greater) (see figure 14.6). When converting a hi analog signal or converting in scan mode, a low-impedance buffer should be inserted.

14.6.2 Influences on Absolute Accuracy

Adding capacitance results in coupling with GND, and therefore noise in GND may adve affect absolute accuracy. Be sure to make the connection to an electrically stable GND.

Care is also required to ensure that filter circuits do not interfere with digital signals or ac antennas on the mounting board.

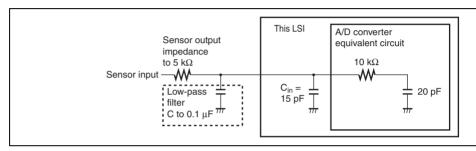
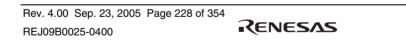



Figure 14.6 Analog Input Circuit Example

power supply voltage rises again.

Even if the power supply voltage falls, the unstable state when the power supply voltage below the guaranteed operating voltage can be removed by entering standby mode when exceeding the guaranteed operating voltage and during normal operation. Thus, system can be improved. If the power supply voltage falls more, the reset state is automatically the power supply voltage rises again, the reset state is held for a specified period, then a is automatically entered.

Figure 15.1 is a block diagram of the power-on reset circuit and the low-voltage detection

15.1 Features

• Power-on reset circuit

Uses an external capacitor to generate an internal reset signal when power is first sup

• Low-voltage detection circuit

LVDR: Monitors the power-supply voltage, and generates an internal reset signal where voltage falls below a specified value.

LVDI: Monitors the power-supply voltage, and generates an interrupt when the voltable below or rises above respective specified values.

Two pairs of detection levels for reset generation voltage are available: when only the circuit is used, or when the LVDI and LVDR circuits are both used.

LVI0000A_000020030300

RENESAS

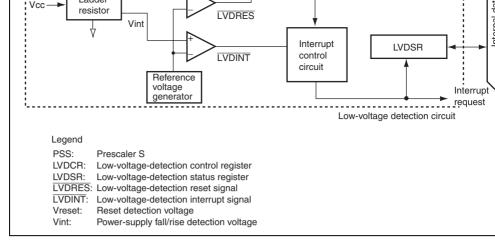


Figure 15.1 Block Diagram of Power-On Reset Circuit and Low-Voltage Detection

15.2 Register Descriptions

The low-voltage detection circuit has the following registers.

- Low-voltage-detection control register (LVDCR)
- Low-voltage-detection status register (LVDSR)

Rev. 4.00 Sep. 23, 2005 Page 230 of 354 REJ09B0025-0400

7	LVDE	0*	R/W	LVD Enable				
				0: The low-voltage detection circuit is not used standby mode)				
				1: The low-voltage detection circuit is used				
6 to 4		All 1		Reserved				
				These bits are always read as 1, and cannot be				
3	LVDSEL	0*	R/W	LVDR Detection Level Select				
				0: Reset detection voltage is 2.3 V (typ.)				
				1: Reset detection voltage is 3.6 V (typ.)				
				When the falling or rising voltage detection inte used, reset detection voltage of 2.3 V (typ.) sho used. When only a reset detection interrupt is u detection voltage of 3.6 V (typ.) should be used				
2	LVDRE	0*	R/W	LVDR Enable				
				0: Disables the LVDR function				
				1: Enables the LVDR function				
1	LVDDE	0	R/W	Voltage-Fall-Interrupt Enable				
				0: Interrupt on the power-supply voltage falling selected detection level disabled				
				1: Interrupt on the power-supply voltage falling selected detection level enabled				
0	LVDUE	0	R/W	Voltage-Rise-Interrupt Enable				
				0: Interrupt on the power-supply voltage rising a selected detection level disabled				
				1: Interrupt on the power-supply voltage rising a selected detection level enabled				
Note:								

Renesas

Legend * means invalid.

15.2.2 Low-Voltage-Detection Status Register (LVDSR)

LVDSR indicates whether the power-supply voltage falls below or rises above the respective specified values.

Bit	Bit Name	Initial Value	R/W	Description
7 to 2	_	All 1	_	Reserved
				These bits are always read as 1, and cannot be m
1	LVDDF	0*	R/W	LVD Power-Supply Voltage Fall Flag
				[Setting condition]
				When the power-supply voltage falls below Vint (D 3.7 V)
				[Clearing condition]
				Writing 0 to this bit after reading it as 1
0	LVDUF	0*	R/W	LVD Power-Supply Voltage Rise Flag
				[Setting condition]
				When the power supply voltage falls below Vint (D the LVDUE bit in LVDCR is set to 1, then rises abo (U) (typ. = 4.0 V) before falling below Vreset1 (typ.
				[Clearing condition]
				Writing 0 to this bit after reading it as 1
Note:	* Initialized	d by LVDF	} .	
Rev. 4.00	0 Sep. 23, 20	05 Page 23	32 of 354	

REJ09B0025-0400

prevent the incorrect operation of the chip by noise on the $\overline{\text{RES}}$ pin.

To achieve stable operation of this LSI, the power supply needs to rise to its full level ar within the specified time. The maximum time required for the power supply to rise and a power has been supplied (t_{PWON}) is determined by the oscillation frequency (f_{osc}) and cap which is connected to $\overline{\text{RES}}$ pin ($C_{\overline{\text{RES}}}$). If t_{PWON} means the time required to reach 90 % of supply voltage, the power supply circuit should be designed to satisfy the following form

$$t_{PWON}$$
 (ms) $\leq 90 \times C_{RES}$ (μ F) + 162/ f_{osc} (MHz)
($t_{nwon} \leq 3000$ ms, $C_{RES} \geq 0.22 \ \mu$ F, and $f_{osc} = 10$ in 2-MHz to 10-MHz operation

Note that the power supply voltage (Vcc) must fall below Vpor = 100 mV and rise after the $\overline{\text{RES}}$ pin is removed. To remove charge on the $\overline{\text{RES}}$ pin, it is recommended that the or should be placed near Vcc. If the power supply voltage (Vcc) rises from the point above power-on reset may not occur.

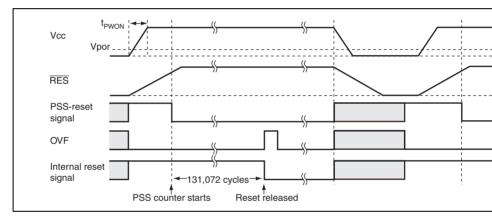
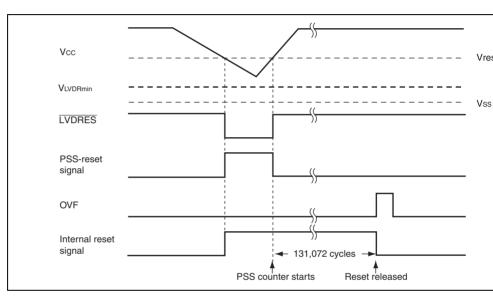



Figure 15.2 Operational Timing of Power-On Reset Circuit

When the power-supply voltage falls below the Vreset voltage (typ. = 2.3 V or 3.6 V), the clears the LVDRES signal to 0, and resets the prescaler S. The low-voltage detection reset remains in place until a power-on reset is generated. When the power-supply voltage rises the Vreset voltage again, the prescaler S starts counting. It counts 131,072 clock (ϕ) cycle then releases the internal reset signal. In this case, the LVDE, LVDSEL, and LVDRE bits LVDCR are not initialized.

Note that if the power supply voltage (Vcc) falls below $V_{LVDRmin} = 1.0$ V and then rises from point, the low-voltage detection reset may not occur.

If the power supply voltage (Vcc) falls below Vpor = 100 mV, a power-on reset occurs.

Figure 15.3 Operational Timing of LVDR Circuit

Rev. 4.00 Sep. 23, 2005 Page 234 of 354 REJ09B0025-0400

LVDINT signal to 0 and the LVDDF bit in LVDSR is set to 1. If the LVDDE bit is 1 at an IRQ0 interrupt request is simultaneously generated. In this case, the necessary data m saved in the external EEPROM, etc, and a transition must be made to standby mode or s mode. Until this processing is completed, the power supply voltage must be higher than limit of the guaranteed operating voltage.

When the power-supply voltage does not fall below Vreset1 (typ. = 2.3 V) voltage but rivint (U) (typ. = 4.0 V) voltage, the LVDI sets the <u>LVDINT</u> signal to 1. If the LVDUE be this time, the LVDUF bit in LVDSR is set to 1 and an IRQ0 interrupt request is simultant generated.

If the power supply voltage (Vcc) falls below Vreset1 (typ. = 2.3 V) voltage, the LVDR is performed.

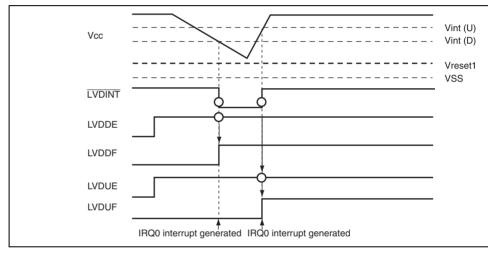


Figure 15.4 Operational Timing of LVDI Circuit

LVDUE bits to 0. Then clear the LVDE bit to 0. The LVDE bit must not be cleared to same timing as the LVDRE, LVDDE, and LVDUE bits because incorrect operation n

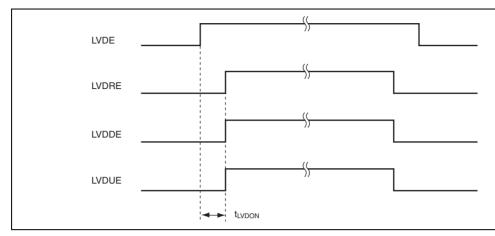


Figure 15.5 Timing for Operation/Release of Low-Voltage Detection Circuit

Rev. 4.00 Sep. 23, 2005 Page 236 of 354 REJ09B0025-0400

16.1 When Using Internal Power Supply Step-Down Circuit

Connect the external power supply to the V_{cc} pin, and connect a capacitance of approxim μ F between V_{cc} and V_{ss} , as shown in figure 16.1. The internal step-down circuit is made simply by adding this external circuit. In the external circuit interface, the external power voltage connected to V_{cc} and the GND potential connected to V_{ss} are the reference levels example, for port input/output levels, the V_{cc} level is the reference for the high level, and level is that for the low level. The A/D converter analog power supply is not affected by internal step-down circuit.

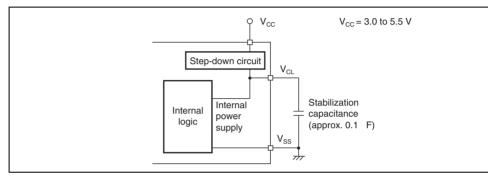


Figure 16.1 Power Supply Connection when Internal Step-Down Circuit is I

PSCKT00A_000020020200

RENESAS

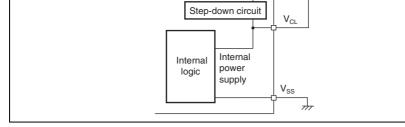


Figure 16.2 Power Supply Connection when Internal Step-Down Circuit is Not

Rev. 4.00 Sep. 23, 2005 Page 238 of 354 REJ09B0025-0400

- The number of access states is indicated.
- 2. Register bits
- Bit configurations of the registers are described in the same order as the register add
- Reserved bits are indicated by in the bit name column.
- When registers consist of 16 bits, bits are described from the MSB side.
- 3. Register states in each operating mode
- Register states are described in the same order as the register addresses.
- The register states described here are for the basic operating modes. If there is a spec for an on-chip peripheral module, refer to the section on that on-chip peripheral mod

	00110_0	0	111 002	0010_0	0
Transmit data register_3	TDR_3	8	H'F603	SCI3_3	8
Serial status register_3	SSR_3	8	H'F604	SCI3_3	8
Receive data register_3	RDR_3	8	H'F605	SCI3_3	8
_	_	—	H'F606, H'F607	SCI3_3	_
SCI3_3 module control register	SMCR	8	H'F608	SCI3_3	8
Low-voltage-detection control register	LVDCR	8	H'F730	LVDC*1	8
Low-voltage-detection status register	LVDSR	8	H'F731	LVDC*1	8
Serial mode register_2	SMR_2	8	H'F740	SCI3_2	8
Bit rate register_2	BRR_2	8	H'F741	SCI3_2	8
Serial control register 3_2	SCR3_2	8	H'F742	SCI3_2	8
Transmit data register_2	TDR_2	8	H'F743	SCI3_2	8
Serial status register_2	SSR_2	8	H'F744	SCI3_2	8
Receive data register_2	RDR_2	8	H'F745	SCI3_2	8
Timer mode register W	TMRW	8	H'FF80	Timer W	8
Timer control register W	TCRW	8	H'FF81	Timer W	8
Timer interrupt enable register W	TIERW	8	H'FF82	Timer W	8
Timer status register W	TSRW	8	H'FF83	Timer W	8
Timer I/O control register 0	TIOR0	8	H'FF84	Timer W	8
Timer I/O control register 1	TIOR1	8	H'FF85	Timer W	8
Timer counter	TCNT	16	H'FF86	Timer W	16* ²
General register A	GRA	16	H'FF88	Timer W	16* ²

Rev. 4.00 Sep. 23, 2005 Page 240 of 354 REJ09B0025-0400

RENESAS

	101100	0	11117.0		0
Timer control/status register V	TCSRV	8	H'FFA1	Timer V	8
Timer constant register A	TCORA	8	H'FFA2	Timer V	8
Timer constant register B	TCORB	8	H'FFA3	Timer V	8
Timer counter V	TCNTV	8	H'FFA4	Timer V	8
Timer control register V1	TCRV1	8	H'FFA5	Timer V	8
Serial mode register	SMR	8	H'FFA8	SCI3	8
Bit rate register	BRR	8	H'FFA9	SCI3	8
Serial control register 3	SCR3	8	H'FFAA	SCI3	8
Transmit data register	TDR	8	H'FFAB	SCI3	8
Serial status register	SSR	8	H'FFAC	SCI3	8
Receive data register	RDR	8	H'FFAD	SCI3	8
A/D data register A	ADDRA	16	H'FFB0	A/D converter	8
A/D data register B	ADDRB	16	H'FFB2	A/D converter	8
A/D data register C	ADDRC	16	H'FFB4	A/D converter	8
A/D data register D	ADDRD	16	H'FFB6	A/D converter	8
A/D control/status register	ADCSR	8	H'FFB8	A/D converter	8
A/D control register	ADCR	8	H'FFB9	A/D converter	8
Timer control/status register WD	TCSRWD	8	H'FFC0	WDT* ³	8
Timer counter WD	TCWD	8	H'FFC1	WDT* ³	8

Rev. 4.00 Sep. 23, 2005 Pag RENESAS

REJ09

Break data register H	BDRH	8	H'FFCC	Address break	8
Break data register L	BDRL	8	H'FFCD	Address break	8
Port pull-up control register 1	PUCR1	8	H'FFD0	I/O port	8
Port pull-up control register 5	PUCR5	8	H'FFD1	I/O port	8
Port data register 1	PDR1	8	H'FFD4	I/O port	8
Port data register 2	PDR2	8	H'FFD5	I/O port	8
Port data register 5	PDR5	8	H'FFD8	I/O port	8
Port data register 7	PDR7	8	H'FFDA	I/O port	8
Port data register 8	PDR8	8	H'FFDB	I/O port	8
Port data register B	PDRB	8	H'FFDD	I/O port	8
Port mode register 1	PMR1	8	H'FFE0	I/O port	8
Port mode register 5	PMR5	8	H'FFE1	I/O port	8
Port control register 1	PCR1	8	H'FFE4	I/O port	8
Port control register 2	PCR2	8	H'FFE5	I/O port	8
Port control register 5	PCR5	8	H'FFE8	I/O port	8
Port control register 7	PCR7	8	H'FFEA	I/O port	8
Port control register 8	PCR8	8	H'FFEB	I/O port	8
System control register 1	SYSCR1	8	H'FFF0	Power- down	8
System control register 2	SYSCR2	8	H'FFF1	Power- down	8
Interrupt edge select register 1	IEGR1	8	H'FFF2	Interrupts	8
			-		

Rev. 4.00 Sep. 23, 2005 Page 242 of 354 REJ09B0025-0400

RENESAS

- Notes: 1. LVDC: Low-voltage detection circuits (optional)
 - 2. Only word access can be used.
 - 3. WDT: Watchdog timer

