74HC273-Q100; 74HCT273-Q100

Octal D-type flip-flop with reset; positive-edge trigger
Rev. 1 — 19 June 2013 Product of

Product data sheet

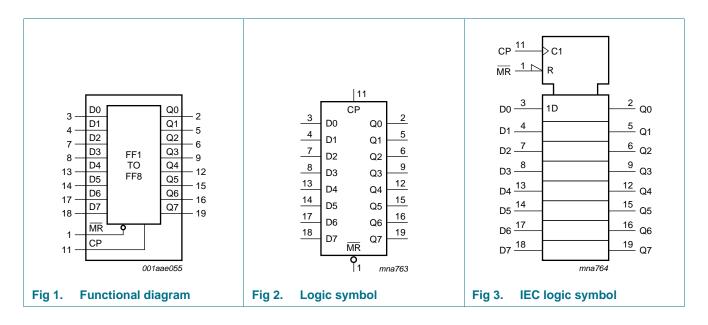
1. **General description**

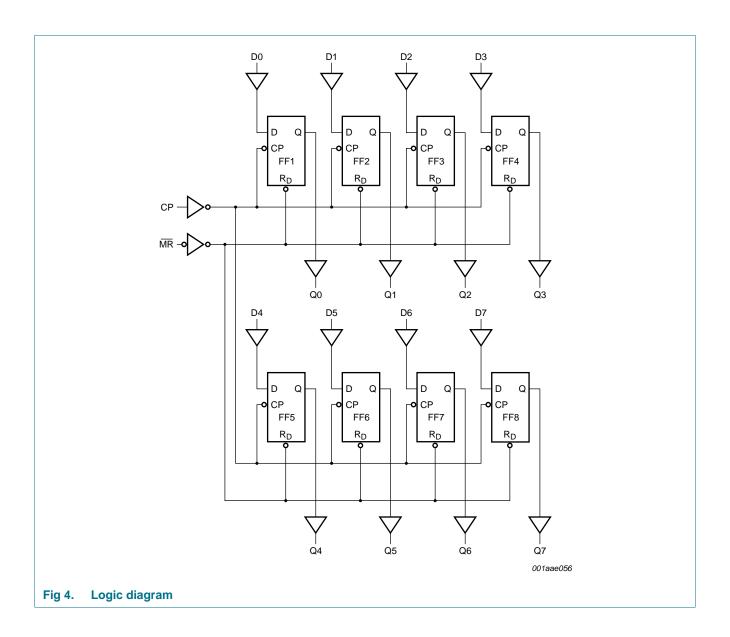
The 74HC273-Q100; 74HCT273-Q100 is an octal positive-edge triggered D-type flip-flop. The device features clock (CP) and master reset (MR) inputs. The outputs Qn assume the state of their corresponding Dn inputs that meet the set-up and hold time requirements on the LOW-to-HIGH clock (CP) transition. A LOW on MR forces the outputs LOW independently of clock and data inputs. Inputs include clamp diodes which enable the use of current limiting resistors to interface inputs to voltages in excess of V_{CC}.

This product has been qualified to the Automotive Electronics Council (AEC) standard Q100 (Grade 1) and is suitable for use in automotive applications.

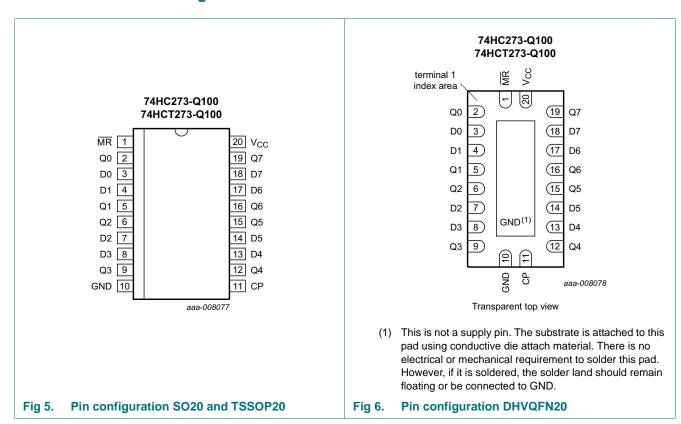
Features and benefits 2.

