H11AA1, H11AA2, H11AA3, H11AA4 H11AA1X, H11AA2X, H11AA3X, H11AA4X

A.C. INPUT PHOTOTRANSISTOR OPTICALLY COUPLED ISOLATORS

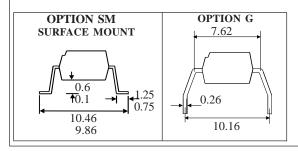
APPROVALS

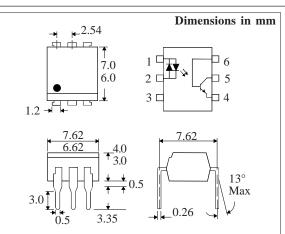
• UL recognised, File No. E91231

'X'SPECIFICATIONAPPROVALS

- VDE 0884 in 3 available lead form : -
 - STD
 - -Gform
 - SMD approved to CECC 00802

DESCRIPTION


The H11AA series of optically coupled isolators consist of two infrared light emitting diodes connected in inverse parallel and NPN silicon photo transistor in a standard 6 pin dual in line plastic package.


FEATURES

- Options :-
- 10mm lead spread add G after part no. Surface mount - add SM after part no. Tape&reel - add SMT&R after part no.
- High Isolation Voltage $(5.3 \text{kV}_{\text{RMS}}, 7.5 \text{kV}_{\text{PK}})$
- AC or polarity insensitive input
- All electrical parameters 100% tested
- Custom electrical selections available

APPLICATIONS

- Computer terminals
- Industrial systems controllers
- Telephone sets, Telephone exchangersSignal transmission between systems of
- different potentials and impedances

ABSOLUTE MAXIMUM RATINGS (25°C unless otherwise specified)

Storage Temperature	$-55^{\circ}C \text{ to} + 125^{\circ}C$
Operating Temperature	-30° C to $+100^{\circ}$ C
Lead Soldering Temperature	
(1/16 inch (1.6 mm) from case f)	for 10 secs) 260°C

INPUT DIODE

Forward Current±50mAPower Dissipation70mW

OUTPUTTRANSISTOR

Collector-emitter Voltage BV _{CEO}	35V
Collector-base Voltage BV _{CBO}	35V
Emitter-collector Voltage BV _{ECO}	6V
Emitter-base Voltage BV _{EBO}	6V
Collector Current	50mA
Power Dissipation	150mW

POWER DISSIPATION

Total Power Dissipation _____ 200mW (derate linearly 4.67mW/°C above 25°C)

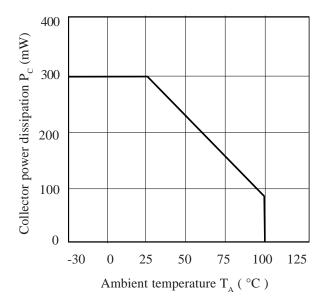
ISOCOMCOMPONENTSLTD

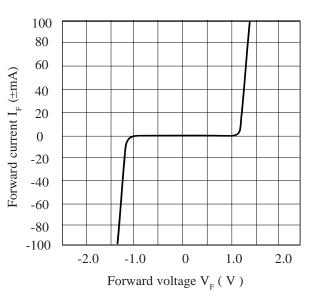
Unit 25B, Park View Road West, Park View Industrial Estate, Brenda Road Hartlepool, TS25 1UD England Tel: (01429)863609 Fax: (01429) 863581 e-mail sales@isocom.co.uk http://www.isocom.com