TDR_3	TDR7	TDR6	TDR5	TDR4	TDR3	TDR2	TDR1	TDR0	
SSR_3	TDRE	RDRF	OER	FER	PER	TEND	MPBR	MPBT	-
RDR_3	RDR7	RDR6	RDR5	RDR4	RDR3	RDR2	RDR1	RDR0	-
SMCR	_	-	_	_	-	_	TXD_3	MSTS3_3	-
LVDCR	LVDE	-	_	_	LVDSEL	LVDRE	LVDDE	LVDUE	L٧
LVDSR	_	-	_	_	-	_	LVDDF	LVDUF	- (ot
SMR_2	СОМ	CHR	PE	PM	STOP	MP	CKS1	CKS0	SC
BRR_2	BRR7	BRR6	BRR5	BRR4	BRR3	BRR2	BRR1	BRR0	-
SCR3_2	TIE	RIE	TE	RE	MPIE	TEIE	CKE1	CKE0	-
TDR_2	TDR7	TDR6	TDR5	TDR4	TDR3	TDR2	TDR1	TDR0	-
SSR_2	TDRE	RDRF	OER	FER	PER	TEND	MPBR	MPBT	-
RDR_2	RDR7	RDR6	RDR5	RDR4	RDR3	RDR2	RDR1	RDR0	-
TMRW	CTS	—	BUFEB	BUFEA	_	PWMD	PWMC	PWMB	Tir
TCRW	CCLR	CKS2	CKS1	CKS0	TOD	TOC	ТОВ	TOA	-
TIERW	OVIE	_	_	_	IMIED	IMIEC	IMIEB	IMIEA	-
TSRW	OVF	_	_	_	IMFD	IMFC	IMFB	IMFA	-
TIOR0		IOB2	IOB1	IOB0	_	IOA2	IOA1	IOA0	-
TIOR1	_	IOD2	IOD1	IOD0	_	IOC2	IOC1	IOC0	-
TCNT	TCNT15	TCNT14	TCNT13	TCNT12	TCNT11	TCNT10	TCNT9	TCNT8	-
	TCNT7	TCNT6	TCNT5	TCNT4	TCNT3	TCNT2	TCNT1	TCNT0	-
GRA	GRA15	GRA14	GRA13	GRA12	GRA11	GRA10	GRA9	GRA8	-
	GRA7	GRA6	GRA5	GRA4	GRA3	GRA2	GRA1	GRA0	_
GRB	GRB15	GRB14	GRB13	GRB12	GRB11	GRB10	GRB9	GRB8	-
	GRB7	GRB6	GRB5	GRB4	GRB3	GRB2	GRB1	GRB0	-

Rev. 4.00 Sep. 23, 2005 Page 244 of 354 REJ09B0025-0400

RENESAS

TCRV0	CMIEB	CMIEA	OVIE	CCLR1	CCLR0	CKS2	CKS1	CKS0
TCSRV	CMFB	CMFA	OVF	_	OS3	OS2	OS1	OS0
TCORA	TCORA7	TCORA6	TCORA5	TCORA4	TCORA3	TCORA2	TCORA1	TCORA0
TCORB	TCORB7	TCORB6	TCORB5	TCORB4	TCORB3	TCORB2	TCORB1	TCORB0
TCNTV	TCNTV7	TCNTV6	TCNTV5	TCNTV4	TCNTV3	TCNTV2	TCNTV1	TCNTV0
TCRV1	_	_	_	TVEG1	TVEG0	TRGE	_	ICKS0
SMR	COM	CHR	PE	PM	STOP	MP	CKS1	CKS0
BRR	BRR7	BRR6	BRR5	BRR4	BRR3	BRR2	BRR1	BRR0
SCR3	TIE	RIE	TE	RE	MPIE	TEIE	CKE1	CKE0
TDR	TDR7	TDR6	TDR5	TDR4	TDR3	TDR2	TDR1	TDR0
SSR	TDRE	RDRF	OER	FER	PER	TEND	MPBR	MPBT
RDR	RDR7	RDR6	RDR5	RDR4	RDR3	RDR2	RDR1	RDR0
ADDRA	AD9	AD8	AD7	AD6	AD5	AD4	AD3	AD2
	AD1	AD0	_	_	_	_	_	_
ADDRB	AD9	AD8	AD7	AD6	AD5	AD4	AD3	AD2
	AD1	AD0	_	_	_	_	_	_
ADDRC	AD9	AD8	AD7	AD6	AD5	AD4	AD3	AD2
	AD1	AD0	_	_	_	_	_	_
ADDRD	AD9	AD8	AD7	AD6	AD5	AD4	AD3	AD2
	AD1	AD0	_	_	_	_	_	_
ADCSR	ADF	ADIE	ADST	SCAN	CKS	CH2	CH1	CH0
ADCR	TRGE	_	_	_	_	—	_	_
TCSRWD	B6WI	TCWE	B4WI	TCSRWE	B2WI	WDON	B0WI	WRST
TCWD	TCWD7	TCWD6	TCWD5	TCWD4	TCWD3	TCWD2	TCWD1	TCWD0
TMWD	_	_	_	_	CKS3	CKS2	CKS1	CKS0
-								

RENESAS

PDR1	P17	P16	P15	P14	—	P12	P11	P10	
PDR2	_	—	_	_	_	P22	P21	P20	_
PDR5	P57	P56	P55	P54	P53	P52	P51	P50	_
PDR7	_	P76	P75	P74	P73	P72	P71	P70	_
PDR8	_	_	_	P84	P83	P82	P81	P80	_
PDRB	_	_	_	_	PB3	PB2	PB1	PB0	_
PMR1	IRQ3	_	_	IRQ0	TXD2	_	TXD	_	_
PMR5	POF57	POF56	WKP5	WKP4	WKP3	WKP2	WKP1	WKP0	_
PCR1	PCR17	PCR16	PCR15	PCR14	_	PCR12	PCR11	PCR10	_
PCR2	_	_	_	_	_	PCR22	PCR21	PCR20	_
PCR5	PCR57	PCR56	PCR55	PCR54	PCR53	PCR52	PCR51	PCR50	_
PCR7	_	PCR76	PCR75	PCR74	PCR73	PCR72	PCR71	PCR70	_
PCR8	_	_	_	PCR84	PCR83	PCR82	PCR81	PCR80	_
SYSCR1	SSBY	STS2	STS1	STS0	_	_	_	_	Po
SYSCR2	SMSEL	_	DTON	MA2	MA1	MA0	_	_	_
IEGR1	_	_	_	_	IEG3	_	_	IEG0	Int
IEGR2	_	_	WPEG5	WPEG4	WPEG3	WPEG2	WPEG1	WPEG0	_
IENR1	IENDT	_	IENWP	_	IEN3	_	_	IEN0	_
IRR1	IRRDT	_	_	_	IRRI3	_	_	IRRI0	_
IWPR	_	_	IWPF5	IWPF4	IWPF3	IWPF2	IWPF1	IWPF0	_
MSTCR1	_		MSTS3	MSTAD	MSTWD	MSTTW	MSTTV	_	Pc
MSTCR2	MSTS3_2		_			_	_	_	_

Note: * WDT: Watchdog timer

Rev. 4.00 Sep. 23, 2005 Page 246 of 354 REJ09B0025-0400

SMCR	Initialized	_	—	Initialized	Initialized	
LVDCR	Initialized	_	_	_	_	LVDC (optional)
LVDSR	Initialized	—	—	_	_	-
SMR_2	Initialized	_	_	Initialized	Initialized	SCI3_2
BRR_2	Initialized	_	—	Initialized	Initialized	
SCR3_2	Initialized	_	—	Initialized	Initialized	
TDR_2	Initialized	_	_	Initialized	Initialized	
SSR_2	Initialized	—	_	Initialized	Initialized	
RDR_2	Initialized	_	—	Initialized	Initialized	
TMRW	Initialized	_	_	_	_	Timer W
TCRW	Initialized	_	—	_	_	
TIERW	Initialized	_	—	_	_	
TSRW	Initialized	_	_	_	_	_
TIOR0	Initialized	_	—	_	_	
TIOR1	Initialized	_	—	_	_	
TCNT	Initialized	_	_	_	_	
GRA	Initialized	_	—	_	_	
GRB	Initialized	_	—	_	_	
GRC	Initialized	_	_	_	_	
GRD	Initialized	_	—	_	_	
FLMCR1	Initialized	_	—	Initialized	Initialized	ROM
FLMCR2	Initialized	_		_	_	_
EBR1	Initialized	_	_	Initialized	Initialized	
FENR	Initialized	_		_	_	_

RENESAS

TDRInitializedInitializedInitializedSSRInitializedInitializedInitializedRDRInitializedInitializedInitializedADDRAInitializedInitializedInitializedADDRAInitializedInitializedInitializedADDRAInitializedInitializedInitializedADDRCInitializedInitializedInitializedADDRDInitializedInitializedInitializedADCRInitializedInitializedInitializedADCRInitializedInitializedInitializedADCRInitializedInitializedInitializedTCWDInitializedTMWDInitializedTMWDInitializedABRKCRInitializedBARHInitializedBARLInitializedBORLInitializedPUCR1InitializedPUCR5InitializedPDR2InitializedPDR5InitializedPDR7Initialized	SCR3	Initialized	_	_	Initialized	Initialized	
RDRInitializedInitializedInitializedADDRAInitializedInitializedInitializedA/D converterADDRBInitializedInitializedInitializedA/D converterADDRCInitializedInitializedInitializedInitializedADDRDInitializedInitializedInitializedInitializedADCSRInitializedInitializedInitializedInitializedADCRInitializedInitializedInitializedInitializedADCRInitializedInitializedInitializedInitializedADCRInitializedWDT*TCWDInitializedAddress BreakABRKCRInitializedABRKCRInitializedBARLInitializedBORHInitializedPUCR1InitializedPDR2InitializedPDR5InitializedPDR5Initialized	TDR	Initialized	_	_	Initialized	Initialized	_
ADDRA Initialized Initialized Initialized A/D converter ADDRB Initialized - Initialized Initialized ADDRC Initialized - Initialized Initialized ADDRC Initialized - Initialized Initialized ADDRD Initialized - Initialized Initialized ADCR Initialized - - WDT* TCSRWD Initialized - - - TCWD Initialized - - - - Address Break ABRKCR Initialized - - - - - - BARL Initialized - - - - - -	SSR	Initialized	_	_	Initialized	Initialized	_
ADDRBInitializedInitializedInitializedADDRCInitializedInitializedInitializedADDRDInitializedInitializedInitializedADCSRInitializedInitializedInitializedADCRInitializedInitializedInitializedADCRInitializedInitializedInitializedADCRInitializedWDT*TCSRWDInitializedTCWDInitializedTMWDInitializedABRKCRInitializedABRKSRInitializedBARHInitializedBDRHInitializedPUCR1InitializedPDR2InitializedPDR5Initialized	RDR	Initialized	_	_	Initialized	Initialized	_
ADDRCInitializedInitializedInitializedADDRDInitializedInitializedInitializedADCSRInitializedInitializedInitializedADCRInitializedInitializedInitializedADCRInitializedInitializedInitializedTCSRWDInitializedTCWDInitializedTMWDInitializedABRKCRInitializedABRKSRInitializedBARHInitializedBARLInitializedBDRLInitializedPUCR1InitializedPDR1InitializedPDR5Initialized	ADDRA	Initialized		_	Initialized	Initialized	A/D converter
ADDRDInitializedInitializedInitializedADCSRInitializedInitializedInitializedADCRInitializedInitializedInitializedTCSRWDInitializedTCWDInitializedTMWDInitializedABRKCRInitializedABRKSRInitializedBARHInitializedBARLInitializedBDRLInitializedPUCR1InitializedPDR1InitializedPDR5Initialized	ADDRB	Initialized		_	Initialized	Initialized	_
ADCSRInitialized——InitializedInitializedADCRInitialized——InitializedInitializedTCSRWDInitialized————WDT*TCWDInitialized————TMWDInitialized————ABRKCRInitialized————ABRKSRInitialized————BARHInitialized————BARLInitialized————BDRHInitialized————PUCR1Initialized————PDR1Initialized————PDR5Initialized————PDR5Initialized————	ADDRC	Initialized	_	_	Initialized	Initialized	_
ADCRInitializedInitializedInitializedTCSRWDInitializedTCWDInitializedTMWDInitializedABRKCRInitializedABRKSRInitializedBARHInitializedBARLInitializedBDRHInitializedPUCR1InitializedPDR1InitializedPDR5Initialized	ADDRD	Initialized	_	_	Initialized	Initialized	_
TCSRWDInitialized————WDT*TCWDInitialized—————TMWDInitialized—————ABRKCRInitialized————Address BreakABRKSRInitialized————BARHInitialized————BARLInitialized————BDRHInitialized————PUCR1Initialized————PDR1Initialized————PDR2Initialized————PDR5Initialized————	ADCSR	Initialized	_	_	Initialized	Initialized	_
TCWDInitializedTMWDInitializedABRKCRInitializedABRKSRInitializedBARHInitializedBARLInitializedBDRHInitializedBDRLInitializedPUCR1InitializedPDR1InitializedPDR2InitializedPDR5Initialized	ADCR	Initialized	_	—	Initialized	Initialized	
TMWDInitializedABRKCRInitializedABRKSRInitializedBARHInitializedBARLInitializedBDRHInitializedBDRLInitializedPUCR1InitializedPDR1InitializedPDR2InitializedPDR5Initialized	TCSRWD	Initialized		_	_	_	WDT*
ABRKCRInitializedAddress BreakABRKSRInitializedBARHInitializedBARLInitializedBDRHInitializedBDRLInitializedPUCR1InitializedPDR1InitializedPDR2InitializedPDR5Initialized	TCWD	Initialized		_	_	_	_
ABRKSRInitializedBARHInitializedBARLInitializedBDRHInitializedBDRLInitializedPUCR1InitializedPUR5InitializedPDR1InitializedPDR5InitializedPDR5Initialized	TMWD	Initialized	_	_	_	_	
BARHInitializedBARLInitializedBDRHInitializedBDRLInitializedPUCR1InitializedPUCR5InitializedPDR1InitializedPDR2InitializedPDR5Initialized	ABRKCR	Initialized	_	_	_	_	Address Break
BARLInitializedBDRHInitializedBDRLInitializedPUCR1InitializedPUCR5InitializedPDR1InitializedPDR2InitializedPDR5Initialized	ABRKSR	Initialized	_	_	_	_	_
BDRHInitializedBDRLInitializedPUCR1InitializedPUCR5InitializedPDR1InitializedPDR2InitializedPDR5Initialized	BARH	Initialized	_	_	_	_	_
BDRLInitializedPUCR1InitializedI/O portPUCR5InitializedPDR1InitializedPDR2InitializedPDR5Initialized	BARL	Initialized	_	_	_	_	_
PUCR1InitializedI/O portPUCR5InitializedPDR1InitializedPDR2InitializedPDR5Initialized	BDRH	Initialized	_	_	_	_	
PUCR5Initialized———PDR1Initialized————PDR2Initialized————PDR5Initialized————	BDRL	Initialized	_	_	_		
PDR1InitializedPDR2InitializedPDR5Initialized	PUCR1	Initialized		_	_	_	I/O port
PDR2InitializedPDR5Initialized	PUCR5	Initialized		_	_	_	_
PDR5 Initialized — — — —	PDR1	Initialized	_	_	_	_	_
	PDR2	Initialized		_	_	_	_
PDR7 Initialized — — — — —				· · · · ·			_
	PDR5	Initialized					_

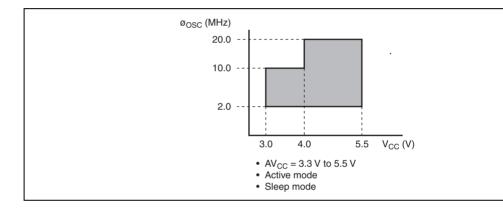
Rev. 4.00 Sep. 23, 2005 Page 248 of 354 REJ09B0025-0400

PCR8	Initialized	—	—	_	—	
SYSCR1	Initialized	_	_	_	_	Power-down
SYSCR2	Initialized	_	_	_	_	
IEGR1	Initialized	_	_	_	_	Interrupts
IEGR2	Initialized	_		_	_	
IENR1	Initialized	_	_	_	_	
IRR1	Initialized	_		_	_	
IWPR	Initialized	_	_	_	_	
MSTCR1	Initialized	_		_	_	Power-down
MSTCR2	Initialized	_	_	_	_	

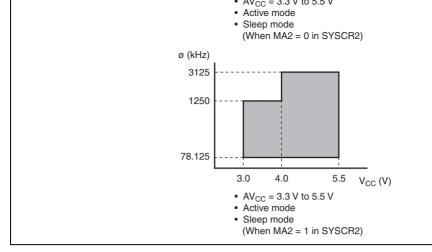
Note: — is not initialized

* WDT: Watchdog timer

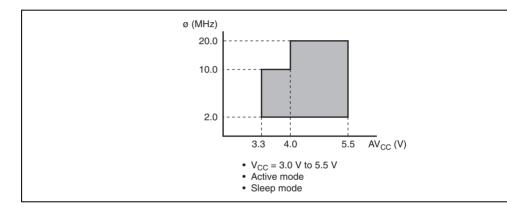
Rev. 4.00 Sep. 23, 2005 Page 250 of 354 REJ09B0025-0400

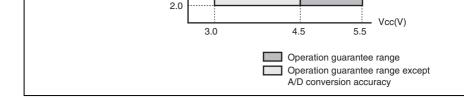

		IIN		
Port B			–0.3 to AV $_{\rm cc}$ +0.3	V
Operating temperature		T_{opr}	–20 to +75	°C
Storage temperature		T_{stg}	–55 to +125	°C
	11.14		 	

Note: * Permanent damage may result if maximum ratings are exceeded. Normal operations should be under the conditions specified in Electrical Characteristics. Exceed values can result in incorrect operation and reduced reliability.