- Automotive product qualification in accordance with AEC-Q100 (Grade 1)
 - ◆ Specified from -40 °C to +85 °C and from -40 °C to +125 °C
- Input levels:
 - ◆ For 74HC273-Q100: CMOS level
 - ◆ For 74HCT273-Q100: TTL level
- Common clock and master reset
- Eight positive edge-triggered D-type flip-flops
- Complies with JEDEC standard no. 7A
- ESD protection:
 - ◆ HBM JESD22-A114F exceeds 2000 V
 - MM JESD22-A115-A exceeds 200 V.
- Multiple package options


Ordering information


Table 1. **Ordering information**

Type number	Package								
	Temperature range	Name	Description	Version					
74HC273D-Q100	–40 °C to +125 °C	SO20	plastic small outline package; 20 leads; body width	SOT163-1					
74HCT273D-Q100			7.5 mm						
74HC273PW-Q100	–40 °C to +125 °C	TSSOP20	plastic thin shrink small outline package; 20 leads;	SOT360-1					
74HCT273PW-Q100			body width 4.4 mm						
74HC273BQ-Q100	–40 °C to +125 °C	DHVQFN20	plastic dual in-line compatible thermal enhanced	SOT764-1					
74HCT273BQ-Q100	_		very thin quad flat package; no leads; 20 terminals; body $2.5 \times 4.5 \times 0.85$ mm						


4. Functional diagram

5. Pinning information

5.1 Pinning

5.2 Pin description

Table 2. Pin description

rabio zi i ili accomptioni		
Symbol	Pin	Description
MR	1	master reset input (active LOW)
Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7	2, 5, 6, 9, 12, 15, 16, 19	flip-flop output
D0, D1, D2, D3, D4, D5, D6, D7	3, 4, 7, 8, 13, 14, 17, 18	data input
GND	10	ground (0 V)
СР	11	clock input (LOW-to-HIGH, edge-triggered)
V _{CC}	20	supply voltage

6. Functional description

Table 3. Function table[1]

Operating modes	Inputs	Inputs							
	MR	Qn							
reset (clear)	L	X	X	L					
load "1"	Н	↑	h	Н					
load "0"	Н	\uparrow	I	L					

^[1] H = HIGH voltage level;

h = HIGH voltage level one set-up time prior to the LOW-to-HIGH clock transition;

L = LOW voltage level;

I = LOW voltage level one set-up time prior to the LOW-to-HIGH clock transition;

X = don't care;

7. Limiting values

Table 4. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V)

Symbol	Parameter	Conditions	Min	Max	Unit
V_{CC}	supply voltage		-0.5	+7	V
I _{IK}	input clamping current	$V_I < -0.5 \text{ V or } V_I > V_{CC} + 0.5 \text{ V}$	<u>[1]</u> -	±20	mA
I _{OK}	output clamping current	$V_O < -0.5 \text{ V or } V_O > V_{CC} + 0.5 \text{ V}$	<u>[1]</u> -	±20	mA
Io	output current	$-0.5 \text{ V} < \text{V}_{\text{O}} < \text{V}_{\text{CC}} + 0.5 \text{ V}$	-	±25	mA
I _{CC}	supply current		-	50	mA
I _{GND}	ground current		-50	-	mA
T _{stg}	storage temperature		-65	+150	°C
P _{tot}	total power dissipation	$T_{amb} = -40 ^{\circ}\text{C} \text{ to } +125 ^{\circ}\text{C}$	[2] -	500	mW

^[1] The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

For DHVQFN20 package: P_{tot} derates linearly with 4.5 mW/K above 60 °C.

74HC_HCT273_Q100

 $[\]uparrow$ = LOW-to-HIGH clock transition.

^[2] For SO20 package: above 70 °C the value of P_{tot} derates linearly with 8 mW/K. For TSSOP20 package: above 60 °C the value of P_{tot} derates linearly with 5.5 mW/K.

8. Recommended operating conditions

Table 5. Recommended operating conditions

Voltages are referenced to GND (ground = 0 V)

Symbol	Parameter Conditions		74F	74HC273-Q100			74HCT273-Q100		
			Min	Тур	Max	Min	Тур	Max	
V_{CC}	supply voltage		2.0	5.0	6.0	4.5	5.0	5.5	V
VI	input voltage		0	-	V_{CC}	0	-	V_{CC}	V
Vo	output voltage		0	-	V_{CC}	0	-	V_{CC}	V
T _{amb}	ambient temperature		-40	-	+125	-40	-	+125	°C
Δt/ΔV	input transition rise and fall rate	$V_{CC} = 2.0 \text{ V}$	-	-	625	-	-	-	ns/V
		V _{CC} = 4.5 V	-	1.67	139	-	1.67	139	ns/V
		$V_{CC} = 6.0 \text{ V}$	-	-	83	-	-	-	ns/V