26/11/08

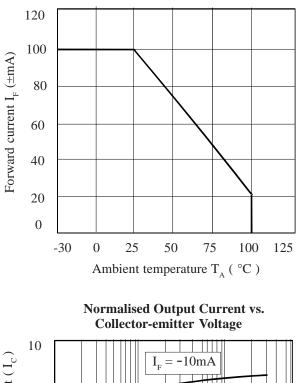
DB92296

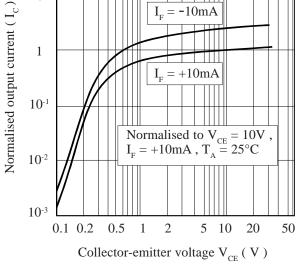
	PARAMETER	MIN	ТҮР	MAX	UNITS	TEST CONDITION
Input	Forward Voltage (V_F)		1.2	1.5	V	$I_{\rm F}=\pm 10mA$
Output	Collector-emitter Breakdown (BV _{CEO}) (note 2)	35			V	$I_c = 0.1 \text{mA}$
	Collector-base Breakdown (BV_{CBO})	35			V	$I_c = 100 \mu A$
	Emitter-base Breakdown (BV_{EBO})	6			V	$I_{\rm E} = 100 \mu A$
	$Emitter-collector Breakdown(BV_{ECO})$	6			V	$I_{\rm E} = 10 \mu A$
	Collector-emitter Dark Current (I_{CEO})			100	nA	$V_{CE} = 20V$
Coupled	Current Transfer Ratio (CTR) (note 2)					
-	H11AA4	100			%	$\pm 10 \text{mAI}_{\text{F}}$, 10V V _{CE}
	H11AA3	50			%	$\pm 10 \text{mAI}_{\text{F}}$, 10V V _{CE}
	H11AA1	20			%	$\pm 10 \text{mAI}_{\text{F}}, 10 \text{V}_{\text{CE}}^{\text{CE}}$
	H11AA2	10			%	$\pm 10 \text{mAI}_{\text{F}}, 10 \text{V}_{\text{CE}}$
	Collector-emitter Saturation VoltageV $_{\rm CE(SAT)}$			0.4	V	$\pm 10 \text{mAI}_{\text{F}}, 0.5 \text{mAI}_{\text{C}}$
	Input to Output Isolation Voltage V_{1SO}	5300			V _{RMS}	See note 1
	in participation isolation (on ago + 150	7500			V _{PK}	See note 1
	Input-output Isolation Resistance R _{ISO}	5x10 ¹⁰			Ω	$V_{IO} = 500 V (note 1)$
	Rise Time, tr		4		μS	$V_{CE} = 2V, I_{C} = 2mA$
	Fall Time, tf		3		μS	$R_{L} = 100\Omega$
	,				•	L

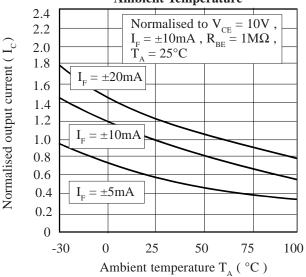

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ Unless otherwise noted)


Note 1 Measured with input leads shorted together and output leads shorted together.

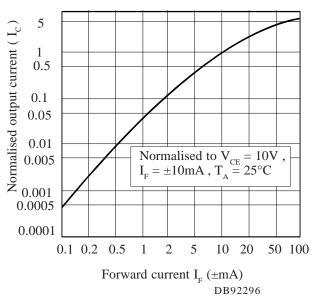
Note 2 Special Selections are available on request. Please consult the factory.


Collector Power Dissipation vs. Ambient Temperature


Forward Current vs. Forward Voltage



Forward Current vs. Ambient Temperature



Normalised Output Current vs. Ambient Temperature

Normalised Output Current vs. Forward Current

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for isocom manufacturer:

Other Similar products are found below :

SFH615A-2SM H11A1 MOC3021M ISD74X IS60SM MOC3043X ICPL4503SM PS2505-4 MOC3021XSM MOCD207 ISP620-1X IS60SMT&R MOC3083 MOC3021X SFH617A-4X MOC3081M ICPL2531SM PS2502-2 IS341W MOC3043M PS2502-2SM ILQ74X ICPL2601 4N25X IS181C PS2502-4SM ICPL2530SM MOC3041SM ISQ74X CNY17-2XSM CNY17-1XSM MOC3023M H11AA1XSM ISQ2X PS2505-4SM TIL199 MOC3020X 4N32FSM 4N35X H21A3 IS281C MOC3061X ISP817B MOC3041M ICPL2631 ILQ1XSM MOC3022X CNY17F-3X ICPL2631SM ISP06SM