18.2 Electrical Characteristics (F-ZTATTM Version)

18.2.1 Power Supply Voltage and Operating Ranges


(1) Power Supply Voltage and Oscillation Frequency Range



(3) Analog Power Supply Voltage and A/D Converter Accuracy Guarantee Range

	TMCIV, FTCI, FTIOA to FTIOD, SCK3, SCK3_2, SCK3_3* ¹ , TRGV		$V_{cc} \times 0.9$	_	V _{cc} + 0.3	
	RXD, RXD_2, RXD_3* ¹ , P12 to P10, P17 to P14, P22 to P20,	$V_{cc} = 4.0 \text{ V to } 5.5 \text{ V}$	$V_{cc} \times 0.7$		V _{cc} + 0.3	V
	P57 to P50, P76 to P70, P84 to P80		$V_{cc} \times 0.8$	_	V _{cc} + 0.3	-
	PB3 to PB0	$V_{\rm cc}$ = 4.0 V to 5.5 V	$V_{cc} imes 0.7$	—	$AV_{cc} + 0.3$	V
			$V_{cc} imes 0.8$		$AV_{cc} + 0.3$	
	OSC1	$V_{\rm cc}$ = 4.0 V to 5.5 V	$V_{\rm cc} - 0.5$		V _{cc} + 0.3	V
			$V_{\rm cc} - 0.3$	_	V _{cc} + 0.3	
Input low V _{IL} voltage	RES, NMI WKP0 to WKP5, IRQ0, IRQ3, ADTRG,TMRIV,	$V_{cc} = 4.0 \text{ V to } 5.5 \text{ V}$	-0.3	_	$V_{cc} \times 0.2$	V
	TMCIV, FTCI, FTIOA to FTIOD, SCK3, SCK3_2, SCK3_3* ¹ , TRGV		-0.3	_	$V_{cc} \times 0.1$	
	RXD, RXD_2, RXD_3* ¹ , P12 to P10, P17 to P14, P22 to P20,	V_{cc} = 4.0 V to 5.5 V	-0.3	_	$V_{cc} \times 0.3$	V
	P57 to P50, P76 to P70, P84 to P80 PB3 to PB0		-0.3	_	$V_{cc} \times 0.2$	
	OSC1	$V_{\rm cc}$ = 4.0 V to 5.5 V	-0.3	—	0.5	V
			-0.3	—	0.3	

Rev. 4.00 Sep. 23, 2005 Page 254 of 354

REJ09B0025-0400

RENESAS

		P84 to P80	$V_{\rm cc}$ = 4.0 V to 5.5 V	—	—	1.5	V
			I _{oL} = 20.0 mA				
			V_{cc} = 4.0 V to 5.5 V	_	_	1.0	_
			l _{oL} = 10.0 mA				
			V_{cc} = 4.0 V to 5.5 V	_		0.4	_
			I _{oL} = 1.6 mA				
			$I_{OL} = 0.4 \text{ mA}$			0.4	-
Input/ output leakage current	I _{IL}	OSC1, RES, NMI WKP0, WKP5, IRQ0, IRQ3, ADTRG, TRGV, TMRIV, TMCIV, FTCI, FTIOA to FTIOD, RXD, RXD_2, RXD_3* ¹ , SCK3, SCK3_2, SCK3_3* ¹	$V_{\rm IN} = 0.5 \text{ V to}$ ($V_{\rm cc} - 0.5 \text{ V}$)		_	1.0	μΑ
		P12 to P10, P17 to P14, P22 to P20, P57 to P50, P76 to P70, P84 to P80	$V_{IN} = 0.5 V to$ ($V_{CC} - 0.5 V$)			1.0	μΑ
		PB3 to PB0	$V_{IN} = 0.5 \text{ V to}$ (AV _{cc} - 0.5 V)	_	—	1.0	μA
Pull-up MOS	$-I_{p}$	P12 to P10, P17 to P14,	$V_{cc} = 5.0 \text{ V},$ $V_{iN} = 0.0 \text{ V}$	50.0	_	300.0	μA
current		P55 to P50	V _{cc} = 3.0 V, V _{IN} = 0.0 V	_	60.0	—	_

RENESAS

	OFEZ	00	$V_{cc} = 5.0 V,$ $f_{osc} = 20 MHz$					
			Active mode 2 $V_{cc} = 3.0 V$, $f_{osc} = 10 MHz$	_	1.2	—		÷ F V
Sleep mode current	I _{SLEEP1}	V _{cc}	Sleep mode 1 $V_{cc} = 5.0 V,$ $f_{osc} = 20 MHz$	_	11.5	22.5	mA	*
consump- tion			$ Sleep mode 1 \\ V_{cc} = 3.0 V, \\ f_{osc} = 10 MHz $	_	6.5	—		* F V
	I _{SLEEP2}	V _{cc}	Sleep mode 2 $V_{cc} = 5.0 V,$ $f_{osc} = 20 MHz$	—	1.7	2.7	mA	*
			$ Sleep mode 2 \\ V_{cc} = 3.0 V, \\ f_{osc} = 10 MHz $	_	1.1	_		* F V
Standby mode current consump- tion	I _{STBY}	V _{cc}		_	_	5.0	μA	*

Rev. 4.00 Sep. 23, 2005 Page 256 of 354 REJ09B0025-0400

Active mode 2		Operates (¢OSC/64)		ceramic or cry resonator
Sleep mode 1	V _{cc}	Only timers operate	V _{cc}	
Sleep mode 2		Only timers operate (¢OSC/64)		
Standby mode	V _{cc}	CPU and timers both stop	V _{cc}	Main clock: ceramic or cry resonator
-				

Renesas

		except port 8				
Allowable output low current (total)	$\Sigma \mathbf{I}_{\rm OL}$	Output pins except port 8	V _{cc} = 4.0 V to 5.5 V	—	_	40.0
		Port 8		_	_	80.0
		Output pins except port 8		—	_	20.0
		Port 8	_	_	_	40.0
Allowable output high current (per pin)	I –I _{oh} I	All output pins	V _{cc} = 4.0 V to 5.5 V	—	_	2.0
				_	—	0.2
Allowable output high current (total)	I –∑I _{oн} I	All output pins	V _{cc} = 4.0 V to 5.5 V	_		30.0
					—	8.0

Rev. 4.00 Sep. 23, 2005 Page 258 of 354 REJ09B0025-0400

	сус			_		•	OSC
cycle time				—	—	12.8	μs
Instruction cycle time				2		—	t _{cyc}
Oscillation stabilization time (crystal resonator)	t _{rc}	OSC1, OSC2		_	_	10.0	ms
Oscillation stabilization time (ceramic resonator)	t _{rc}	OSC1, OSC2		_	—	5.0	ms
External clock	t _{CPH}	OSC1	$V_{\rm cc}$ = 4.0 V to 5.5 V	20.0	_	_	ns
high width				40.0	_	_	ns
External clock	t _{CPL}	OSC1	$V_{cc} = 4.0 \text{ V to } 5.5 \text{ V}$	20.0	_	_	ns
low width				40.0	_	_	ns
External clock	t _{CPr}	OSC1	V_{cc} = 4.0 V to 5.5 V	_	_	10.0	ns
rise time				_	_	15.0	ns
External clock	t _{CPf}	OSC1	$V_{cc} = 4.0 \text{ V to } 5.5 \text{ V}$	_	_	10.0	ns
fall time				—	—	15.0	ns

Renesas

		TMCIV, TMRIV, TRGV, ADTRG, FTCI, FTIOA to FTIOD				
Input pin low width	t _{iL}	NMI, IRQ0, IRQ3, WKP0 to WKP5, TMCIV, TMRIV, TRGV, ADTRG, FTCI, FTIOA to FTIOD	2	_	_	t _{cyc}

Notes: 1. When an external clock is input, the minimum system clock oscillator frequenc 1.0 MHz.

2. Determined by MA2 to MA0 in system control register 2 (SYSCR2).

Rev. 4.00 Sep. 23, 2005 Page 260 of 354 REJ09B0025-0400

width	JOK	SCK3_2, SCK3_3*					obje
Transmit data delay	t _{TXD}	TXD,	V_{cc} = 4.0 V to 5.5 V	_	_	1	t _{cyc} F
time (clocked synchronous)		TXD_2, TXD_3*		_	_	1	t _{cyc}
Receive data setup	t _{exs}	RXD,	$V_{cc} = 4.0 \text{ V to } 5.5 \text{ V}$	50.0	_	_	ns
time (clocked synchronous)		RXD_2, RXD_3*		100.0	_	_	ns
Receive data hold	t _{RXH}	RXD,	V_{cc} = 4.0 V to 5.5 V	50.0	_	_	ns
time (clocked synchronous)		RXD_2, RXD_3*		100.0	-	_	ns

Note: * The SCK3_3, RXD_3, and TXD_3 pins are not available in the H8/36014.

Analog power supply	AI_{OPE}	AV _{cc}	$AV_{cc} = 5.0 V$	_	_	2.0	mA
current			f _{osc} = 20 MHz				
	AI	AV _{cc}		-	50	_	μA [»]
							۲ ۱
	$AI_{_{STOP2}}$	AV_{cc}		_	_	5.0	μA [»]
Analog input capacitance	C _{AIN}	AN3 to AN0		_	_	30.0	pF
Allowable signal source impedance	R _{AIN}	AN3 to AN0		_	—	5.0	kΩ
Resolution (data length)				10	10	10	bit
Conversion time (single mode)			$AV_{cc} = 3.3 V$ to 5.5 V	134	_	_	t _{cyc}
Nonlinearity error			_	_		±7.5	LSB
Offset error			_	_	—	±7.5	LSB
Full-scale error			_	_	—	±7.5	LSB
Quantization error			_	_		±0.5	LSB
Absolute accuracy			_	_	—	±8.0	LSB
Conversion time (single mode)			$AV_{cc} = 4.0 V$ to 5.5 V	70	—	_	t _{cyc}
Nonlinearity error			_	_	—	±7.5	LSB
Offset error			_	_	—	±7.5	LSB
Full-scale error				_	—	±7.5	LSB
Quantization error			-	_	—	±0.5	LSB
Absolute accuracy				_		±8.0	LSB

Rev. 4.00 Sep. 23, 2005 Page 262 of 354

REJ09B0025-0400

RENESAS

- 2. Al_{stopt} is the current in active and sleep modes while the A/D converter is idle
- 3. Al_{STOP2} is the current at reset and in standby and subsleep modes while the A/ converter is idle.

18.2.5 Watchdog Timer Characteristics

Table 18.6 Watchdog Timer Characteristics

 $V_{cc} = 3.0 \text{ V}$ to 5.5 V, $V_{ss} = 0.0 \text{ V}$, $T_a = -20^{\circ}\text{C}$ to +75°C, unless otherwise specified.

		Applicable	Condition				
Item	Symbol	Pins		Min	Тур	Max	Unit
On-chip oscillator overflow time	t _{ovf}			0.2	0.4	_	S
Note: *		time to count fro ternal oscillator	,	t which p	point an ii	nternal re	set is gen

Programming	Wait time after SWE bit setting* ¹	x		1	—	_
	Wait time after PSU bit setting*1	У		50	_	_
	Wait time after P bit setting	z1	$1 \le n \le 6$	28	30	32
	*1*4	z2	$7 \le n \le 1000$	198	200	202
		z3	Additional- programming	8	10	12
	Wait time after P bit clear*1	α		5	_	_
	Wait time after PSU bit clear*1	β		5	—	_
	Wait time after PV bit setting*1	γ		4	—	_
	Wait time after dummy write*1	ε		2	_	_
	Wait time after PV bit clear*1	η		2	_	_
	Wait time after SWE bit clear*1	θ		100	_	_
	Maximum programming count* ¹ * ⁴ * ⁵	Ν		_	_	1000

Rev. 4.00 Sep. 23, 2005 Page 264 of 354 REJ09B0025-0400

		Wait time after EV bit setting* ¹	γ	20	_	_
		Wait time after dummy write*1	3	2	_	_
		Wait time after EV bit clear*1	η	4	_	_
		Wait time after SWE bit clear*1	θ	100	_	_
		Maximum erase count*1*6*7	Ν	_	_	120
Notes:	1.	Make the time settings in acc	ordance with the progra	am/erase	algorith	ms.
	2.	The programming time for 12 memory control register 1 (FL	•			
	3.	The time required to erase or memory control register 1 (FL				
	4.	Programming time maximum maximum programming count		time afte	er P bit se	etting (z

5. Set the maximum programming count (N) according to the actual set values of and z3, so that it does not exceed the programming time maximum value (t_P (The wait time after P bit setting (z1, z2) should be changed as follows accord value of the programming count (n).

Programming count (n)

- $1 \le n \le 6 \qquad \qquad z1 = 30 \ \mu s$
- $7 \leq n \leq 1000 \quad z2 = 200 \ \mu s$
- 6. Erase time maximum value (t_e (max.)) = wait time after E bit setting (z) \times max erase count (N)
- 7. Set the maximum erase count (N) according to the actual set value of (z), so does not exceed the erase time maximum value ($t_{_{E}}$ (max.)).

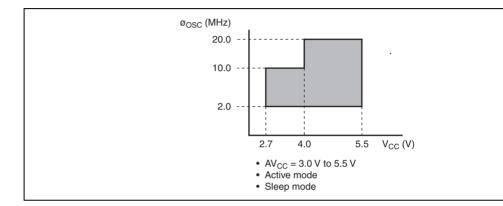
RENESAS

, onago					
Reset detection voltage 1*1	Vreset1	LVDSEL = 0	_	2.3	2.7
Reset detection voltage 2*2	Vreset2	LVDSEL = 1	3.0	3.6	4.2
Lower-limit voltage of LVDR operation* ³	$V_{\scriptscriptstyle LVDRmin}$		1.0	_	_
LVD stabilization time	t_{LVDON}		50	_	_
Current consumption in standby mode	I _{stey}	LVDE = 1, Vcc = 5.0 V, When a 32- kHz crystal resonator is not used	_	_	350

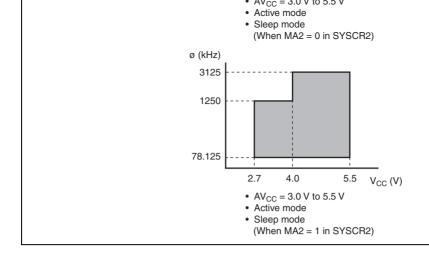
Notes: 1. This voltage should be used when the falling and rising voltage detection funct used.

- 2. Select the low-voltage reset 2 when only the low-voltage detection reset is use
- When the power-supply voltage (Vcc) falls below V_{LVDRmin} = 1.0 V and then rises may not occur. Therefore sufficient evaluation is required.

Rev. 4.00 Sep. 23, 2005 Page 266 of 354 REJ09B0025-0400

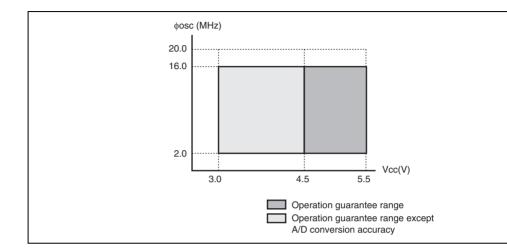


charge of the RES pin is removed completely. In order to remove charge of the pin, it is recommended that the diode be placed in the Vcc side. If the power-voltage (Vcc) rises from the point over 100 mV, a power-on reset may not occ


18.3 Electrical Characteristics (Masked ROM Version)

18.3.1 Power Supply Voltage and Operating Ranges

(1) Power Supply Voltage and Oscillation Frequency Range



Rev. 4.00 Sep. 23, 2005 Page 268 of 354 REJ09B0025-0400

- $V_{CC} = 2.7 \text{ V to 5.5 V}$
- Active mode
- Sleep mode

(4) Range of Power Supply Voltage and Oscillation Frequency when Low-Voltag Detection Circuit is Used

	FTIOA to FTIOD, SCK3, SCK3_2, SCK3_3* ¹ , TRGV		V _{cc} ×0.9	_	V _{cc} + 0.3	
	RXD, RXD_2, RXD_3* ¹ , P12 to P10, P17 to P14, P22 to P20,	$V_{cc} = 4.0 \text{ V to } 5.5 \text{ V}$	V _{cc} ×0.7	—	V _{cc} + 0.3	V
	P57 to P50, P76 to P70, P84 to P80		$V_{cc} imes 0.8$	_	V _{cc} + 0.3	
	PB3 to PB0	$V_{\rm cc}$ = 4.0 V to 5.5 V	$V_{cc} imes 0.7$	—	$AV_{cc} + 0.3$	V
			$V_{cc} imes 0.8$		$AV_{cc} + 0.3$	
	OSC1	$V_{\rm cc}$ = 4.0 V to 5.5 V	$V_{\rm cc} - 0.5$	_	V _{cc} + 0.3	V
			$V_{cc} - 0.3$	—	V_{cc} + 0.3	
Input low V _{IL} voltage	RES, NMI WKP0 to WKP5, IRQ0, IRQ3, ADTRG,TMRIV,	$V_{\rm cc}$ = 4.0 V to 5.5 V	-0.3	_	$V_{cc} \times 0.2$	V
	TMCIV, FTCI, FTIOA to FTIOD, SCK3, SCK3_2, SCK3_3*1, TRGV		-0.3	_	V _{cc} ×0.1	
	RXD, RXD_2, RXD_3* ¹ , P12 to P10, P17 to P14, P22 to P20,	$V_{cc} = 4.0 \text{ V to } 5.5 \text{ V}$	-0.3	_	$V_{cc} \times 0.3$	V
	P57 to P50, P76 to P70, P84 to P80 PB3 to PB0		-0.3	_	$V_{cc} \times 0.2$	-
	OSC1	$V_{\rm cc}$ = 4.0 V to 5.5 V	-0.3	_	0.5	V
			-0.3	_	0.3	