9. Static characteristics

Table 6. Static characteristics

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions		25 °C		–40 °C t	o +85 °C	-40 °C to +125 °C		Unit
			Min	Тур	Max	Min	Max	Min	Max	
74HC27	3-Q100							1		
V _{IH}	HIGH-level	V _{CC} = 2.0 V	1.5	1.2	-	1.5	-	1.5	-	V
	input voltage	$V_{CC} = 4.5 \text{ V}$	3.15	2.4	-	3.15	-	3.15	-	V
		$V_{CC} = 6.0 \text{ V}$	4.2	3.2	-	4.2	-	4.2	-	V
V _{IL} LOW-level	V _{CC} = 2.0 V	-	8.0	0.5	-	0.5	-	0.5	V	
	input voltage	V _{CC} = 4.5 V	-	2.1	1.35	-	1.35	-	1.35	V
	$V_{CC} = 6.0 \text{ V}$	-	2.8	1.8	-	1.8	-	1.8	V	
V _{OH}	HIGH-level	$V_I = V_{IH}$ or V_{IL}								
output voltage	$I_{O} = -20 \mu A; V_{CC} = 2.0 V$	1.9	2.0	-	1.9	-	1.9	-	V	
		$I_{O} = -20 \mu A; V_{CC} = 4.5 V$	4.4	4.5	-	4.4	-	4.4	-	V
		$I_{O} = -20 \mu A; V_{CC} = 6.0 V$	5.9	6.0	-	5.9	-	5.9	-	V
		$I_{O} = -4.0 \text{ mA}; V_{CC} = 4.5 \text{ V}$	3.98	4.32	-	3.84	-	3.7	-	V
		$I_{O} = -5.2 \text{ mA}; V_{CC} = 6.0 \text{ V}$	5.48	5.81	-	5.34	-	5.2	-	V
V_{OL}	LOW-level	$V_I = V_{IH}$ or V_{IL}								
	output voltage	$I_O = 20 \mu A; V_{CC} = 2.0 V$	-	0	0.1	-	0.1	-	0.1	V
		$I_O = 20 \mu A; V_{CC} = 4.5 V$	-	0	0.1	-	0.1	-	0.1	V
		$I_O = 20 \mu A; V_{CC} = 6.0 V$	-	0	0.1	-	0.1	-	0.1	V
		$I_{O} = 4.0 \text{ mA}; V_{CC} = 4.5 \text{ V}$	-	0.15	0.26	-	0.33	-	0.4	V
		$I_{O} = 5.2 \text{ mA}; V_{CC} = 6.0 \text{ V}$	-	0.16	0.26	-	0.33	-	0.4	V
I _I	input leakage current	$V_I = V_{CC}$ or GND; $V_{CC} = 6.0 \text{ V}$	-	-	±0.1	-	±1	-	±1	μΑ
I _{CC}	supply current	$V_I = V_{CC}$ or GND; $I_O = 0$ A; $V_{CC} = 6.0 \text{ V}$	-	-	8.0	-	80	-	160	μΑ

 Table 6.
 Static characteristics ...continued

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions		25 °C		_/∩ °C +	o +85 °C	_40 °C +4	+125 °C	l Ini+
Syllibol	Parameter	Conditions		1	N. F.		1			Ollic
			Min	Тур	Max	Min	Max	Min	Max	
Cı	input capacitance		-	3.5	-	-	-	-	-	pF
74HCT2	73-Q100									
V _{IH}	HIGH-level input voltage	$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$	2.0	1.6	-	2.0	-	2.0	-	V
V_{IL}	LOW-level input voltage	$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$	-	1.2	8.0	-	0.8	-	0.8	V
V _{OH} HIGH-level output voltage	$V_I = V_{IH}$ or V_{IL} ; $V_{CC} = 4.5 \text{ V}$									
	$I_{O} = -20 \mu A$	4.4	4.5	-	4.4	-	4.4	-	V	
		$I_{O} = -4.0 \text{ mA}$	3.98	4.32	-	3.84	-	3.7	-	V
V_{OL}	LOW-level	$V_I = V_{IH}$ or V_{IL} ; $V_{CC} = 4.5 \text{ V}$								
	output voltage	$I_O = 20 \mu A; V_{CC} = 4.5 V$	-	0	0.1	-	0.1	-	0.1	V
		$I_{O} = 5.2 \text{ mA}; V_{CC} = 5.5 \text{ V}$	-	0.15	0.26	-	0.33	-	0.4	V
l _l	input leakage current	$V_I = V_{CC}$ or GND; $V_{CC} = 5.5 \text{ V}$	-	-	±0.1	-	±1	-	±1	μΑ
I _{CC}	supply current	$V_I = V_{CC}$ or GND; $I_O = 0$ A; $V_{CC} = 5.5$ V	-	-	8.0	-	80	-	160	μΑ
Δl _{CC}	additional supply current	per input pin; $V_I = V_{CC} - 2.1 \text{ V};$ other inputs at V_{CC} or GND; $V_{CC} = 4.5 \text{ V}$ to 5.5 V								
		MR input	-	100	360	-	450	-	490	μΑ
		CP input	-	175	630	-	787.5	-	857.5	μΑ
		Dn input	-	15	54	-	67.5	-	73.5	μΑ
Cı	input capacitance		-	3.5	-	-	-	-	-	pF

