
INTEGRATED CIRCUITS

Product specification File under Integrated Circuits, IC06 December 1990

FEATURES

- Various counting modes
- Asynchronous master reset
- Output capability: standard
- I_{CC} category: MSI

GENERAL DESCRIPTION

The 74HC/HCT93 are high-speed Si-gate CMOS devices and are pin compatible with low power Schottky TTL (LSTTL). They are specified in compliance with JEDEC standard no. 7A.

The 74HC/HCT93 are 4-bit binary ripple counters. The devices consist of four master-slave flip-flops internally connected to provide a

QUICK REFERENCE DATA

GND = 0 V; T_{amb} = 25 °C; t_r = t_f = 6 ns

divide-by-two section and a divide-by-eight section. Each section has a separate clock input (\overline{CP}_0 and \overline{CP}_1) to initiate state changes of the counter on the HIGH-to-LOW clock transition. State changes of the Q_n outputs do not occur simultaneously because of internal ripple delays. Therefore, decoded output signals are subject to decoding spikes and should not be used for clocks or strobes.

A gated AND asynchronous master reset (MR_1 and MR_2) is provided which overrides both clocks and resets (clears) all flip-flops.

Since the output from the divide-by-two section is not internally connected to the succeeding stages,

the device may be operated in various counting modes. In a 4-bit ripple counter the output Q_0 must be connected externally to input \overline{CP}_1 . The input count pulses are applied to clock input \overline{CP}_0 . Simultaneous frequency divisions of 2, 4, 8 and 16 are performed at the Q_0 , Q_1 , Q_2 and Q_3 outputs as shown in the function table. As a 3-bit ripple counter the input count pulses are applied to input \overline{CP}_1 .

Simultaneous frequency divisions of 2, 4 and 8 are available at the Q_1 , Q_2 and Q_3 outputs. Independent use of the first flip-flop is available if the reset function coincides with reset of the 3-bit ripple-through counter.

SYMBOL	PARAMETER	CONDITIONS	TYF			
STMBUL	FARAMETER	CONDITIONS	НС	нст	UNIT	
t _{PHL} / t _{PLH}	propagation delay \overline{CP}_0 to Q_0	- C _L = 15 pF; V _{CC} = 5 V	12	15	ns	
f _{max}	maximum clock frequency	$-C_{L} = 15 \text{pr}, v_{CC} = 5 \text{v}$	100	77	MHz	
CI	input capacitance		3.5	3.5	pF	
C _{PD}	power dissipation capacitance per package	notes 1 and 2	22	22	pF	

Notes

1. C_{PD} is used to determine the dynamic power dissipation (P_D in μ W):

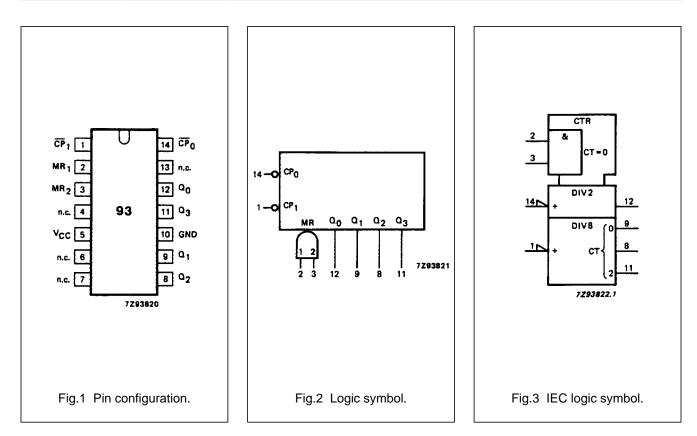
 $P_D = C_{PD} \times V_{CC}^2 \times f_i + \sum (C_L \times V_{CC}^2 \times f_o)$ where:

 f_i = input frequency in MHz; f_o = output frequency in MHz

 $\sum (C_L \times V_{CC}^2 \times f_o) = \text{sum of outputs}$

 C_L = output load capacitance in pF; V_{CC} = supply voltage in V

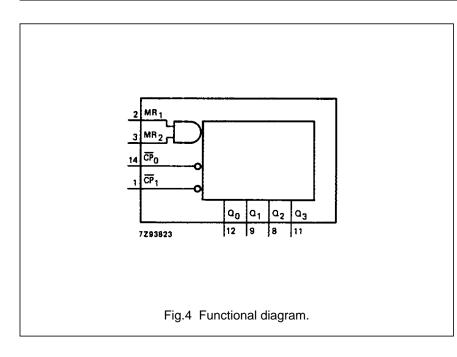
2. For HC the condition is V_1 = GND to V_{CC} ; for HCT the condition is V_1 = GND to V_{CC} – 1.5 V

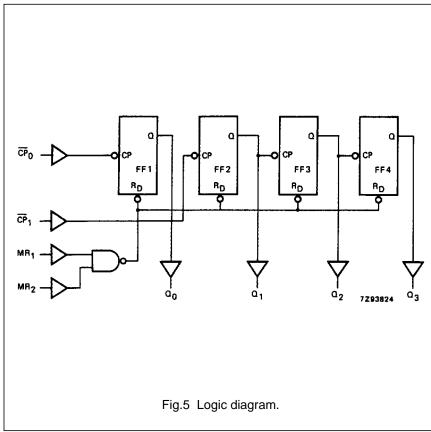

ORDERING INFORMATION

See "74HC/HCT/HCU/HCMOS Logic Package Information".