Rev. 4.00 Sep. 23, 2005 Page 270 of 354

REJ09B0025-0400

RENESAS

		P84 to P80	$V_{\rm cc}$ = 4.0 V to 5.5 V	_	—	1.5	V
			I _{oL} = 20.0 mA				
			$V_{\rm cc}$ = 4.0 V to 5.5 V	—	_	1.0	_
			I _{oL} = 10.0 mA				
			$V_{\rm cc}$ = 4.0 V to 5.5 V	_	—	0.4	_
			I _{oL} = 1.6 mA				
			$I_{oL} = 0.4 \text{ mA}$	_	—	0.4	_
Input/ output leakage current	I _{IL}	OSC1, RES, NMI, WKP0 to WKP5, IRQ0, IRQ3, ADTRG, TRGV, TMRIV, TMCIV, FTCI, FTIOA to FTIOD, RXD, RXD_2, RXD_3* ¹ , SCK3, SCK3_2, SCK3_3* ¹	$V_{\rm IN} = 0.5 \text{ V to}$ ($V_{\rm cc} - 0.5 \text{ V}$)	_		1.0	μΑ
		P12 to P10, P17 to P14, P22 to P20, P57 to P50, P76 to P70, P84 to P80	$V_{IN} = 0.5 V to$ ($V_{CC} - 0.5 V$)	_	_	1.0	μΑ
		PB3 to PB0	$V_{IN} = 0.5 \text{ V to}$ (AV _{cc} - 0.5 V)	—	—	1.0	μA

RENESAS

			030					_
consump- tion			Active mode 1 $V_{cc} = 3.0 V$, $f_{osc} = 10 MHz$	—	8.0	3.0		* F \
	I _{OPE2}	V _{cc}	Active mode 2 $V_{cc} = 5.0 V$, $f_{osc} = 20 MHz$	—	1.8	3.0	mA	*
Sleen			Active mode 2 $V_{cc} = 3.0 V$, $f_{osc} = 10 MHz$	—	1.2	_		۶ ۶
Sleep mode current	I _{SLEEP1}	V _{cc}	Sleep mode 1 $V_{cc} = 5.0 V$, $f_{osc} = 20 MHz$	—	11.5	22.5	mA	*
consump- tion			Sleep mode 1 $V_{cc} = 3.0 V$, $f_{osc} = 10 MHz$	_	6.5	_		* F V
	I _{SLEEP2}	V _{cc}	Sleep mode 2 $V_{cc} = 5.0 V$, $f_{osc} = 20 MHz$	_	1.7	2.7	mA	*
			Sleep mode 2 $V_{cc} = 3.0 V$, $f_{osc} = 10 MHz$	_	1.1	_		۶ F V
Standby mode current consump- tion	I _{STBY}	V _{cc}				5.0	μA	2

Rev. 4.00 Sep. 23, 2005 Page 272 of 354 REJ09B0025-0400

Active mode 2		Operates (¢OSC/64)		ceramic or cry resonator
Sleep mode 1	V _{cc}	Only timers operate	V _{cc}	
Sleep mode 2		Only timers operate (¢OSC/64)		
Standby mode	V _{cc}	CPU and timers both stop	V _{cc}	Main clock: ceramic or cry resonator
-				

Renesas

		Port 8		_	—	10.0
Allowable output low current (total)	$\Sigma \mathbf{I}_{\rm OL}$	Output pins except port 8	V _{cc} = 4.0 V to 5.5 V	—	_	40.0
		Port 8	_	_	—	80.0
		Output pins except port 8		—	_	20.0
		Port 8	_	_	_	40.0
Allowable output high current (per pin)	I –I _{OH} I	All output pins	V _{cc} = 4.0 V to 5.5 V	—	_	2.0
				_	—	0.2
Allowable output high current (total)	I –∑I _{oн} I	All output pins	V _{cc} = 4.0 V to 5.5 V	_	_	30.0
				_	—	8.0

Rev. 4.00 Sep. 23, 2005 Page 274 of 354 REJ09B0025-0400

	сус						OSC
cycle time				—	—	12.8	μs
Instruction cycle time				2			t _{cyc}
Oscillation stabilization time (crystal resonator)	t _{rc}	OSC1, OSC2		_	_	10.0	ms
Oscillation stabilization time (ceramic resonator)	t _{rc}	OSC1, OSC2		_	_	5.0	ms
External clock	t _{CPH}	OSC1	$V_{\rm cc}$ = 4.0 V to 5.5 V	20.0	_		ns
high width				40.0	_		ns
External clock	t _{CPL}	OSC1	$V_{\rm cc}$ = 4.0 V to 5.5 V	20.0			ns
low width				40.0	_	_	ns
External clock	t _{CPr}	OSC1	$V_{\rm cc}$ = 4.0 V to 5.5 V		_	10.0	ns
rise time					_	15.0	ns
External clock	t _{CPf}	OSC1	$V_{\rm cc}$ = 4.0 V to 5.5 V		_	10.0	ns
fall time						15.0	ns
RES pin low width	t _{rel}	RES	At power-on and in modes other than those below	t _{rc}	_	_	ms
			In active mode and sleep mode operation	200	_	_	ns

RENESAS

Input pin low	t _⊪	NMI,	2	_	 t _{cyc}
width		IRQ0, IRQ3,			
		WKP0 to			
		WKP5,			
		TMCIV,			
		TMRIV,			
		TRGV,			
		ADTRG,			
		FTCI,			
		FTIOA to			
		FTIOD			

Notes: 1. When an external clock is input, the minimum system clock oscillator frequenc 1.0 MHz.

2. Determined by the MA2 to MA0 bits in the system control register 2 (SYSCR2)

Rev. 4.00 Sep. 23, 2005 Page 276 of 354 REJ09B0025-0400

width	JOK	SCK3_2, SCK3_3*					obyc
Transmit data delay	t _{TXD}	TXD,	V_{cc} = 4.0 V to 5.5 V	_	_	1	t _{cyc} F
time (clocked synchronous)		TXD_2, TXD_3*		_	_	1	t _{cyc}
Receive data setup	t _{exs}	RXD,	$V_{cc} = 4.0 \text{ V to } 5.5 \text{ V}$	50.0	_	_	ns
time (clocked synchronous)		RXD_2, RXD_3*		100.0	_	_	ns
Receive data hold	t _{RXH}	RXD,	V_{cc} = 4.0 V to 5.5 V	50.0	_	_	ns
time (clocked synchronous)		RXD_2, RXD_3*		100.0	-	_	ns

Note: * The SCK3_3, RXD_3, and TXD_3 pins are not available in the H8/36014.

Analog power supply	AI_{OPE}	AV _{cc}	$AV_{cc} = 5.0 V$	_	_	2.0	mA
current			f _{osc} = 20 MHz				
	AI	AV _{cc}		_	50	_	μA [*]
							۱ ۱
	$AI_{_{STOP2}}$	AV _{cc}		_	_	5.0	μA [»]
Analog input capacitance	C _{AIN}	AN3 to AN0		_	_	30.0	pF
Allowable signal source impedance	R _{AIN}	AN3 to AN0		—	_	5.0	kΩ
Resolution (data length)				10	10	10	bit
Conversion time (single mode)			$AV_{cc} = 3.0 V$ to 5.5 V	134	_	_	t _{cyc}
Nonlinearity error			_	_	_	±7.5	LSB
Offset error			_	_	—	±7.5	LSB
Full-scale error			_	_	_	±7.5	LSB
Quantization error			_	_	_	±0.5	LSB
Absolute accuracy			_	_	—	±8.0	LSB
Conversion time (single mode)			$AV_{cc} = 4.0 V$ to 5.5 V	70	—	_	t _{cyc}
Nonlinearity error			-	_	_	±7.5	LSB
Offset error			_	_	—	±7.5	LSB
Full-scale error			-	_	—	±7.5	LSB
Quantization error			-	_	—	±0.5	LSB
Absolute accuracy			-	_	_	±8.0	LSB

Rev. 4.00 Sep. 23, 2005 Page 278 of 354

REJ09B0025-0400

RENESAS

- 2. Al_{stop1} is the current in active and sleep modes while the A/D converter is idle
- AI_{STOP2} is the current at reset and in standby and subsleep modes while the A/ converter is idle.

18.3.5 Watchdog Timer Characteristics

Table 18.14 Watchdog Timer Characteristics

 $V_{cc} = 2.7 \text{ V}$ to 5.5 V, $V_{ss} = 0.0 \text{ V}$, $T_a = -20^{\circ}\text{C}$ to +75°C, unless otherwise specified.

		Applicable	Test		Value	S	
Item	Symbol	Pins	Condition	Min	Тур	Мах	Unit
On-chip oscillator overflow time	t _{ovf}			0.2	0.4	_	S

Note: * Shows the time to count from 0 to 255, at which point an internal reset is generat the internal oscillator is selected.

, onago					
Reset detection voltage 1*1	Vreset1	LVDSEL = 0	_	2.3	2.7
Reset detection voltage 2*2	Vreset2	LVDSEL = 1	3.0	3.6	4.2
Lower-limit voltage of LVDR operation* ³	V_{LVDRmin}		1.0	_	—
LVD stabilization time	t _{lvdon}		50	_	_
Current consumption in standby mode	Ι _{stby}	LVDE = 1, Vcc = 5.0 V, When a 32- kHz crystal resonator is not used		_	350

Notes: 1. This voltage should be used when the falling and rising voltage detection funct used.

- 2. Select the low-voltage reset 2 when only the low-voltage detection reset is use
- When the power-supply voltage (Vcc) falls below V_{LVDRmin} = 1.0 V and then rises may not occur. Therefore sufficient evaluation is required.

Rev. 4.00 Sep. 23, 2005 Page 280 of 354 REJ09B0025-0400

charge of the RES pin is removed completely. In order to remove charge of the pin, it is recommended that the diode be placed in the Vcc side. If the power-voltage (Vcc) rises from the point over 100 mV, a power-on reset may not occ

18.4 Operation Timing

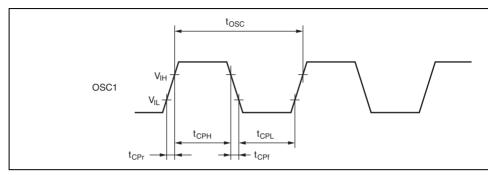


Figure 18.1 System Clock Input Timing

Figure 18.2 **RES** Low Width Timing

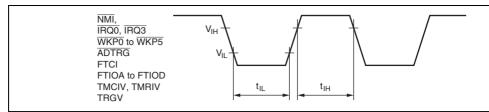


Figure 18.3 Input Timing

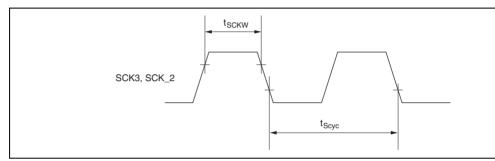
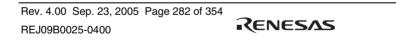
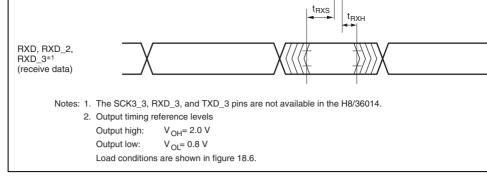
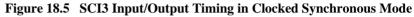





Figure 18.4 SCK3 Input Clock Timing

18.5 Output Load Condition

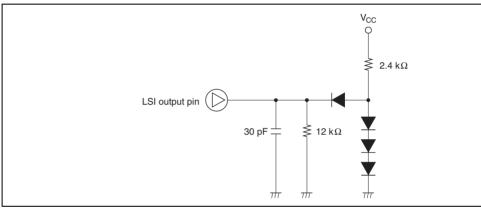


Figure 18.6 Output Load Circuit

Rev. 4.00 Sep. 23, 2005 Page 284 of 354 REJ09B0025-0400

ERd	General destination register (address register or 32-bit register)
ERs	General source register (address register or 32-bit register)
ERn	General register (32-bit register)
(EAd)	Destination operand
(EAs)	Source operand
PC	Program counter
SP	Stack pointer
CCR	Condition-code register
N	N (negative) flag in CCR
Z	Z (zero) flag in CCR
V	V (overflow) flag in CCR
С	C (carry) flag in CCR
disp	Displacement
\rightarrow	Transfer from the operand on the left to the operand on the right, or transi the state on the left to the state on the right
+	Addition of the operands on both sides
_	Subtraction of the operand on the right from the operand on the left
×	Multiplication of the operands on both sides
÷	Division of the operand on the left by the operand on the right
٨	Logical AND of the operands on both sides
V	Logical OR of the operands on both sides
\oplus	Logical exclusive OR of the operands on both sides
7	NOT (logical complement)

RENESAS

0	Cleared to 0
1	Set to 1
_	Not affected by execution of the instruction
Δ	Varies depending on conditions, described in notes

Rev. 4.00 Sep. 23, 2005 Page 286 of 354 REJ09B0025-0400

MOV.B @ERs, Rd	В			2					$@ERs\toRd8$	—	—	€	\updownarrow	0
MOV.B @(d:16, ERs), Rd	В				4				$@(d:16, ERs) \rightarrow Rd8$	—	—	\updownarrow	\Leftrightarrow	0
MOV.B @(d:24, ERs), Rd	В				8				$@(\texttt{d:24, ERs}) \rightarrow \texttt{Rd8}$	—	—	\updownarrow	\Leftrightarrow	0
MOV.B @ERs+, Rd	В					2			@ERs → Rd8 ERs32+1 → ERs32	-	-	\$	\leftrightarrow	0
MOV.B @aa:8, Rd	В						2		@aa:8 \rightarrow Rd8	—	—	\updownarrow	\updownarrow	0
MOV.B @aa:16, Rd	В						4		@aa:16 \rightarrow Rd8	-	-	€	\Leftrightarrow	0
MOV.B @aa:24, Rd	В						6		@aa:24 \rightarrow Rd8	-	-	\$	\leftrightarrow	0
MOV.B Rs, @ERd	В			2					$Rs8 \rightarrow @ERd$	—	—	\updownarrow	€	0
MOV.B Rs, @(d:16, ERd)	В				4				$Rs8 \rightarrow @(d:16, ERd)$	—	-	€	\Leftrightarrow	0
MOV.B Rs, @(d:24, ERd)	В				8				$Rs8 \rightarrow @(d:24, ERd)$	-	-	€	\leftrightarrow	0
MOV.B Rs, @-ERd	В					2			$\begin{array}{l} ERd32-1 \rightarrow ERd32 \\ Rs8 \rightarrow @ ERd \end{array}$	-	-	\$	\leftrightarrow	0
MOV.B Rs, @aa:8	В						2		Rs8 \rightarrow @aa:8	—	—	↕	≎	0
MOV.B Rs, @aa:16	В						4		Rs8 \rightarrow @aa:16	—	—	\$	\$	0
MOV.B Rs, @aa:24	В						6		$Rs8 \rightarrow @aa:24$	-	—	\$	\$	0
MOV.W #xx:16, Rd	W	4							#xx:16 → Rd16	-	-	€	\leftrightarrow	0
MOV.W Rs, Rd	W		2						$Rs16 \rightarrow Rd16$	-	-	\$	\leftrightarrow	0
MOV.W @ERs, Rd	W			2					$@ERs \to Rd16$	—	—	\updownarrow	\updownarrow	0
MOV.W @(d:16, ERs), Rd	W				4				@(d:16, ERs) → Rd16	—	-	\$	€	0
MOV.W @(d:24, ERs), Rd	W				8				@(d:24, ERs) → Rd16	-	-	€	\leftrightarrow	0
MOV.W @ERs+, Rd	W					2			$\begin{array}{l} @ ERs \to Rd16 \\ \\ ERs32+2 \to @ ERd32 \end{array}$	-	-	\$	\Leftrightarrow	0
MOV.W @aa:16, Rd	W						4		@aa:16 \rightarrow Rd16	-	-	\$	\$	0
MOV.W @aa:24, Rd	W						6		@aa:24 \rightarrow Rd16	—	-	↕	€	0
MOV.W Rs, @ERd	W			2					$Rs16 \rightarrow @ERd$	—	-	€	\$	0
MOV.W Rs, @(d:16, ERd)	W				4				Rs16 \rightarrow @(d:16, ERd)	—	—	\$	€	0
MOV.W Rs, @(d:24, ERd)	W				8				$Rs16 \rightarrow @(d:24, ERd)$	—	—	\$	\$	0

RENESAS

	MOV.L LH3, LH4	L	2										*	*	0
	MOV.L @ERs, ERd	L		4						@ERs \rightarrow ERd32	-	-	\uparrow	\updownarrow	0
	MOV.L @(d:16, ERs), ERd	L			6					@(d:16, ERs) → ERd32	—	-	\uparrow	\updownarrow	0
	MOV.L @(d:24, ERs), ERd	L			10					$@(d:\!24,ERs)\toERd32$	—	-	\uparrow	\updownarrow	0
	MOV.L @ERs+, ERd	L				4				$@ERs \rightarrow ERd32$	-	-	\$	\$	0
										$ERs32+4 \rightarrow ERs32$					
	MOV.L @aa:16, ERd	L					6			@aa:16 \rightarrow ERd32	—	-	\uparrow	\updownarrow	0
	MOV.L @aa:24, ERd	L					8			@aa:24 \rightarrow ERd32	—	-	\$	\updownarrow	0
	MOV.L ERs, @ERd	L		4						$ERs32 \to @ERd$	—	-	\$	\updownarrow	0
	MOV.L ERs, @(d:16, ERd)	L			6					$ERs32 \to @(d:16,ERd)$	—	-	\$	\updownarrow	0
	MOV.L ERs, @(d:24, ERd)	L			10					$ERs32 \to @(d:24,ERd)$	—	-	\uparrow	\updownarrow	0
	MOV.L ERs, @-ERd	L				4				$ERd32-4 \rightarrow ERd32$	-	-	\$	\$	0
										$ERs32 \rightarrow @ERd$					
	MOV.L ERs, @aa:16	L					6			ERs32 \rightarrow @aa:16	-	-	\$	\updownarrow	0
	MOV.L ERs, @aa:24	L					8			$ERs32 \rightarrow @aa:24$	—	-	\$	\updownarrow	0
POP	POP.W Rn	W							2	@SP → Rn16	—	-	\$	\$	0
										$SP+2 \rightarrow SP$					
	POP.L ERn	L							4	@SP → ERn32	—	-	\$	\updownarrow	0
										$SP+4 \rightarrow SP$					
PUSH	PUSH.W Rn	W							2	$SP-2 \rightarrow SP$	—	-	\$	\$	0
										$Rn16 \rightarrow @SP$					
	PUSH.L ERn	L							4	$SP-4 \rightarrow SP$	—	-	\$	\$	0
										$ERn32 \rightarrow @SP$					
MOVFPE	MOVFPE @aa:16, Rd	В								Cannot be used in	Ca	anno	ot be	e use	ed in
							4			this LSI	this LSI				
MOVTPE	MOVTPE Rs, @aa:16	в								Cannot be used in	Cannot be used			ed in	
							4			this LSI	this LSI				