10. Dynamic characteristics

Table 7. Dynamic characteristics

GND (ground = 0 V); $C_L = 50$ pF unless otherwise specified; for test circuit, see Figure 10

Symbol Parameter		Conditions		25 °C		-40 °C to +85 °C		-40 °C to +125 °C		Unit
			Min	Тур	Max	Min	Max	Min	Max	
74HC27	3-Q100									
t _{pd}	propagation	CP to Qn; see Figure 7								
	delay	V _{CC} = 2.0 V	-	41	150	-	185	-	225	ns
	V _{CC} = 4.5 V	-	15	30	-	37	-	45	ns	
		$V_{CC} = 5.0 \text{ V}; C_L = 15 \text{ pF}$	-	15	-	-	-	-	-	ns
		V _{CC} = 6.0 V	-	13	26	-	31	-	38	ns

 Table 7.
 Dynamic characteristics ...continued

GND (ground = 0 V); $C_L = 50$ pF unless otherwise specified; for test circuit, see Figure 10

Symbol	Parameter	Conditions		25 °C	;	-40 °C	to +85 °C	-40 °C to +125 °C		Unit
			Mi	n Typ	Max	Min	Max	Min	Max	
t _{PHL}	HIGH to LOW	MR to Qn; see Figure 8								
	propagation	V _{CC} = 2.0 V	-	44	150	-	185	-	225	ns
	delay	$V_{CC} = 4.5 \text{ V}$	-	16	30	-	37	-	45	ns
		$V_{CC} = 5.0 \text{ V}; C_L = 15 \text{ pF}$	-	15	-	-	-	-	-	ns
		V _{CC} = 6.0 V	-	14	26	-	31	-	38	ns
t _t	transition time	Qn output; see Figure 7	[2]							
		V _{CC} = 2.0 V	-	19	75	-	95	-	110	ns
		V _{CC} = 4.5 V	-	7	15	-	19	-	22	ns
		V _{CC} = 6.0 V	-	6	13	-	15	-	19	ns
W pulse width	CP input HIGH or LOW; see Figure 7									
		V _{CC} = 2.0 V	80	14	-	100	-	120	-	ns
		V _{CC} = 4.5 V	16	5 5	-	20	-	24	-	ns
		V _{CC} = 6.0 V	14	4	-	17	-	20	-	ns
		MR input LOW; see Figure 8								
	V _{CC} = 2.0 V	60	17	-	75	-	90	-	ns	
		V _{CC} = 4.5 V	12	2 6	-	15	-	18	-	ns
		V _{CC} = 6.0 V	10	5	-	13	-	15	-	ns
t _{rec}	recovery time	MR to CP; see Figure 8								
		V _{CC} = 2.0 V	50	<u>−</u> 6	-	65	-	75	-	ns
		V _{CC} = 4.5 V	10	<u>–2</u>	-	13	-	15	-	ns
		V _{CC} = 6.0 V	9	-2	-	11	-	13	-	ns
t _{su}	set-up time	Dn to CP; see Figure 9								
		V _{CC} = 2.0 V	60	11	-	75	-	90	-	ns
		V _{CC} = 4.5 V	12	2 4	-	15	-	18	-	ns
		V _{CC} = 6.0 V	10	3	-	13	-	15	-	ns
t _h	hold time	Dn to CP; see Figure 9								
		V _{CC} = 2.0 V	3	-6	-	3	-	3	-	ns
		V _{CC} = 4.5 V	3	-2	-	3	-	3	-	ns
		V _{CC} = 6.0 V	3	-2	-	3	-	3	-	ns
: max	maximum	CP input; see Figure 7								
	frequency	V _{CC} = 2.0 V	6	20.6	-	4.8	-	4	-	MHz
		V _{CC} = 4.5 V	30	103	-	24	-	20	-	MHz
		$V_{CC} = 5.0 \text{ V}; C_L = 15 \text{ pF}$	-	66	-	-	-	-	-	MHz
		V _{CC} = 6.0 V	35	122	-	28	-	24	-	MHz
C_{PD}	power dissipation capacitance	per package; $V_I = GND$ to V_{CC}	[3] -	20	-	-	-	-	-	pF