74HC/HCT93

PIN DESCRIPTION


PIN NO.	SYMBOL	NAME AND FUNCTION	-
1	CP ₁	clock input 2 nd , 3 rd and 4 th section (HIGH-to-LOW, edge-triggered)	
2, 3	MR ₁ , MR ₂	asynchronous master reset (active HIGH)	
4, 6, 7, 13	n.c.	not connected	
5	V _{CC}	positive supply voltage	
10	GND	ground (0 V)	
12, 9, 8, 11	Q_0 to Q_3	flip-flop outputs	
14	CP ₀	clock input 1 st section (HIGH-to-LOW, edge-triggered)	



74HC/HCT93

74HC/HCT93

4-bit binary ripple counter

FUNCTION TABLE

COUNT		OUT	PUTS			
COUNT	Q_0	Q ₁	Q ₂	Q_3		
0	L	L	L	L		
1 2 3	Н	L	L L L	L L L		
2	L	н	L	L		
3	н	Н	L	L		
4	L H	L	Н	L L L		
5 6 7	Н	L	Н	L		
6	L H	H	Н	L		
1	н	Н	н	L		
8	1			н		
8 9	L H	L	L L L	н		
10	L	H	L	H		
11	L H	Н	L	Н		
12	L H	L L	н	н		
13	Н	L	Н	н		
14	L	н	Н	н		
15	Н	Н	Н	Н		

Notes

1. Output Q_0 connected to \overline{CP}_1 . H = HIGH voltage level L = LOW voltage level

MODE SELECTION

1	SET UTS	OUTPUTS							
MR ₁	MR ₂	Q ₀	Q ₁	Q ₂	Q_3				
Н	н	L	L	L	L				
L	н		cou	int					
н	L	count							
L	L	count							

74HC/HCT93

DC CHARACTERISTICS FOR 74HC

For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications".

Output capability: standard I_{CC} category: MSI

AC CHARACTERISTICS FOR 74HC

 $GND = 0 V; t_r = t_f = 6 ns; C_L = 50 pF$

		T _{amb} (°C)								TES	T CONDITIONS	
	PARAMETER	74HC										
SYMBOL		+25			-40 to +85		-40 to +125		UNIT	V _{CC} (V)	WAVEFORMS	
		min.	typ.	max.	min.	max.	min.	max.				
t _{PHL} / t _{PLH}	$\frac{\text{propagation delay}}{\text{CP}_0}$ to Q_0		41 15 12	125 25 21		155 31 26		190 38 32	ns	2.0 4.5 6.0	Fig.6	
t _{PHL} / t _{PLH}	propagation delay \overline{CP}_1 to Q_1		49 16 13	135 27 23		170 34 29		205 41 35	ns	2.0 4.5 6.0	Fig.6	
t _{PHL} / t _{PLH}	propagation delay \overline{CP}_1 to Q_2		61 22 18	185 37 31		230 46 39		280 56 48	ns	2.0 4.5 6.0	Fig.6	
t _{PHL} / t _{PLH}	propagation delay \overline{CP}_1 to Q_3		80 29 23	245 49 42		305 61 52		370 71 63	ns	2.0 4.5 6.0	Fig.6	
t _{PHL}	propagation delay MR _n to Q _n		50 18 14	155 31 26		195 39 33		235 47 40	ns	2.0 4.5 6.0	Fig.7	
t _{THL} / t _{TLH}	output transition time		19 7 6	75 15 13		95 19 16		110 22 19	ns	2.0 4.5 6.0	Fig.6	
t _{rem}	removal time MR_n to \overline{CP}_0 , \overline{CP}_1	50 10 9	8 3 2		65 13 11		75 15 13		ns	2.0 4.5 6.0	Fig.7	
t _W	pulse width $\overline{CP}_0, \overline{CP}_1$	80 16 14	14 5 4		100 20 17		120 24 20		ns	2.0 4.5 6.0	Fig.6	
t _W	master reset pulse width MR _n	80 16 14	14 5 4		100 20 17		120 24 20		ns	2.0 4.5 6.0	Fig.7	
f _{max}	maximum clock pulse frequency CP ₀ , CP ₁	6.0 30 35	30 91 108		4.8 24 28		4.0 20 24		MHz	2.0 4.5 6.0	Fig.6	

74HC/HCT93

DC CHARACTERISTICS FOR 74HCT

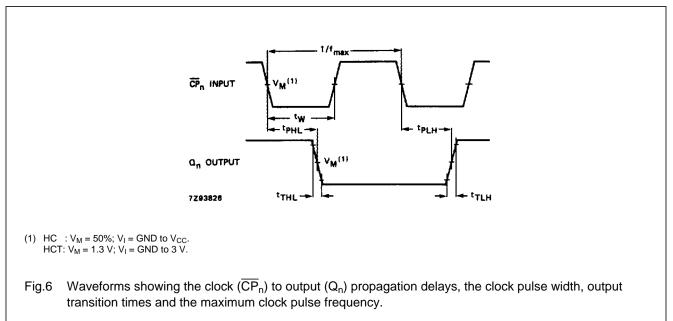
For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications".