Rev. 4.00 Sep. 23, 2005 Page 288 of 354 REJ09B0025-0400

	ADD.L #xx:32, ERd	L	6					ERd32+#xx:32 → ERd32	—	(2)	\$	\$	\$
		L		2							1	Ĵ	1
	ADD.L ERs, ERd			2				ERd32+ERs32 → ERd32	_	(2)	↓	+	↓
	ADDX.B #xx:8, Rd	В	2					$Bd8+#xx:8+C \rightarrow Bd8$		1	1	(3)	\$
ADDX	ADDX.B #XX.8, Rd	B	2	2				$Rd8 + Rs8 + C \to Rd8$	_	↓	↓ ↓	(3)	-
	ADDX.B HS, Hu ADDS.L #1, ERd	_		2				ERd32+1 \rightarrow ERd32	_	+	+	(3)	+
ADDS		L							_	-	_	<u> </u>	_
	ADDS.L #2, ERd	L		2				ERd32+2 \rightarrow ERd32		-	-	-	_
	ADDS.L #4, ERd	L		2				ERd32+4 \rightarrow ERd32	—	-	-	-	-
INC	INC.B Rd	В		2				$Rd8+1 \rightarrow Rd8$	-	-	\$	\$	\$
	INC.W #1, Rd	W		2				$Rd16+1 \rightarrow Rd16$	—	—	\$	€	\uparrow
	INC.W #2, Rd	W		2				$Rd16+2 \rightarrow Rd16$	—	—	\$	\uparrow	\uparrow
	INC.L #1, ERd	L		2				$ERd32+1 \to ERd32$	—	—	\$	\$	\updownarrow
	INC.L #2, ERd	Г		2				$ERd32+2 \rightarrow ERd32$	—	—	\$	\$	\updownarrow
DAA	DAA Rd	В		2				Rd8 decimal adjust \rightarrow Rd8	—	*	\$	\$	*
SUB	SUB.B Rs, Rd	в		2				$Rd8-Rs8 \rightarrow Rd8$	—	\$	\$	\$	\$
	SUB.W #xx:16, Rd	W	4					Rd16–#xx:16 \rightarrow Rd16	—	(1)	\$	\$	\updownarrow
	SUB.W Rs, Rd	w		2				$Rd16-Rs16 \rightarrow Rd16$	—	(1)	\$	\$	\$
	SUB.L #xx:32, ERd	L	6					$ERd32\text{-}\#xx:32 \rightarrow ERd32$	—	(2)	\$	\$	\$
	SUB.L ERs, ERd	L		2				$ERd32{-}ERs32 \rightarrow ERd32$	—	(2)	\$	\$	\$
SUBX	SUBX.B #xx:8, Rd	В	2					Rd8–#xx:8–C \rightarrow Rd8	—	\$	\$	(3)	\$
	SUBX.B Rs, Rd	В		2				Rd8–Rs8–C \rightarrow Rd8	—	\$	\$	(3)	\$
SUBS	SUBS.L #1, ERd	L		2				ERd32–1 \rightarrow ERd32	—	—	—	-	—
	SUBS.L #2, ERd	L		2				ERd32–2 \rightarrow ERd32	—	—	—	-	—
	SUBS.L #4, ERd	L		2				ERd32–4 \rightarrow ERd32	—	—	—	-	—
DEC	DEC.B Rd	В		2				$Rd8-1 \rightarrow Rd8$	—	—	\$	\$	\$
	DEC.W #1, Rd	W		2				Rd16−1 → Rd16	_	—	\$	\$	\$
	DEC.W #2, Rd	W		2				Rd16–2 \rightarrow Rd16	—	—	\$	\$	\$

Renesas

						_		Ē			
	MULXU. W Rs, ERd	W		2						$\begin{tabular}{c} Rd16 \times Rs16 \to ERd32 & & & \\ (unsigned multiplication) & & & & \\ \end{tabular}$	-
MULXS	MULXS. B Rs, Rd	В		4						$ \begin{array}{ c c c c c } Rd8 \times Rs8 \to Rd16 & & \uparrow & \uparrow & -\\ (signed multiplication) & & & & \uparrow & \uparrow & - \end{array} $	-
	MULXS. W Rs, ERd	W		4						$\begin{tabular}{c} Rd16 \times Rs16 \to ERd32 & & $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$	-
DIVXU	DIVXU. B Rs, Rd	В		2						$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	_
	DIVXU. W Rs, ERd	w		2						$ \begin{array}{c c} ERd32 \div Rs16 \to ERd32 & & & (6) & (7) & -\\ (Ed: remainder, & \\ Rd: quotient) & & \\ (unsigned division) & & \\ \end{array} $	-
DIVXS	DIVXS. B Rs, Rd	В		4						$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	-
	DIVXS. W Rs, ERd	w		4						$ \begin{array}{c c} ERd32 \div Rs16 \to ERd32 & & (8) \ (7) & -\\ (Ed:\ remainder, & \\ Rd:\ quotient) & \\ (signed\ division) & \end{array} $	-
CMP	CMP.B #xx:8, Rd	В	2	$ \neg $	1		-	\square	,	Rd8-#xx:8 — ↓ ↓ ↓	\$
	CMP.B Rs, Rd	В	\square	2						Rd8–Rs8 — ↓ ↓ ↓	\$
[CMP.W #xx:16, Rd	W	4			T				Rd16–#xx:16 — (1) ↓ ↓ .	\updownarrow
	CMP.W Rs, Rd	W		2						Rd16–Rs16 — (1) ↓ ↓ :	\updownarrow
	CMP.L #xx:32, ERd	L	6							ERd32-#xx:32 - (2) ↓ ↓ ↓	\updownarrow
	CMP.L ERs, ERd	L	Ē '	2						ERd32–ERs32 — (2) ↓ ↓ ↓	\updownarrow

Rev. 4.00 Sep. 23, 2005 Page 290 of 354 REJ09B0025-0400

		-	of ERd32)	2							
EXTS	EXTS.W Rd		(<bit 7=""> of Rd16) \rightarrow (<bits 15="" 8="" to=""> of Rd16)</bits></bit>	2				_	_	\$ \$	0
	EXTS.L ERd		(<bit 15=""> of ERd32) \rightarrow (<bits 16="" 31="" to=""> of ERd32)</bits></bit>	2				_		\$ \$	0

Renesas

	AND.L #xx:32, ERd	L	6					$ERd32 \wedge \#xx:32 \rightarrow ERd32$	_	_	1	1	0
	AND.L ERs, ERd	L		4				ERd32 \wedge ERs32 \rightarrow ERd32	_	_	\$	\$	0
OR	OR.B #xx:8, Rd	В	2					Rd8⁄#xx:8 → Rd8	_	_	\$	\$	0
	OR.B Rs, Rd	В		2				Rd8/Rs8 \rightarrow Rd8	_	_	\$	\$	0
	OR.W #xx:16, Rd	W	4					Rd16/#xx:16 → Rd16	_	_	\$	\$	0
	OR.W Rs, Rd	W		2				Rd16/Rs16 \rightarrow Rd16	-	—	\$	\$	0
	OR.L #xx:32, ERd	L	6					ERd32/#xx:32 \rightarrow ERd32	—	-	\$	\$	0
	OR.L ERs, ERd	L		4				ERd32/ERs32 \rightarrow ERd32	—	—	\$	\$	0
XOR	XOR.B #xx:8, Rd	В	2					Rd8⊕#xx:8 → Rd8	—	—	\$	\$	0
	XOR.B Rs, Rd	В		2				$Rd8 \oplus Rs8 \rightarrow Rd8$	-	—	\updownarrow	\$	0
	XOR.W #xx:16, Rd	W	4					Rd16⊕#xx:16 → Rd16	—	—	\updownarrow	\$	0
	XOR.W Rs, Rd	W		2				Rd16⊕Rs16 → Rd16	—	—	\$	\$	0
	XOR.L #xx:32, ERd	L	6					$ERd32 \oplus \#xx:32 \to ERd32$	—	—	\$	\$	0
	XOR.L ERs, ERd	L		4				$ERd32{\oplus}ERs32 \to ERd32$	—	—	\$	\$	0
NOT	NOT.B Rd	В		2				$\neg \text{ Rd8} \rightarrow \text{ Rd8}$	—	—	\$	\$	0
	NOT.W Rd	W		2				\neg Rd16 \rightarrow Rd16	—	—	\$	\$	0
	NOT.L ERd	L		2				$\neg \text{ Rd32} \rightarrow \text{ Rd32}$	-	-	\updownarrow	\$	0

Rev. 4.00 Sep. 23, 2005 Page 292 of 354 REJ09B0025-0400

	SHAR.W Rd	W	2						_	_	\$ \$	0
	SHAR.L ERd	L	2					MSB LSB	—	-	\$ \$	0
SHLL	SHLL.B Rd	B 2 D D	—	-	\$ \$	0						
	SHLL.W Rd	W	2						—	-	\$ \$	0
	SHLL.L ERd	L	2					MSB LSB	—	-	\$ \$	0
SHLR	SHLR.B Rd	В	2					0→+C	—	-	\$ \$	0
	SHLR.W Rd	W	2						—	-	\$ \$	0
	SHLR.L ERd	L	2					MSB LSB	—	-	\$ \$	0
ROTXL	ROTXL.B Rd	В	2						—	-	\$ \$	0
	ROTXL.W Rd	W	2						—	-	\$ \$	0
	ROTXL.L ERd	L	2					MSB 🔶 LSB	—	-	\$ \$	0
ROTXR	ROTXR.B Rd	В	2						—	-	\$ \$	0
	ROTXR.W Rd	W	2						—	-	\$ \$	0
	ROTXR.L ERd	L	2					MSB LSB	—	-	\$ \$	0
ROTL	ROTL.B Rd	В	2						—	-	\$ \$	0
	ROTL.W Rd	W	2						—	-	\$ \$	0
	ROTL.L ERd	L	2					MSB 🗕 LSB	—	-	\$ \$	0
ROTR	ROTR.B Rd	В	2						—	-	\$ \$	0
	ROTR.W Rd	W	2						—	-	\$ \$	0
	ROTR.L ERd	L	2					MSB	—	-	\$ \$	0

RENESAS

	BSET Rn, @ERd	В		4				(Rn8 of @ERd) ← 1	_	_	_	_	
	BSET Rn, @aa:8	в				4		(Rn8 of @aa:8) ← 1	_	—	—	—	_
BCLR	BCLR #xx:3, Rd	в	2					(#xx:3 of Rd8) ← 0	_	_	—	-	_
	BCLR #xx:3, @ERd	в		4				(#xx:3 of @ERd) \leftarrow 0	-	-	—	—	-
	BCLR #xx:3, @aa:8	В				4		(#xx:3 of @aa:8) ← 0	—	—	—	—	_
	BCLR Rn, Rd	В	2					(Rn8 of Rd8) ← 0	—	—	—	—	_
	BCLR Rn, @ERd	В		4				(Rn8 of @ERd) \leftarrow 0	—	—	—	—	_
	BCLR Rn, @aa:8	В				4		(Rn8 of @aa:8) ← 0	—	—	—	—	_
BNOT	BNOT #xx:3, Rd	В	2					(#xx:3 of Rd8) ← ¬ (#xx:3 of Rd8)	_	_	—	—	_
	BNOT #xx:3, @ERd	В		4				(#xx:3 of @ERd) ← ¬ (#xx:3 of @ERd)	—	—	—	—	_
	BNOT #xx:3, @aa:8	В				4		(#xx:3 of @aa:8) ← ¬ (#xx:3 of @aa:8)	-	—	—	-	_
	BNOT Rn, Rd	В	2					(Rn8 of Rd8) ← ¬ (Rn8 of Rd8)	-	—	—	-	_
	BNOT Rn, @ERd	В		4				(Rn8 of @ERd) ← ¬ (Rn8 of @ERd)	-	—	—	—	_
	BNOT Rn, @aa:8	В				4		(Rn8 of @aa:8) ← ¬ (Rn8 of @aa:8)	—	—	—	-	_
BTST	BTST #xx:3, Rd	В	2					¬ (#xx:3 of Rd8) → Z	—	—	—	\$	_
	BTST #xx:3, @ERd	В		4				¬ (#xx:3 of @ERd) → Z	—	—	—	\$	_
	BTST #xx:3, @aa:8	В				4		¬ (#xx:3 of @aa:8) → Z	—	—	—	\$	_
	BTST Rn, Rd	В	2					¬ (Rn8 of @Rd8) → Z	—	—	—	\updownarrow	-
	BTST Rn, @ERd	В		4				¬ (Rn8 of @ERd) → Z	_	—	—	\$	-
	BTST Rn, @aa:8	В				4		¬ (Rn8 of @aa:8) → Z	—	—	—	\$	_
BLD	BLD #xx:3, Rd	В	2					(#xx:3 of Rd8) \rightarrow C	_	_	—	—	—

Rev. 4.00 Sep. 23, 2005 Page 294 of 354 REJ09B0025-0400

001	Bo 1 #XX.0, 110		-										
	BST #xx:3, @ERd	В		4				$C \rightarrow (\#xx:3 \text{ of } @ERd24)$	-	—	—	—	—
BIST	BST #xx:3, @aa:8	В				4		$C \rightarrow (\#xx:3 \text{ of } @aa:8)$	-	—	—	—	—
	BIST #xx:3, Rd	В	2					\neg C \rightarrow (#xx:3 of Rd8)	-	-	—	—	-
	BIST #xx:3, @ERd	В		4				$\neg \text{ C} \rightarrow (\text{\#xx:3 of } @ \text{ERd24})$	-	-	—	—	-
	BIST #xx:3, @aa:8	В				4		$\neg C \rightarrow (\#xx:3 \text{ of } @aa:8)$	-	—	—	—	—
BAND	BAND #xx:3, Rd	В	2					$C \land (\#xx:3 \text{ of } Rd8) \rightarrow C$	-	—	—	—	—
	BAND #xx:3, @ERd	В		4				$C{\scriptscriptstyle\wedge}(\texttt{\#xx:3 of @ERd24}) \to C$	—	—	—	—	—
BIAND	BAND #xx:3, @aa:8	В				4		$C {\scriptstyle \land} (\#xx:3 \text{ of } @aa:8) \rightarrow C$	-	—	—	—	—
	BIAND #xx:3, Rd	В	2					$C \land \neg \text{ (\#xx:3 of Rd8)} \to C$	-	—	—	—	—
	BIAND #xx:3, @ERd	В		4				$C \land \neg$ (#xx:3 of @ERd24) \rightarrow C	-	-	—	—	-
	BIAND #xx:3, @aa:8	В				4		$C \wedge \neg$ (#xx:3 of @aa:8) $\rightarrow C$	-	—	—	—	—
BOR	BOR #xx:3, Rd	В	2					C/(#xx:3 of Rd8) \rightarrow C	—	—	—	—	—
	BOR #xx:3, @ERd	В		4				C/(#xx:3 of @ERd24) \rightarrow C	—	—	—	—	—
	BOR #xx:3, @aa:8	В				4		C/(#xx:3 of @aa:8) \rightarrow C	—	—	—	—	—
BIOR	BIOR #xx:3, Rd	В	2					C⁄ \neg (#xx:3 of Rd8) \rightarrow C	-	—	—	—	—
	BIOR #xx:3, @ERd	В		4				C/ \neg (#xx:3 of @ERd24) \rightarrow C	-	—	—	—	—
	BIOR #xx:3, @aa:8	В				4		C/ \neg (#xx:3 of @aa:8) \rightarrow C	-	—	—	—	—
BXOR	BXOR #xx:3, Rd	В	2					$C {\oplus} (\#xx:3 \text{ of } Rd8) \to C$	-	—	—	—	—
	BXOR #xx:3, @ERd	В		4				$C {\oplus} (\#xx:3 \text{ of } @ERd24) \rightarrow C$	—	—	—	—	—
	BXOR #xx:3, @aa:8	В				4		$C {\oplus} (\#xx:3 \text{ of } @aa:8) \rightarrow C$	—	—	—	—	—
BIXOR	BIXOR #xx:3, Rd	В	2					$C \oplus \neg (\#xx:3 \text{ of } Rd8) \to C$	-	_	_	_	_
	BIXOR #xx:3, @ERd	В		4				$C \oplus \neg (\#xx:3 \text{ of } @ERd24) \rightarrow C$	-	_	—	-	_
	BIXOR #xx:3, @aa:8	В				4		$C \oplus \neg (\#xx:3 \text{ of } @aa:8) \rightarrow C$	—	—	—	—	—