 Table 7.
 Dynamic characteristics ...continued

GND (ground = 0 V); $C_L = 50 \text{ pF}$ unless otherwise specified; for test circuit, see <u>Figure 10</u>

Symbol	Parameter	Conditions		25 °C		–40 °C t	o +85 °C	-40 °C to +125 °C		Unit
			Min	Тур	Max	Min	Max	Min	Max	1
74HCT2	73-Q100									
t _{pd}	propagation	CP to Qn; see Figure 7								
	delay	$V_{CC} = 4.5 \text{ V}$	-	16	30	-	38	-	45	ns
		$V_{CC} = 5.0 \text{ V}; C_L = 15 \text{ pF}$	-	15	-	-	-	-	-	ns
t _{PHL}	HIGH to LOW	MR to Qn; see Figure 8								
	propagation	$V_{CC} = 4.5 \text{ V}$	-	23	34	-	43	-	51	ns
delay	$V_{CC} = 5.0 \text{ V}; C_L = 15 \text{ pF}$	-	20	-	-	-	-	-	ns	
t _t	transition time	Qn output; see Figure 7 [2]								
		$V_{CC} = 4.5 \text{ V}$	-	7	15	-	19	-	22	ns
t _W	pulse width	CP input; see Figure 7								
		$V_{CC} = 4.5 \text{ V}$	16	9	-	20	-	24	-	ns
		MR input LOW;								
		see Figure 8								
		$V_{CC} = 4.5 \text{ V}$	16	8	-	20	-	24	-	ns
t _{rec}	recovery time	MR to CP; see Figure 8								
		$V_{CC} = 4.5 \text{ V}$	10	-2	-	13	-	15	-	ns
t _{su}	set-up time	Dn to CP; see Figure 9								
		$V_{CC} = 4.5 \text{ V}$	12	5	-	15	-	18	-	ns
t _h	hold time	Dn to CP; see Figure 9								
		$V_{CC} = 4.5 \text{ V}$	3	-4	-	3	-	3	-	ns
f _{max}	maximum	CP input; see Figure 7								
	frequency	V _{CC} = 4.5 V	30	56	-	24	-	20	-	MHz
		$V_{CC} = 5.0 \text{ V}; C_L = 15 \text{ pF}$	-	36	-	-	-	-	-	MHz
C _{PD}	power dissipation capacitance	per package; $V_I = GND \text{ to } V_{CC} - 1.5 \text{ V}$	-	23	-	-	-	-	-	pF

^[1] t_{pd} is the same as t_{PHL} and t_{PLH} .

$$P_D = C_{PD} \times V_{CC}^2 \times f_i + \Sigma (C_L \times V_{CC}^2 \times f_o)$$
 where:

 f_i = input frequency in MHz;

f_o = output frequency in MHz;

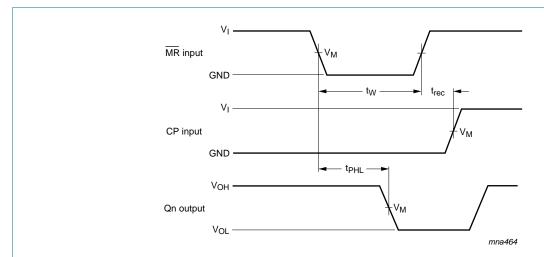
 $\Sigma (C_L \times V_{CC}^2 \times f_o)$ = sum of outputs;

C_L = output load capacitance in pF;

 V_{CC} = supply voltage in V.

^[2] t_t is the same as t_{THL} and t_{TLH} .

^[3] C_{PD} is used to determine the dynamic power dissipation (P_D in μW).


11. Waveforms

Measurement points are given in Table 8.

 V_{OL} and V_{OH} are typical voltage output levels that occur with the output load.

Fig 7. Propagation delay clock input (CP) to output (Qn), clock (CP) pulse width, output transition time and the maximum clock pulse frequency

Measurement points are given in Table 8.