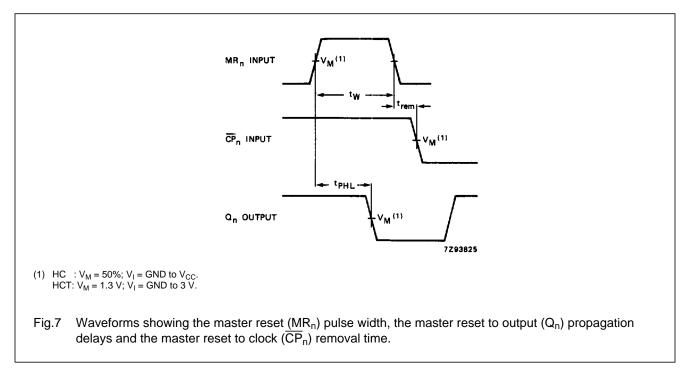
Output capability: standard I_{CC} category: MSI

Note to HCT types

The value of additional quiescent supply current (ΔI_{CC}) for a unit load of 1 is given in the family specifications. To determine ΔI_{CC} per input, multiply this value by the unit load coefficient shown in the table below.

INPUT	UNIT LOAD COEFFICIENT
$\overline{CP}_0, \overline{CP}_1$	0.60
MR _n	0.40


AC CHARACTERISTICS FOR 74HCT


GND = 0 V; $t_r = t_f = 6 \text{ ns}$; $C_L = 50 \text{ pF}$

SYMBOL	PARAMETER	T _{amb} (°C) 74HCT								TEST CONDITIONS	
		+25			-40 to +85		-40 to +125		UNIT	V _{CC} (V)	WAVEFORMS
		min.	typ.	max.	min.	max.	min.	max.			
t _{PHL} / t _{PLH}	propagation delay \overline{CP}_0 to Q_0		18	34		43		51	ns	4.5	Fig.6
t _{PHL} / t _{PLH}	propagation delay \overline{CP}_1 to Q_1		18	34		43		51	ns	4.5	Fig.6
t _{PHL} / t _{PLH}	propagation delay \overline{CP}_1 to Q_2		24	46		58		69	ns	4.5	Fig.6
t _{PHL} / t _{PLH}	propagation delay \overline{CP}_1 to Q_3		30	58		73		87	ns	4.5	Fig.6
t _{PHL}	propagation delay MR _n to Q _n		17	33		41		50	ns	4.5	Fig.7
t _{THL} / t _{TLH}	output transition time		7	15		19		22	ns	4.5	Fig.6
t _{rem}	removal time MR_n to \overline{CP}_0 , \overline{CP}_1	10	3		13		15		ns	4.5	Fig.7
t _W	pulse width $\overline{CP}_0, \overline{CP}_1$	16	7		20		24		ns	4.5	Fig.6
t _W	master reset pulse width MR _n	16	5		20		24		ns	4.5	Fig.7
f _{max}	maximum clock pulse frequency CP ₀ , CP ₁	30	70		24		20		MHz	4.5	Fig.6

74HC/HCT93

AC WAVEFORMS

PACKAGE OUTLINES

See "74HC/HCT/HCU/HCMOS Logic Package Outlines".

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Counter ICs category:

Click to view products by NXP manufacturer:

Other Similar products are found below :

 HEF4516BT
 069748E
 569054R
 634844F
 74HC40102N
 74HCT4024N
 NLV14040BDR2G
 TC74HC4040AF(EL,F)
 TC74VHC4040F(E,K,F

 74VHC163FT
 XD4059
 CD4015BF3A
 74HC193PW,118
 74VHC163FT(BJ)
 SN54HC4024J
 74HC4017D.652
 74HC4020D.652

 74HC393D.652
 74HC4040D.652
 74HC4040D.653
 74HC4040D.653
 74HC191D.652
 74HC4060D.652

 74HCT4040D.652
 HEF4060BT.653
 HEF4521BT.652
 HEF4518BT.652
 HEF4520BT.652
 HEF4017BT.652

 74VHC4020FT(BJ)
 74HCT4040PW,118
 74HCT193PW,118
 74HC393BQ-Q100X
 SN74AS161NSR
 74HC390DB,112
 74HC4060D

 Q100,118
 74HC160D,652
 74HC390DB,118
 TC74HC7292AP(F)
 SN74ALS169BDR
 HEF4060BT-Q100J
 74HC4017BQ-Q100X

 74HC163PW.112
 74HC191PW.112
 74HC393DB.118
 74HC4024D.652