Renesas

	BHI d:8			\square		2	\square	C/Z = 0	_	_	_	_	_
ŀ	BHI d:16	\vdash		++		4	+	0/2 0					
	BLS d:8			++		2	+	C/Z = 1		_			
	BLS d:16			+		4	+			_	_	_	
ŀ	BCC d:8 (BHS d:8)	\vdash		++		2	+	C = 0		_		_	
- F	BCC d:16 (BHS d:16)	H		+		4	+	0 - 0					
- F	BCS d:8 (BLO d:8)	\square		++	_	2	+	C = 1		_	_		\exists
ŀ	BCS d:16 (BLO d:16)	\square		++		4	+			_			H
	BNE d:8	\square		+		2	+	Z = 0		_			H
	BNE d:16	\square		+	_	4	+	2 = 0		_		-	H
ŀ	BRE d:10 BEQ d:8	\vdash		+		2	+	Z = 1					\exists
	BEQ d:16	\square		+		4	-		_	_	_	_	\exists
ŀ	BVC d:8	\square			_	2	-	V = 0	_	_	_	_	-
- F				+		4	-	V = 0	_	_	_	_	-+
- F	BVC d:16						-		_	_	-	_	
ŀ	BVS d:8	\square		+		2		V = 1	_	-	-	_	\parallel
ŀ	BVS d:16			+		4				-	-	_	
	BPL d:8					2		N = 0	_	—	-	_	
	BPL d:16					4				_	-		
- F	BMI d:8					2		N = 1	_	—	-	_	
	BMI d:16	-				4				_	-		
ŀ	BGE d:8	-				2		N⊕V = 0	—	—	-	—	
	BGE d:16	$\left -\right $				4			—	—	-	_	-
	BLT d:8	-				2		N⊕V = 1	—	—	-	—	-
	BLT d:16					4			_	—	—	—	-
[BGT d:8	$\left - \right $				2		Z∕(N⊕V) = 0	—	—	—	—	
[BGT d:16					4			—	—	—	—	_ ·
	BLE d:8	_				2		Z∕(N⊕V) = 1	—	—	—	—	
[BLE d:16	_				4			—	—	—	—	

Rev. 4.00 Sep. 23, 2005 Page 296 of 354 REJ09B0025-0400

RENESAS

	Donra.ito								$PC \leftarrow PC+d:16$					
JSR	JSR @ERn	-		2					$PC \rightarrow @-SP$ $PC \leftarrow ERn$	-	-	_	_	—
	JSR @aa:24	_				4			$PC \rightarrow @-SP$ $PC \leftarrow aa:24$	_	—	_	_	-
	JSR @@aa:8	—					2		$PC \rightarrow @-SP$ $PC \leftarrow @aa:8$	_	—	_	—	
RTS	RTS	—						2	$PC \leftarrow @SP+$	—	—	—	—	—

RENESAS

											$PC \gets @SP+$					
SLEEP	SLEEP	—									Transition to power- down state	_	—	—	-	_
LDC	LDC #xx:8, CCR	В	2								$#xx:8 \rightarrow CCR$	\updownarrow	\$	\$	\$	\$
	LDC Rs, CCR	В		2							$Rs8 \rightarrow CCR$	\updownarrow	\updownarrow	\updownarrow	\$	\uparrow
	LDC @ERs, CCR	W			4						$@ERs\toCCR$	\updownarrow	\updownarrow	\updownarrow	\$	\uparrow
	LDC @(d:16, ERs), CCR	W				6					@(d:16, ERs) → CCR	\updownarrow	\updownarrow	\updownarrow	\$	\uparrow
	LDC @(d:24, ERs), CCR	W				10					$@(d{:}24,ERs)\toCCR$	\updownarrow	\updownarrow	\updownarrow	\$	\uparrow
	LDC @ERs+, CCR	w					4				$@ ERs \rightarrow CCR$ ERs32+2 $\rightarrow ERs32$	≎	€	\$	\$	\$
	LDC @aa:16, CCR	w						6			@aa:16 \rightarrow CCR	\updownarrow	\updownarrow	\uparrow	\$	\$
	LDC @aa:24, CCR	w						8			@aa:24 \rightarrow CCR	\uparrow	\$	\$	\$	\$
STC	STC CCR, Rd	В		2							$CCR \rightarrow Rd8$	-	—	—	—	_
	STC CCR, @ERd	W			4						$CCR \rightarrow @ERd$	-	—	—	—	_
	STC CCR, @(d:16, ERd)	W				6					$CCR \rightarrow @(d:16, ERd)$	—	—	—	—	-
	STC CCR, @(d:24, ERd)	W				10					$CCR \rightarrow @(d:24, ERd)$	—	—	—	—	_
	STC CCR, @-ERd	w					4				$ \begin{array}{l} ERd32-2 \rightarrow ERd32 \\ CCR \rightarrow @ ERd \end{array} $	-	—	-	-	-
	STC CCR, @aa:16	w						6			$CCR \rightarrow @aa:16$	-	—	—	—	—
	STC CCR, @aa:24	w						8			$CCR \rightarrow @aa:24$	-	—	—	—	_
ANDC	ANDC #xx:8, CCR	В	2								CCR_{\wedge} #xx:8 \rightarrow CCR	\updownarrow	\updownarrow	\$	\$	\$
ORC	ORC #xx:8, CCR	В	2								CCR/#xx:8 → CCR	\$	\$	\$	\$	\$
XORC	XORC #xx:8, CCR	В	2								$CCR \oplus \#xx:8 \rightarrow CCR$	\updownarrow	\$	\$	\$	\$
NOP	NOP	—								2	$PC \leftarrow PC+2$	-	—	—	—	-

Rev. 4.00 Sep. 23, 2005 Page 298 of 354 REJ09B0025-0400

Ι													
								until R4L=0					
								else next					
	EEPMOV. W	—					4	if R4 ≠ 0 then	-	—	—	—	—
								repeat @R5 \rightarrow @R6					
								$R5+1 \rightarrow R5$					
								$R6+1 \rightarrow R6$					
								$R4-1 \rightarrow R4$					
								until R4=0					
								else next					

- Notes: 1. The number of states in cases where the instruction code and its operands at in on-chip memory is shown here. For other cases see Appendix A.3, Number Execution States.
 - 2. n is the value set in register R4L or R4.
 - (1) Set to 1 when a carry or borrow occurs at bit 11; otherwise cleared to 0.
 - (2) Set to 1 when a carry or borrow occurs at bit 27; otherwise cleared to 0.
 - (3) Retains its previous value when the result is zero; otherwise cleared to 0.
 - (4) Set to 1 when the adjustment produces a carry; otherwise retains its prev
 - (5) The number of states required for execution of an instruction that transfer synchronization with the E clock is variable.
 - (6) Set to 1 when the divisor is negative; otherwise cleared to 0.
 - (7) Set to 1 when the divisor is zero; otherwise cleared to 0.
 - (8) Set to 1 when the quotient is negative; otherwise cleared to 0.

Instruction code:	tion cod		1st byte AH AL	2nd byte BH BL	yte BL		— Inst]▲ Inst	 Instruction when most significant bit of BH is Instruction when most significant bit of BH is 	when r when r	nost sig nost sig	ynifican ynifican	t bit of] t bit of]	BH i BH i
AH	0	-	N	ю	4	ى ا	9	7	ω	6	A	ш	U
0	NOP	Table A-2 (2)	STC	LDC	ORC	XORC	ANDC	LDC	ADD	Q	Table A-2 (2)	Table A-2 (2)	
-	Table A-2 (2)	Table A-2 (2)	Table A-2 Table A-2 Table A-2 Table A-2 Table A-2 Table A-2 Table A-3 Table A-3 <thtable a-3<="" th=""> <thtable a-3<="" th=""> <tht< td=""><td>Table A-2 (2)</td><td>OR.B</td><td>XOR.B</td><td>AND.B</td><td>Table A-2 (2)</td><td>SUB</td><td>в</td><td>Table A-2 (2)</td><td>Table A-2 Table A-2 (2) (2)</td><td></td></tht<></thtable></thtable>	Table A-2 (2)	OR.B	XOR.B	AND.B	Table A-2 (2)	SUB	в	Table A-2 (2)	Table A-2 Table A-2 (2) (2)	
2													
e								MOV.B					
4	BRA	BRN	BHI	BLS	BCC	BCS	BNE	BEQ	BVC	BVS	BPL	BMI	BGE
£	MULXU	DIVXU	MULXU	DIVXU	RTS	BSR	RTE	TRAPA	Table A-2 (2)		AML		BSR
9			i i		OR	XOR	AND	BST BIST				W	NOV
7	BSEI	BNOI	BCLH	E N	BOR BIOR	BXOR BIXOR	BAND BIAND	BLD	NOM	Table A-2 (2)	Table A-2 Table A-2 EEPMOV (2) (2)	EEPMOV	
8								ADD					
6								ADDX					
A								CMP					
ш								SUBX					
o								OR					
۵								XOR					
ш								AND					

Rev. 4.00 Sep. 23, 2005 Page 300 of 354

REJ09B0025-0400

RENESAS

AH AL	0	1	2	3	4	5	6	7	8	6	A	В
01	NOM				LDC/STC				SLEEP			
OA	INC											
OB	ADDS					INC		INC	ADI	ADDS		
OF	DAA											
10	SH	SHLL		SHLL					SH	SHAL		SHAL
11	SHS	SHLR		SHLR					SH	SHAR		SHAR
4	.OR	ROTXL		ROTXL					RO	ROTL		ROTL
13	RO ⁻	ROTXR		ROTXR					RO	ROTR		ROTR
17	ž	NOT		NOT		ЕХТО		EXTU	NE	NEG		NEG
1A	DEC											
1B	SUBS					DEC		DEC	SL	SUB		
1F	DAS											
58	BRA	BRN	BHI	BLS	BCC	BCS	BNE	BEQ	BVC	BVS	BPL	BMI
62	NOM	ADD	CMP	SUB	OR	XOR	AND					

2nd byte BH BL

1st byte AH AL

Instruction code:

RENESAS

2nd byte 3rd byte 4th byte BH BL CH CL DH DL	3 4 5 6 7 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9			DIVXS	OR XOR AND	BIST	BTST BOR BXOR BAND BLD BIOR BIXOR BIAND BILD	BST		BTST	BTST BOR BXOR BAND BLD BIST BIOR BIXOR BIAND BILD	SB _	
	е П		WULXS	DIV		BTG	BTG	BCLR	BCLR	BTG	BTG	BCLR	BCLR
1st byte AH AL			Ŵ	(0)									
	-			DIVXS				BNOT	BNOT			BNOT	BNOT
ion cod	0		MULXS					BSET	BSET			BSET	BSET
Instruction code:	AH ALBH ALBH BLCH	01406	01C05	01D05	01F06	7Cr06*1	7Cr07*1	7Dr06*1	7Dr07*1	7Eaa6*2	7Eaa7*2	7Faa6*2	7Faa7*2

Rev. 4.00 Sep. 23, 2005 Page 302 of 354

REJ09B0025-0400

RENESAS

2. aa is the absolute address field.

BSET #0, @FF00

From table A.4: $I=L=2, \quad J=K=M=N=0$

From table A.3: $S_1 = 2$, $S_L = 2$

Number of states required for execution = $2 \times 2 + 2 \times 2 = 8$

When instruction is fetched from on-chip ROM, branch address is read from on-chip RO on-chip RAM is used for stack area.

JSR @ @ 30 From table A.4: I = 2, J = K = 1, L = M = N = 0

From table A.3: $S_I = S_J = S_K = 2$

Number of states required for execution = $2 \times 2 + 1 \times 2 + 1 \times 2 = 8$

Note: * Depends on which on-chip peripheral module is accessed. See section 17.1, F Addresses (Address Order).

Rev. 4.00 Sep. 23, 2005 Page 304 of 354 REJ09B0025-0400

ADDS	ADDS #1/2/4, ERd	1		
ADDX	ADDX #xx:8, Rd	1		
	ADDX Rs, Rd	1		
AND	AND.B #xx:8, Rd	1		
	AND.B Rs, Rd	1		
	AND.W #xx:16, Rd	2		
	AND.W Rs, Rd	1		
	AND.L #xx:32, ERd	3		
	AND.L ERs, ERd	2		
ANDC	ANDC #xx:8, CCR	1		
BAND	BAND #xx:3, Rd	1		
	BAND #xx:3, @ERd	2	1	
	BAND #xx:3, @aa:8	2	1	
Bcc	BRA d:8 (BT d:8)	2		
	BRN d:8 (BF d:8)	2		
	BHI d:8	2		
	BLS d:8	2		
	BCC d:8 (BHS d:8)	2		
	BCS d:8 (BLO d:8)	2		
	BNE d:8	2		
	BEQ d:8	2		
	BVC d:8	2		
	BVS d:8	2		
	BPL d:8	2		
	BMI d:8	2		
	BGE d:8	2		

Renesas

	BCC 0:16(BHS 0:16)	2		
	BCS d:16(BLO d:16)	2		
	BNE d:16	2		
	BEQ d:16	2		
	BVC d:16	2		
	BVS d:16	2		
	BPL d:16	2		
	BMI d:16	2		
	BGE d:16	2		
	BLT d:16	2		
	BGT d:16	2		
	BLE d:16	2		
BCLR	BCLR #xx:3, Rd	1		
	BCLR #xx:3, @ERd	2	2	
	BCLR #xx:3, @aa:8	2	2	
	BCLR Rn, Rd	1		
	BCLR Rn, @ERd	2	2	
	BCLR Rn, @aa:8	2	2	
BIAND	BIAND #xx:3, Rd	1		
	BIAND #xx:3, @ERd	2	1	
	BIAND #xx:3, @aa:8	2	1	
BILD	BILD #xx:3, Rd	1		
	BILD #xx:3, @ERd	2	1	
	BILD #xx:3, @aa:8	2	1	

Rev. 4.00 Sep. 23, 2005 Page 306 of 354 REJ09B0025-0400

RENESAS

	BIXOR #xx:3, @ERd	2		1	
	BIXOR #xx:3, @aa:8	2		1	
BLD	BLD #xx:3, Rd	1			
	BLD #xx:3, @ERd	2		1	
	BLD #xx:3, @aa:8	2		1	
BNOT	BNOT #xx:3, Rd	1			
	BNOT #xx:3, @ERd	2		2	
	BNOT #xx:3, @aa:8	2		2	
	BNOT Rn, Rd	1			
	BNOT Rn, @ERd	2		2	
	BNOT Rn, @aa:8	2		2	
BOR	BOR #xx:3, Rd	1			
	BOR #xx:3, @ERd	2		1	
	BOR #xx:3, @aa:8	2		1	
BSET	BSET #xx:3, Rd	1			
	BSET #xx:3, @ERd	2		2	
	BSET #xx:3, @aa:8	2		2	
	BSET Rn, Rd	1			
	BSET Rn, @ERd	2		2	
	BSET Rn, @aa:8	2		2	
BSR	BSR d:8	2	1		
	BSR d:16	2	1		
BST	BST #xx:3, Rd	1			
	BST #xx:3, @ERd	2		2	
	BST #xx:3, @aa:8	2		2	

RENESAS

BXOR #xx:3, @aa:8 2 1 CMP CMP.B #xx:8, Rd 1	I
,	
CMP.B Rs, Rd 1	
CMP.W #xx:16, Rd 2	
CMP.W Rs, Rd 1	
CMP.L #xx:32, ERd 3	
CMP.L ERs, ERd 1	
DAA DAA Rd 1	
DAS DAS Rd 1	
DEC DEC.B Rd 1	
DEC.W #1/2, Rd 1	
DEC.L #1/2, ERd 1	
DUVXS DIVXS.B Rs, Rd 2	
DIVXS.W Rs, ERd 2	
DIVXU DIVXU.B Rs, Rd 1	
DIVXU.W Rs, ERd 1	
EEPMOV EEPMOV.B 2 2	2n+2*1
EEPMOV.W 2 2	2n+2*1
EXTS EXTS.W Rd 1	
EXTS.L ERd 1	
EXTU EXTU.W Rd 1	
EXTU.L ERd 1	

Rev. 4.00 Sep. 23, 2005 Page 308 of 354 REJ09B0025-0400

	JSR @aa:24	2		1			
	JSR @@aa:8	2	1	1			
LDC	LDC #xx:8, CCR	1					
	LDC Rs, CCR	1					
	LDC@ERs, CCR	2				1	
	LDC@(d:16, ERs), CCR	3				1	
	LDC@(d:24,ERs), CCR	5				1	
	LDC@ERs+, CCR	2				1	
	LDC@aa:16, CCR	3				1	
	LDC@aa:24, CCR	4				1	
MOV	MOV.B #xx:8, Rd	1					
	MOV.B Rs, Rd	1					
	MOV.B @ERs, Rd	1			1		
	MOV.B @(d:16, ERs), Rd	2			1		
	MOV.B @(d:24, ERs), Rd	4			1		
	MOV.B @ERs+, Rd	1			1		
	MOV.B @aa:8, Rd	1			1		
	MOV.B @aa:16, Rd	2			1		
	MOV.B @aa:24, Rd	3			1		
	MOV.B Rs, @Erd	1			1		
	MOV.B Rs, @(d:16, ERd)	2			1		
	MOV.B Rs, @(d:24, ERd)	4			1		
	MOV.B Rs, @-ERd	1			1		
	MOV.B Rs, @aa:8	1			1		