 V_{OL} and V_{OH} are typical voltage output levels that occur with the output load.

Fig 8. Propagation delay master reset (MR) to output (Qn), pulse width master reset (MR) and recovery time master reset (MR) to clock (CP)

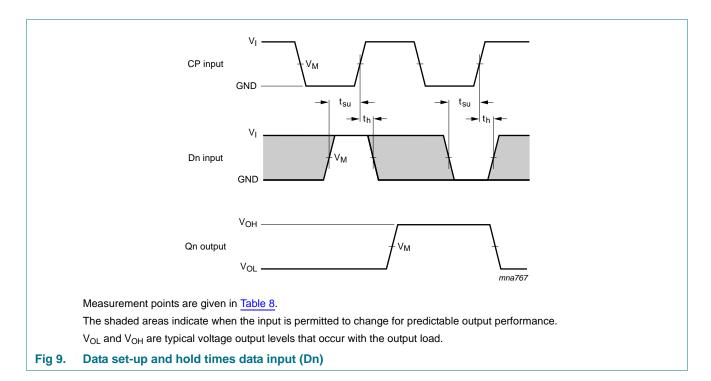
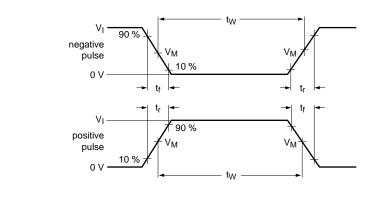
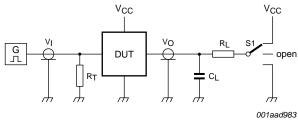




Table 8. Measurement points

Туре	Input	Output	
	V _I	V _M	V _M
74HC273-Q100	V _{CC}	0.5V _{CC}	0.5V _{CC}
74HCT273-Q100	3 V	1.3 V	1.3 V

Test data is given in Table 9.

Definitions for test circuit:

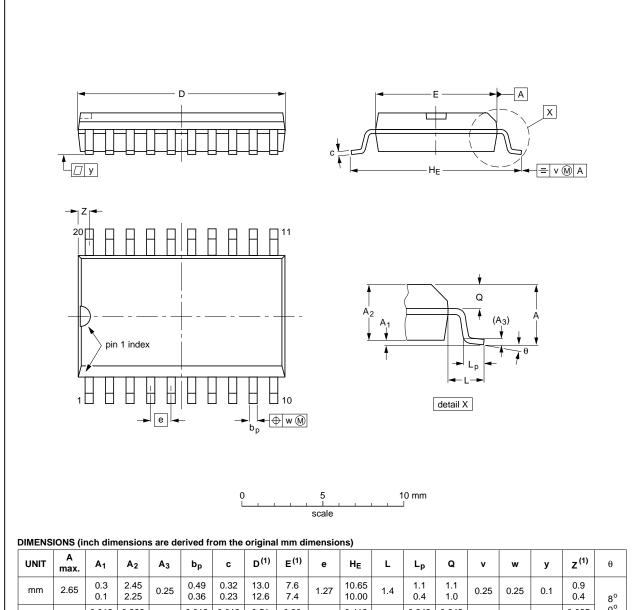
 R_T = Termination resistance should be equal to output impedance Z_o of the pulse generator.

 C_L = Load capacitance including jig and probe capacitance.

R_L = Load resistance.

S1 = Test selection switch

Fig 10. Test circuit for measuring switching times


Table 9. Test data

Туре	Input		Load	S1 position	
	V _I	t _r , t _f	CL	R _L	t _{PHL} , t _{PLH}
74HC273-Q100	V _{CC}	6 ns	15 pF, 50 pF	1 kΩ	open
74HCT273-Q100	3 V	6 ns	15 pF, 50 pF	1 kΩ	open

12. Package outline

SO20: plastic small outline package; 20 leads; body width 7.5 mm

SOT163-1

UNIT	A max.	A ₁	A ₂	А3	bp	С	D ⁽¹⁾	E ⁽¹⁾	е	HE	L	Lp	Q	v	w	у	z ⁽¹⁾	θ
mm	2.65	0.3 0.1	2.45 2.25	0.25	0.49 0.36	0.32 0.23	13.0 12.6	7.6 7.4	1.27	10.65 10.00	1.4	1.1 0.4	1.1 1.0	0.25	0.25	0.1	0.9 0.4	8°
inches	0.1	0.012 0.004	0.096 0.089	0.01	0.019 0.014	0.013 0.009	0.51 0.49	0.30 0.29	0.05	0.419 0.394	0.055	0.043 0.016	0.043 0.039	0.01	0.01	0.004	0.035 0.016	0°

Note

1. Plastic or metal protrusions of 0.15 mm (0.006 inch) maximum per side are not included.

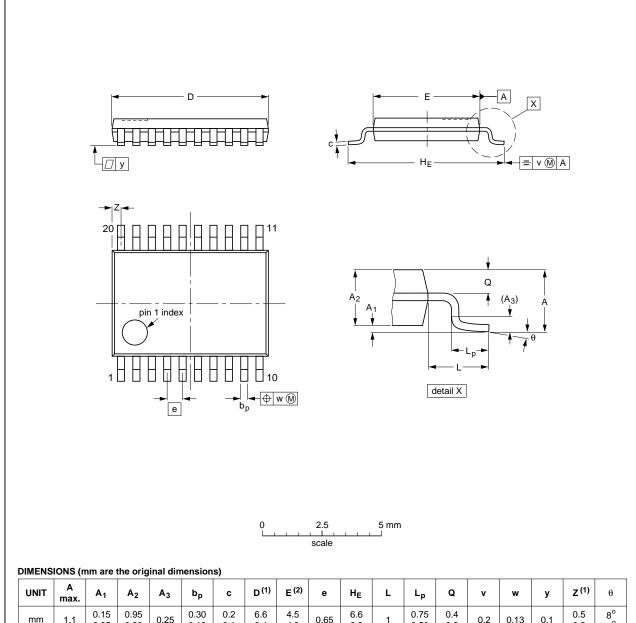

OUTLINE		REFER	EUROPEAN	ISSUE DATE			
VERSION	IEC	JEDEC	JEITA		PROJECTION	ISSUE DATE	
SOT163-1	075E04	MS-013				99-12-27 03-02-19	

Fig 11. Package outline SOT163-1 (SO20)

74HC_HCT273_Q100

TSSOP20: plastic thin shrink small outline package; 20 leads; body width 4.4 mm

SOT360-1

UNIT	A max.	A ₁	A ₂	A ₃	bp	С	D ⁽¹⁾	E ⁽²⁾	е	HE	L	Lp	Q	v	w	у	Z ⁽¹⁾	θ
mm	1.1	0.15 0.05	0.95 0.80	0.25	0.30 0.19	0.2 0.1	6.6 6.4	4.5 4.3	0.65	6.6 6.2	1	0.75 0.50	0.4 0.3	0.2	0.13	0.1	0.5 0.2	8° 0°

- 1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.
- 2. Plastic interlead protrusions of 0.25 mm maximum per side are not included.

OUTLINE		REFER	EUROPEAN	ISSUE DATE			
VERSION	IEC	JEDEC	JEITA		PROJECTION	ISSUE DATE	
SOT360-1		MO-153				99-12-27 03-02-19	

Fig 12. Package outline SOT360-1 (TSSOP20)

74HC_HCT273_Q100

All information provided in this document is subject to legal disclaimers.

DHVQFN20: plastic dual in-line compatible thermal enhanced very thin quad flat package; no leads; 20 terminals; body 2.5 x 4.5 x 0.85 mm SOT764-1

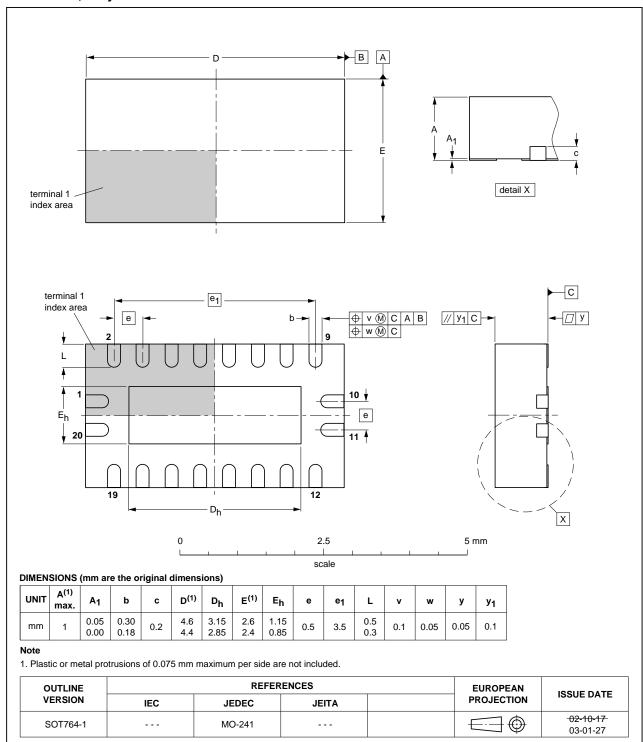


Fig 13. Package outline SOT764-1 (DHVQFN20)

74HC_HCT273_Q100 All information provided in this document is subject to legal disclaimers.