RENESAS

	MOV.W @ERS+, Ra	1		1
	MOV.W @aa:16, Rd	2		1
	MOV.W @aa:24, Rd	3		1
	MOV.W Rs, @ERd	1		1
	MOV.W Rs, @(d:16,ERd)	2		1
	MOV.W Rs, @(d:24,ERd)	4		1
MOV	MOV.W Rs, @-ERd	1		1
	MOV.W Rs, @aa:16	2		1
	MOV.W Rs, @aa:24	3		1
	MOV.L #xx:32, ERd	3		
	MOV.L ERs, ERd	1		
	MOV.L @ERs, ERd	2		2
	MOV.L @(d:16,ERs), ERd	3		2
	MOV.L @(d:24,ERs), ERd	5		2
	MOV.L @ERs+, ERd	2		2
	MOV.L @aa:16, ERd	3		2
	MOV.L @aa:24, ERd	4		2
	MOV.L ERs,@ERd	2		2
	MOV.L ERs, @(d:16,ERd)	3		2
	MOV.L ERs, @(d:24,ERd)	5		2
	MOV.L ERs, @-ERd	2		2
	MOV.L ERs, @aa:16	3		2
	MOV.L ERs, @aa:24	4		2
MOVFPE	MOVFPE @aa:16, Rd* ²	2	1	
MOVTPE	MOVTPE Rs,@aa:16*2	2	1	

Rev. 4.00 Sep. 23, 2005 Page 310 of 354 REJ09B0025-0400

RENESAS

NOP	NOP	1	
NOT	NOT.B Rd	1	
	NOT.W Rd	1	
	NOT.L ERd	1	
OR	OR.B #xx:8, Rd	1	
	OR.B Rs, Rd	1	
	OR.W #xx:16, Rd	2	
	OR.W Rs, Rd	1	
	OR.L #xx:32, ERd	3	
	OR.L ERs, ERd	2	
ORC	ORC #xx:8, CCR	1	
POP	POP.W Rn	1	1
	POP.L ERn	2	2
PUSH	PUSH.W Rn	1	1
	PUSH.L ERn	2	2
ROTL	ROTL.B Rd	1	
	ROTL.W Rd	1	
	ROTL.L ERd	1	
ROTR	ROTR.B Rd	1	
	ROTR.W Rd	1	
	ROTR.L ERd	1	
ROTXL	ROTXL.B Rd	1	
	ROTXL.W Rd	1	
	ROTXL.L ERd	1	

RENESAS

	SHAL.L ERd	1	
SHAR	SHAR.B Rd	1	
	SHAR.W Rd	1	
	SHAR.L ERd	1	
SHLL	SHLL.B Rd	1	
	SHLL.W Rd	1	
	SHLL.L ERd	1	
SHLR	SHLR.B Rd	1	
	SHLR.W Rd	1	
	SHLR.L ERd	1	
SLEEP	SLEEP	1	
STC	STC CCR, Rd	1	
	STC CCR, @ERd	2	1
	STC CCR, @(d:16,ERd)	3	1
	STC CCR, @(d:24,ERd)	5	1
	STC CCR,@-ERd	2	1
	STC CCR, @aa:16	3	1
	STC CCR, @aa:24	4	1
SUB	SUB.B Rs, Rd	1	
	SUB.W #xx:16, Rd	2	
	SUB.W Rs, Rd	1	
	SUB.L #xx:32, ERd	3	
	SUB.L ERs, ERd	1	
SUBS	SUBS #1/2/4, ERd	1	

Rev. 4.00 Sep. 23, 2005 Page 312 of 354 REJ09B0025-0400

XORC	XORC #xx:8, CCR	1	
	XOR.L ERs, ERd	2	
	XOR.L #xx:32, ERd	3	

Notes: 1. n: Specified value in R4L and R4. The source and destination operands are a n+1 times respectively.

2. Cannot be used in this LSI.

Arithmetic / operations / / / / / / / / / / / / / / / / / / /	MOVFPE, MOVTPE ADD, CMP SUB ADDX, SUBX ADDS, SUBS INC, DEC DAA, DAS MULXU, MULXS, DIVXU, DIVXS		BWL BWL B BWL BWL BW					 	-				-
Arithmetic dependence operations dependence operations dependence operations dependence operations dependence operation operat	ADD, CMP SUB ADDX, SUBX ADDS, SUBS INC, DEC DAA, DAS MULXU, MULXS, DIVXU,	WL B —	BWL B L BWL B	_	_	_		-					-
operations c	SUB ADDX, SUBX ADDS, SUBS INC, DEC DAA, DAS MULXU, MULXS, DIVXU,	WL B —	BWL B L BWL B	_	_	_							-
	ADDX, SUBX ADDS, SUBS INC, DEC DAA, DAS MULXU, MULXS, DIVXU,	B	B L BWL B	_	_	_							-
/ 	ADDS, SUBS INC, DEC DAA, DAS MULXU, MULXS, DIVXU,	_	L BWL B	—	_		_	-	_	_	_		
 	INC, DEC DAA, DAS MULXU, MULXS, DIVXU,		BWL B			-						1	-
C N C C	DAA, DAS MULXU, MULXS, DIVXU,		В		_			—	—	—	—	—	-
	MULXU, MULXS, DIVXU,		_	_		Ι	—	Ι		—	—	—	-
	MULXS, DIVXU,	_	BW		—	Ι	—	Ι		—	—	—	-
	DIVXU,				—	Ι	—	-	-	—	—	—	-
	-												
	DIVXS												
L L													
!	NEG	—	BWL		—	Ι	—	Ι		—	—	—	-
E	EXTU, EXTS	—	WL		—		—		_	—	—	—	-
	AND, OR, XOR	—	BWL		—	Ι	—	Ι		—	—	—	-
operations	NOT	—	BWL		—	Ι	—	Ι		—	—	—	-
Shift operations			BWL	—	—	—	—	—	—	—	—	—	-
Bit manipulations			В	В	—	—	—	В	—	—	—	—	-
	BCC, BSR		-	—	—	—	—	—	—	—	—	—	-
instructions	JMP, JSR	_	—	\bigcirc	_	—	—	—	—	—	0	0	-
F	RTS		-	—	—	—	—	—	—	\circ	—	—	(
	TRAPA	_	—	—	_	—	—	—	—	—	—		-
control	RTE		-	—	—	—	—	—	—	—	—	—	-
Instructions	SLEEP		-	—	—	—	—	—	—	—	—	—	-
	LDC	В	В	W	W	W	W	Ι	W	W	—		-
5	STC	_	В	W	W	W	W	—	W	W	—		-
A	ANDC, ORC,	В	-	_	_	_	_]	-7	_	-	-	-	-
>	XORC												
1		_	—	—	_	_	_	_				1	-
Block data transfer instructions									_	—	—		

Rev. 4.00 Sep. 23, 2005 Page 314 of 354 REJ09B0025-0400

RENESAS

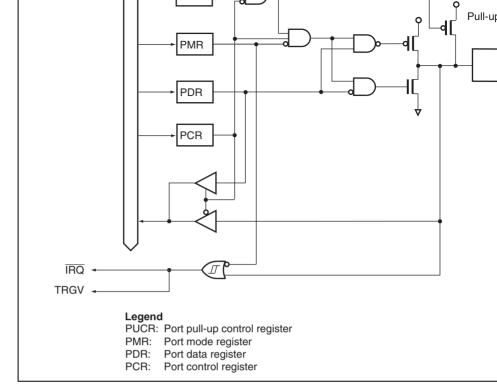


Figure B.1 Port 1 Block Diagram (P17)

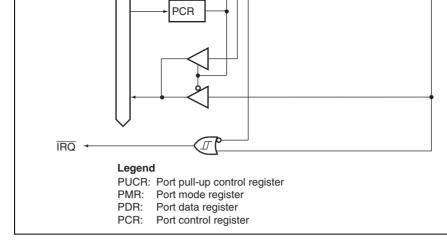


Figure B.2 Port 1 Block Diagram (P14)

Rev. 4.00 Sep. 23, 2005 Page 316 of 354 REJ09B0025-0400

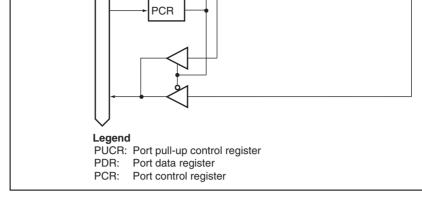


Figure B.3 Port 1 Block Diagram (P16, P15, P12*, P10)

Note: * This pin is available only in the H8/36014.



Figure B.4 Port 1 Block Diagram (P12) (H8/36024)

Rev. 4.00 Sep. 23, 2005 Page 318 of 354 REJ09B0025-0400

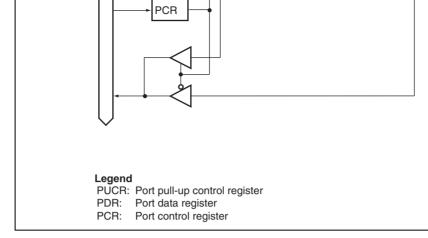


Figure B.5 Port 1 Block Diagram (P11)

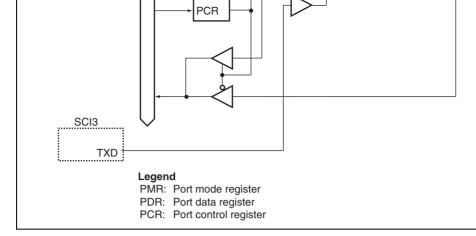


Figure B.6 Port 2 Block Diagram (P22)

Rev. 4.00 Sep. 23, 2005 Page 320 of 354 REJ09B0025-0400

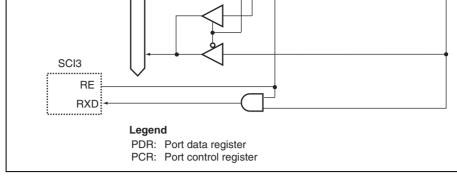


Figure B.7 Port 2 Block Diagram (P21)

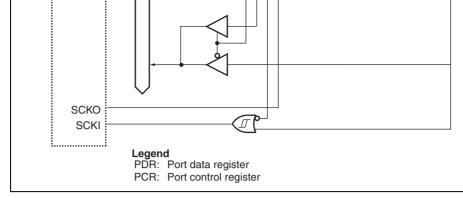


Figure B.8 Port 2 Block Diagram (P20)

Rev. 4.00 Sep. 23, 2005 Page 322 of 354 REJ09B0025-0400

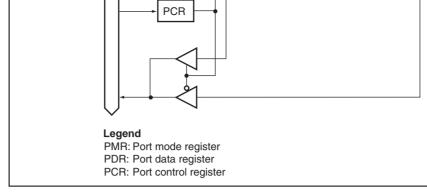


Figure B.9 Port 5 Block Diagram (P57, P56) (H8/36014)

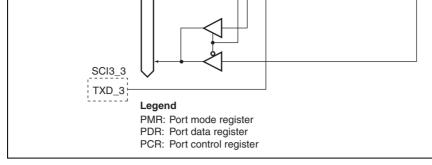


Figure B.10 Port 5 Block Diagram (P57) (H8/36024)

Rev. 4.00 Sep. 23, 2005 Page 324 of 354 REJ09B0025-0400

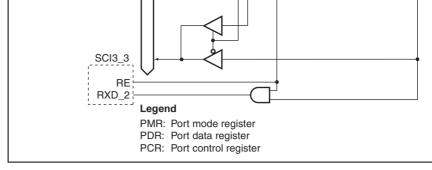


Figure B.11 Port 5 Block Diagram (P56) (H8/36024)

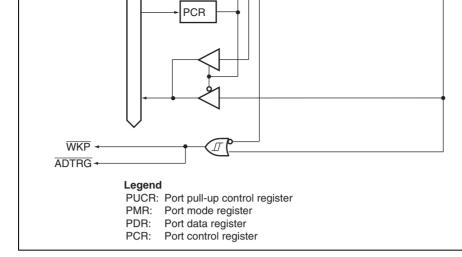


Figure B.12 Port 5 Block Diagram (P55)

Rev. 4.00 Sep. 23, 2005 Page 326 of 354 REJ09B0025-0400

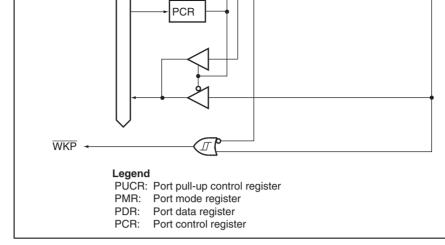


Figure B.13 Port 5 Block Diagram (P54 to P50)

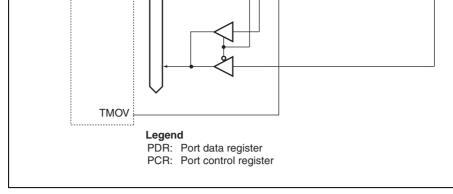


Figure B.14 Port 7 Block Diagram (P76)

Rev. 4.00 Sep. 23, 2005 Page 328 of 354 REJ09B0025-0400

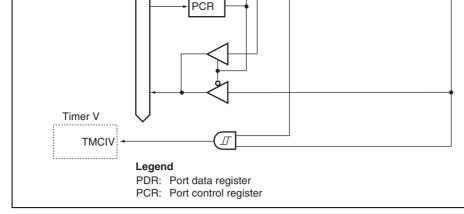


Figure B.15 Port 7 Block Diagram (P75)

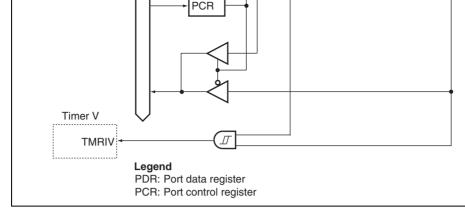


Figure B.16 Port 7 Block Diagram (P74)

Rev. 4.00 Sep. 23, 2005 Page 330 of 354 REJ09B0025-0400

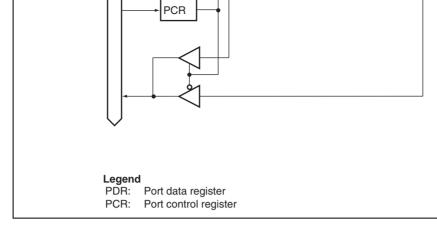


Figure B.17 Port 7 Block Diagram (P73)

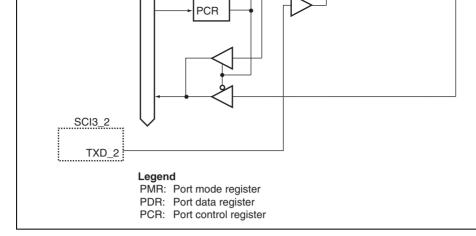


Figure B.18 Port 7 Block Diagram (P72)

Rev. 4.00 Sep. 23, 2005 Page 332 of 354 REJ09B0025-0400

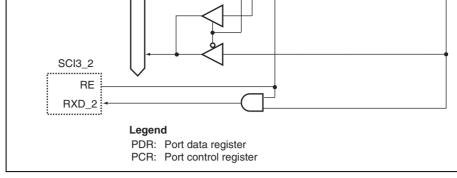


Figure B.19 Port 7 Block Diagram (P71)

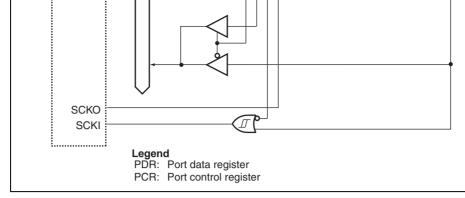


Figure B.20 Port 7 Block Diagram (P70)

Rev. 4.00 Sep. 23, 2005 Page 334 of 354 REJ09B0025-0400

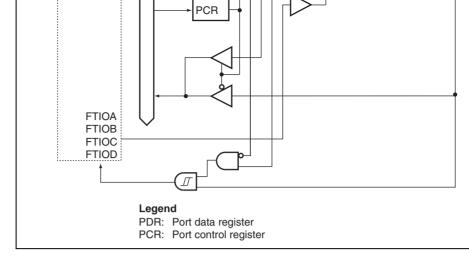


Figure B.21 Port 8 Block Diagram (P84 to P81)

Figure B.22 Port 8 Block Diagram (P80)

Rev. 4.00 Sep. 23, 2005 Page 336 of 354 REJ09B0025-0400

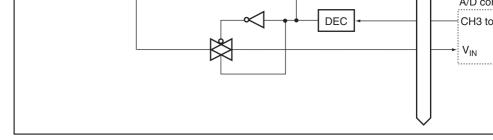


Figure B.23 Port B Block Diagram (PB3 to PB0)

B.2 Port States in Each Operating State

Port	Reset	Active	Sleep	Subsleep	Standby
P17 to P14, P12 to P10	High impedance	Functioning	Retained	Retained	High imp
P22 to P20	High impedance	Functioning	Retained	Retained	High imp
P57 to P50	High impedance	Functioning	Retained	Retained	High imp
P76 to P70	High impedance	Functioning	Retained	Retained	High imp
P84 to P80	High impedance	Functioning	Retained	Retained	High imp
PB3 to PB0	High impedance	High impedance	High impedance	Retained	High imp

Note: * High level output when the pull-up MOS is in on state.