© Nexperia B.V. 2017. All rights reserved

13. Abbreviations

Table 10. Abbreviations

Acronym	Description
CMOS	Complementary Metal-Oxide Semiconductor
DUT	Device Under Test
ESD	ElectroStatic Discharge
НВМ	Human Body Model
MIL	Military
MM	Machine Model
TTL	Transistor-Transistor Logic

14. Revision history

Table 11. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes
74HC_HCT273_Q100 v.1	20130619	Product data sheet	-	-

15. Legal information

15.1 Data sheet status

Document status[1][2]	Product status[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

- [1] Please consult the most recently issued document before initiating or completing a design.
- [2] The term 'short data sheet' is explained in section "Definitions"
- [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nexperia.com.

15.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. Nexperia does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local Nexperia sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between Nexperia and its customer, unless Nexperia and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the Nexperia product is deemed to offer functions and qualities beyond those described in the Product data sheet.

15.3 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, Nexperia does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. Nexperia takes no responsibility for the content in this document if provided by an information source outside of Nexperia.

In no event shall Nexperia be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, Nexperia's aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of Nexperia.

Right to make changes — Nexperia reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use in automotive applications — This Nexperia product has been qualified for use in automotive applications. Unless otherwise agreed in writing, the product is not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of a Nexperia product can reasonably be expected to result in personal injury, death or severe property or environmental damage. Nexperia and its suppliers accept no liability for inclusion and/or use of Nexperia products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk

Applications — Applications that are described herein for any of these products are for illustrative purposes only. Nexperia makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using Nexperia products, and Nexperia accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the Nexperia product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

Nexperia does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using Nexperia products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). Nexperia does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — Nexperia products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nexperia.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. Nexperia hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of Nexperia products by customer.

74HC_HCT273_Q100

74HC273-Q100; 74HCT273-Q100

Octal D-type flip-flop with reset; positive-edge trigger

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

15.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

16. Contact information

For more information, please visit: http://www.nexperia.com

For sales office addresses, please send an email to: salesaddresses@nexperia.com

74HC273-Q100; 74HCT273-Q100

Nexperia

Octal D-type flip-flop with reset; positive-edge trigger

17. Contents

1	General description
2	Features and benefits
3	Ordering information
4	Functional diagram
5	Pinning information
5.1	Pinning
5.2	Pin description
6	Functional description
7	Limiting values
8	Recommended operating conditions
9	Static characteristics
10	Dynamic characteristics
11	Waveforms
12	Package outline
13	Abbreviations
14	Revision history
15	Legal information
15.1	Data sheet status
15.2	Definitions
15.3	Disclaimers
15.4	Trademarks18
16	Contact information
17	Contents

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Flip Flops category:

Click to view products by NXP manufacturer:

Other Similar products are found below:

5962-8955201EA MC74HC11ADTG MC10EP29MNG MC74HC11ADTR2G NLV14013BDTR2G NLV14027BDG NLX1G74MUTCG
703557B 746431H 5962-90606022A 5962-9060602FA NLV14013BDR2G M38510/30104BDA M38510/07106BFA M38510/06102BFA
M38510/06101B2A NLV74HC74ADR2G TC4013BP(N,F) NLV14013BDG NLV74AC32DR2G NLV74AC74DR2G MC74HC73ADG
CY74FCT16374CTPACT MC74HC11ADR2G 74LVT74D,118 74VHCT9273FT(BJ) MM74HC374WM 74ALVCH162374PAG
TC7WZ74FK,LJ(CT CD54HCT273F HMC853LC3TR HMC723LC3CTR MM74HCT574MTCX MM74HCT273WM SN74LVC74APW
SN74LVC74AD MC74HC73ADTR2G MC74HC11ADG SN74ALVTH16374GR M74HCT273B1R M74HC377RM13TR
M74HC374RM13TR M74HC175B1R M74HC174RM13TR 74ALVTH16374ZQLR 74ALVTH32374ZKER 74AUP1G74DC,125
74VHC374FT(BJ) 74VHC9273FT(BJ) NLV14013BCPG