RENESAS

			HD64F36024GFY	HD64F36024GFY	LQFP-48
			HD64F36024GFT	HD64F36024GFT	QFN-48(T
	Masked ROM	Product with POR & LVDC	HD64336024FP	HD64336024(***)FP	LQFP-64
	version		HD64336024FX	HD64336024(***)FX	LQFP-48
			HD64336024FY	HD64336024(***)FY	LQFP-48
			HD64336024FT	HD64336024(***)FT	QFN-48(T
			HD64336024GFP	HD64336024G(***)FP	LQFP-64
			HD64336024GFX	HD64336024G(***)FX	LQFP-48
		a 2000	HD64336024GFY	HD64336024G(***)FY	LQFP-48
			HD64336024GFT	HD64336024G(***)FT	QFN-48(T
H8/36023	Masked ROM	Standard	HD64336023FP	HD64336023(***)FP	LQFP-64
	version	product	HD64336023FX	HD64336023(***)FX	LQFP-48
			HD64336023FY	HD64336023(***)FY	LQFP-48
			HD64336023FT	HD64336023(***)FT	QFN-48(T
		Product	HD64336023GFP	HD64336023G(***)FP	LQFP-64
		with POR & LVDC	HD64336023GFX	HD64336023G(***)FX	LQFP-48
		a 2700	HD64336023GFY	HD64336023G(***)FY	LQFP-48
			HD64336023GFT	HD64336023G(***)FT	QFN-48(1

Rev. 4.00 Sep. 23, 2005 Page 338 of 354 REJ09B0025-0400

	Masked ROM	Standard product	HD64336022FP	HD64336022(***)FP	LQFP-64
	version		HD64336022FX	HD64336022(***)FX	LQFP-48
			HD64336022FY	HD64336022(***)FY	LQFP-48
			HD64336022FT	HD64336022(***)FT	QFN-48(
		Product with POR & LVDC	HD64336022GFP	HD64336022G(***)FP	LQFP-64
			HD64336022GFX	HD64336022G(***)FX	LQFP-48
			HD64336022GFY	HD64336022G(***)FY	LQFP-48
			HD64336022GFT	HD64336022G(***)FT	QFN-48(
H8/36014	Flash memory	Standard	HD64F36014FP	HD64F36014FP	LQFP-64
	version	product	HD64F36014FX	HD64F36014FX	LQFP-48
			HD64F36014FY	HD64F36014FY	LQFP-48
			HD64F36014FT	HD64F36014FT	QFN-48(
		Product	HD64F36014GFP	HD64F36014GFP	LQFP-64
		with POR & LVDC	HD64F36014GFX	HD64F36014GFX	LQFP-48
		a 2780	HD64F36014GFY	HD64F36014GFY	LQFP-48
			HD64F36014GFT	HD64F36014GFT	QFN-48(
	Masked ROM	Standard	HD64336014FP	HD64336014(***)FP	LQFP-64
	version	product	HD64336014FX	HD64336014(***)FX	LQFP-48
			HD64336014FY	HD64336014(***)FY	LQFP-48
			HD64336014FT	HD64336014(***)FT	QFN-48(
		Product	HD64336014GFP	HD64336014G(***)FP	LQFP-64
		with POR & LVDC	HD64336014GFX	HD64336014G(***)FX	LQFP-48
			HD64336014GFY	HD64336014G(***)FY	LQFP-48
			HD64336014GFT	HD64336014G(***)FT	QFN-48(

Rev. 4.00 Sep. 23, 2005 Pag REJ09

RENESAS

H8/36012	-	lash memory Standard ersion product	HD64F36012FP	HD64F36012FP	LQFP-64
	version		HD64F36012FX	HD64F36012FX	LQFP-48
			HD64F36012FY	HD64F36012FY	LQFP-48
			HD64F36012FT	HD64F36012FT	QFN-48(T
		Product	HD64F36012GFP	HD64F36012GFP	LQFP-64
		with POR & LVDC	HD64F36012GFX	HD64F36012GFX	LQFP-48
			HD64F36012GFY	HD64F36012GFY	LQFP-48
			HD64F36012GFT	HD64F36012GFT	QFN-48(T
	Masked ROM	Standard product	HD64336012FP	HD64336012(***)FP	LQFP-64
	version		HD64336012FX	HD64336012(***)FX	LQFP-48
			HD64336012FY	HD64336012(***)FY	LQFP-48
			HD64336012FT	HD64336012(***)FT	QFN-48(T
		Product	HD64336012GFP	HD64336012G(***)FP	LQFP-64
		with POR & LVDC	HD64336012GFX	HD64336012G(***)FX	LQFP-48
		a 2100	HD64336012GFY	HD64336012G(***)FY	LQFP-48
			HD64336012GFT	HD64336012G(***)FT	QFN-48(T
H8/36011	Masked ROM	Standard	HD64336011FP	HD64336011(***)FP	LQFP-64
	version	product	HD64336011FX	HD64336011(***)FX	LQFP-48
			HD64336011FY	HD64336011(***)FY	LQFP-48
			HD64336011FT	HD64336011(***)FT	QFN-48(T
		Product	HD64336011GFP	HD64336011G(***)FP	LQFP-64
		with POR & LVDC	HD64336011GFX	HD64336011G(***)FX	LQFP-48
			HD64336011GFY	HD64336011G(***)FY	LQFP-48
			HD64336011GFT	HD64336011G(***)FT	QFN-48(T

Rev. 4.00 Sep. 23, 2005 Page 340 of 354 REJ09B0025-0400

RENESAS

Legend

POR & LVDC: Power-on reset and low-voltage detection circuits (***): ROM code

Rev. 4.00 Sep. 23, 2005 Page 342 of 354 REJ09B0025-0400

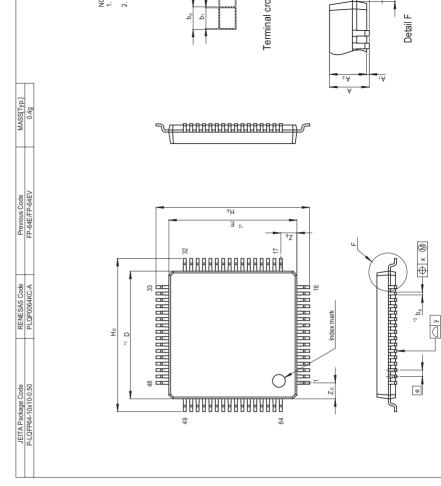
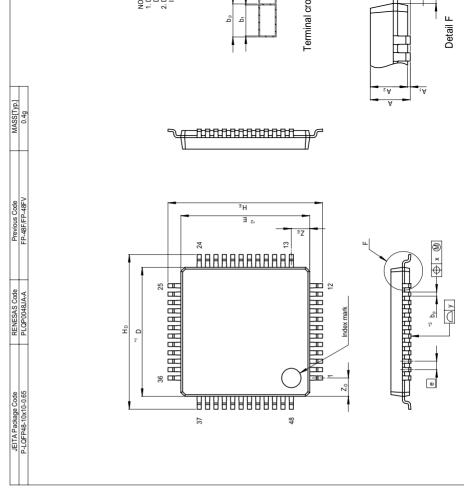



Figure D.1 FP-64E Package Dimensions

Rev. 4.00 Sep. 23, 2005 Page 344 of 354

REJ09B0025-0400

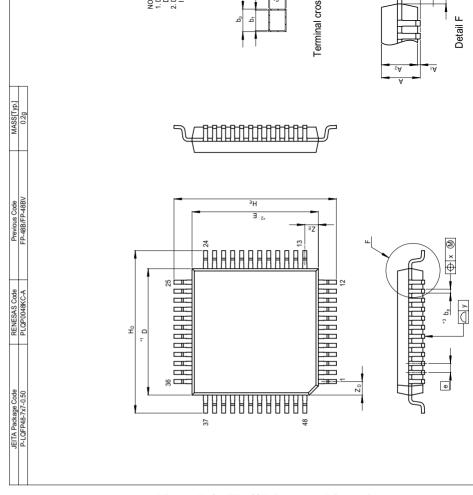
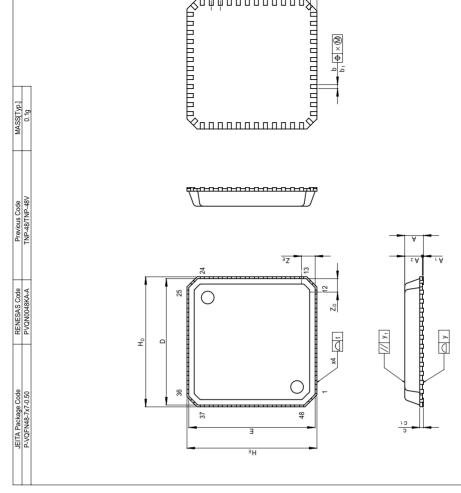



Figure D.3 FP-48B Package Dimensions

Rev. 4.00 Sep. 23, 2005 Page 346 of 354

REJ09B0025-0400

		 When the E7 or E8 is used, address breaks can either available to the user or for use by the E7 address breaks are set as being used by the E7
		address break control registers must not be acc
		5. When the E7 or E8 is used, NMI is an input/outp
		(open-drain in output mode).
		6. Use channel 1 of the SCI3 (P21/RXD, P22/TXD)
		board programming mode by boot mode.
		Note has been deleted.
Section 1 Overview	3	3 Can also be used for the E7 or E8 emulator.
1.2 Internal Block Diagram Figure 1.1 Internal Block Diagram		
Figure 1.2 Pin Arrangement (FP-64E)	4	2 Can also be used for the E7 or E8 emulator.
Figure 1.3 Pin Arrangement (FP-48F, FP- 48B, TNP-48)	5	2 Can also be used for the E7 or E8 emulator.
Table 1.1 Pin Functions	7	
		Type Functions
		E10T Interface pin for the E10T, E8, or E7 emu
Section 7 ROM	77	The features of the 32-kbyte (4 kbytes of them are t program area for E7 or E8) flash memory built into t HD64F36024 and HD64F36014 are summarized be
Section 8 RAM	93	Note: When the E7 or E8 is used, area H'F780 to H must not be accessed.

RENESAS

Characteristics						v
Table 18.2 DC Characteristics (1)		Item	Symbol	Applicable Pins	Test Condition	N
•••••••••••••••••••••••••••••••••••••••		Input high	V	PB3 to PB0	V_{cc} = 4.0 V to 5.5 V	V
		voltage				V
		Input low voltage	V _{IL}	RXD, RXD_2, RXD_3* ¹ , P12 to P10,	$V_{\rm cc}$ = 4.0 V to 5.5 V	_
				P17 to P14,		
				:		
				PB3 to PB0		
				PB3 to PB0		
Table 18.2 DC	257			PB3 to PB0		
Table 18.2 DC Characteristics (1)	257	Mode		PB3 to PB0	Internal State	
	257	Mode Active mo)de 1		Internal State Operates	
	257			RES Pin		
	257	Active mo	ode 2	RES Pin	Operates Operates	ate
	257	Active mo	ode 2 ode 1	RES Pin	Operates Operates (¢OSC/64)	

Rev. 4.00 Sep. 23, 2005 Page 348 of 354 REJ09B0025-0400

Table 18.10 DC	273			
Characteristics (1)		Mode	RES Pin	Internal State
		Active mode 1	V _{cc}	Operates
		Active mode 2		Operates (¢OSC/64)
		Sleep mode 1	V _{cc}	Only timers operat
		Sleep mode 2		Only timers operat (¢OSC/64)
Appendix D Package Dimensions	343	Swapped with nev	w one.	
Figure D.1 FP-64E Package Dimensions				
Figure D.2 FP-48F Package Dimensions	344	Swapped with nev	w one.	
Figure D.3 FP-48B Package Dimensions	345	Swapped with nev	w one.	
Figure D.4 TNP-48 Package Dimensions	346	Swapped with new	w one.	

PB3 to PB0

_ _ _ _ _ _

Renesas

Rev. 4.00 Sep. 23, 2005 Page 350 of 354 REJ09B0025-0400

Address break	59
Addressing modes	30
Absolute address	31
Immediate	32
Memory indirect	32
Program-counter relative	32
Register direct	31
Register indirect	31
Register indirect with displacement	31
Register indirect with post-increment.	31
Register indirect with pre-decrement	31

С

Clock pulse generators	5
Condition field	8
Condition-code register (CCR)14	4
CPU	9

E

Effective address	
Effective address extension	
Electrical characteristics	
AC Characteristics	259
DC Characteristics	254
Exception handling	
Reset exception handling	
Stack status	56

Erasing units
Error protection
Hardware protection
Program/program-verify
Programming units
Programming/erasing in user pr
mode
Software protection

G

General registers

I

1
I/O ports
I/O port block diagrams
Instruction set
Arithmetic operations instruction
Bit Manipulation instructions
Block data transfer instructions
Branch instructions
Data Transfer instructions
Logic Operations instructions
Shift Instructions
System control instructions
Internal power supply step-down
circuit

LVDI	235
LVDI (interrupt by low voltage detect)	
circuit	235
LVDR	234
LVDR (reset by low voltage detect)	
circuit	234

Μ

Memory map	10
Module standby function	76

0

On-board programming modes	82
Operation field	28

Р

Package	. 2
Package dimensions	
Pin arrangement	. 4
Power-down modes	69
Sleep mode	75
Standby mode	75
Subsleep mode	75
Power-on reset	29
Power-on reset circuit	33

ADDRA 220, 227 ADDRB 220, 227 BDRH 62, 228 GRA......147, 226 GRB 147, 227 GRC 147, 227 GRD......147, 227 PCR2......100, 228

PCR5.....104, 228

Rev. 4.00 Sep. 23, 2005 Page 352 of 354 REJ09B0025-0400

RENESAS

PUCR5	105, 228, 232, 234
RDR	178, 227, 231, 234
RSR	
SCR3	
SMCR	191, 226, 230, 233
SMR	179, 227, 231, 234
SSR	182, 227, 231, 234
SYSCR1	70, 228, 232, 235
SYSCR2	71, 228, 232, 235
TCNT	147, 226, 230, 233
TCNTV	119, 227, 231, 234
TCORA	120, 227, 231, 234
TCORB	120, 227, 231, 234
TCRV0	121, 227, 231, 234
TCRV1	125, 227, 231, 234
TCRW	140, 226, 230, 233
TCSRV	123, 227, 231, 234
TCSRWD	168, 227, 231, 234
TCWD	169, 227, 231, 234
TDR	178, 227, 231, 234
TIERW	141, 226, 230, 233
TIOR0	144, 226, 230, 233
TIOR1	145, 226, 230, 233

Clocked synchronous mode
Framing error
Mark state
Multiprocessor communication
function
Overrun error
Parity error
Stack pointer (SP)
System clocks

Т

-
Timer V
Timer W

V

Vector address.....

W

Watchdog timer

Renesas

Rev. 4.00 Sep. 23, 2005 Page 354 of 354 REJ09B0025-0400

Renesas 16-Bit Single-Chip Microcomputer Hardware Manual H8/36024 Group, H8/36014 Group

Publication Date:	1st Edition, Mar., 2001
	Rev.4.00, Sep. 23, 2005
Published by:	Sales Strategic Planning Div.
	Renesas Technology Corp.
Edited by:	Customer Support Department
	Global Strategic Communication Div.
	Renesas Solutions Corp.

© 2005. Renesas Technology Corp., All rights reserved. Printed in Japan.

Renesas Technology Corp. Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, J

RENESAS SALES OFFICES

http://www.rei

Refer to "http://www.renesas.com/en/network" for the latest and detailed information.

Renesas Technology America, Inc.

450 Holger Way, San Jose, CA 95134-1368, U.S.A Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501

Renesas Technology Europe Limited Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, United Kingdom Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900

Renesas Technology Hong Kong Ltd. 7th Floor, North Tower, World Finance Centre, Harbour City, 1 Canton Road, Tsimshatsui, Kowloon, Hong Kong Tel: <852-2265-6688, Fax: <852-2730-6071

Renesas Technology Taiwan Co., Ltd. 10th Floor, No.99, Fushing North Road, Taipei, Taiwan Tel: <886> (2) 2715-2888, Fax: <886> (2) 2713-2999

Renesas Technology (Shanghai) Co., Ltd. Unit2607 Ruijing Building, No.205 Maoming Road (S), Shanghai 200020, China Tel: <86> (21) 6472-1001, Fax: <86> (21) 6415-2952

Renesas Technology Singapore Pte. Ltd. 1 Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632 Tel: <65> 6213-0200, Fax: <65> 6278-8001 Renesas Technology Korea Co., Ltd. Kukje Center Bidg. 18th Fl., 191, 2-ka, Hangang-ro, Yongsan-ku, Seoul 140-702, Korea Tel: <82> 2-796-3115, Fax: <82> 2-796-2145

Renesas Technology Malaysia Sdn. Bhd. Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No.18, Jalan Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Tel: <603> 7955-9300, Fax: <603> 7955-9510

H8/36024Group, H8/36014Group Hardware Manual

Renesas Electronics Corporation 1753, Shimonumabe, Nakahara-ku, Kawasaki-shi, Kanagawa 211-8668 Japan

REJ09B0025-0400

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Microprocessors - MPU category:

Click to view products by Renesas manufacturer:

Other Similar products are found below :

MC68302EH20C MC7457RX1000LC MC7457RX1267LC MC7457VG1267LC A2C00010998 A A2C52004004 R5F117BCGNA#20 R5F52106BDLA#U0 R5S72690W266BG#U0 ADJ3400IAA5DOE MPC8245TVV266D MPC8245TZU300D MPC8260ACVVMHBB MPC8323ECVRAFDCA MPC8536ECVJAVLA BOXNUC5PGYH0AJ 20-668-0024 P1010NSN5DFB P2010NSN2MHC P2020NXE2HHC P5020NSE7QMB P5020NSE7TNB P5020NSE7VNB LS1020ASN7KQB LS1020AXN7HNB LS1020AXN7KQB A2C00010729 A A2C00039344 T1022NSE7MQB T1022NXN7PQB T1023NSE7MQA T1024NXE7PQA T1042NSE7MQB T1042NSN7MQB T1042NXN7WQB T2080NSE8TTB T2080NSN8PTB T2080NXE8TTB T2081NXN8TTB R5F101AFASP#V0 MC68302CEH20C TS68040MF33A MPC8260ACVVMIBB MPC8280CZUUPEA MPC8313ECVRAFFC MPC8313ECVRAGDC MPC8313EVRADDC MPC8313EVRAFFC MPC8313VRADDC MPC8314CVRAGDA