intersil

Precision Quad Comparator

HA-4902/883

The HA-4902/883 is a monolithic, quad, precision comparator offering fast response time, low offset voltage, low offset current and virtually no channel-to-channel crosstalk for applications requiring accurate, high speed, signal level detection. This comparator can sense signals at ground level while being operated from either a single +5 V supply (digital systems) or from dual supplies (analog networks) up to $\pm 15 \mathrm{~V}$. The HA-4902/883 contains a unique current driven output stage which can be connected to logic system supplies ($\mathrm{V}_{\text {LOGIC }}{ }^{+}$and $\mathrm{V}_{\text {LOGIC }}{ }^{-}$) to make the output levels directly compatible (no external components needed) with any standard logic or special system logic levels. In combination analog/digital systems, the design employed in the HA-4902/883 input and output stages prevents troublesome ground coupling of signals between analog and digital portions of the system.

This comparators' combination of features make it an ideal component for signal detection and processing in data acquisition systems, test equipment and microprocessor/analog signal interface networks.

Pin Configuration

Features

- This circuit is processed in accordance to MIL-STD-883 and is fully conformant under the provisions of Paragraph 1.2.1
- Fast Response Time ($+25^{\circ} \mathrm{C}$)
- Maximum ... $215 n s$
- Typical... . 180 .
- Low Offset Voltage ($+25^{\circ} \mathrm{C}$)
- Maximum 5.0mV
- Typical... 2.0mV
- Low Input Sensitivity
- Maximum .. $0.5 m V$
- Typical... $0.05 m V$
- Low Offset Current ($+25^{\circ} \mathrm{C}$)
- Maximum 35nA
- Typical.. . 10nA
- Single or Dual Voltage Supply Operation
- Selectable Output Logic Levels
- Active Pull-Up/Pull-Down Output Circuit. No External Resistors Required

Applications

- Threshold Detector
- Zero Crossing Detector
- Window Detector
- Analog Interfaces for Microprocessors
- High Stability Oscillators
- Logic System Interfaces

Ordering Information

PART NUMBER	PART MARKING	TEMP RANGE $\left({ }^{\circ} \mathrm{C}\right)$	PACKAGE	PKG. DW. \#
HA1-4902/883	HA1-4902/883	-55 to +125	16 Ld CERDIP	F16.3

Absolute Maximum Ratings

Voltage (Between V+ and V- Terminals). 35V
Differential Input Voltage . $\pm 15 \mathrm{~V}$
Peak Output Current . $\pm 50 \mathrm{~mA}$
Output Short Circuit Current Duration . Indefinite
(One Amplifier Shorted to GND)
ESD Rating \qquad

Recommended Operating Conditions

Operating Temperature Range . $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Operating Supply Voltage $\pm 15 \mathrm{~V}$
Logic Supply Voltage ($\mathrm{V}_{\mathrm{L}}+$) $+5 \mathrm{~V}$
Logic Reference Voltage ($\mathrm{V}_{\mathrm{L}^{-}}$)
OV

CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact product reliability and result in failures not covered by warranty.

NOTE:

1. θ_{JA} is measured with the component mounted on an evaluation PC board in free air.

TABLE 1. DC ELECTRICAL PERFORMANCE CHARACTERISTICS
Device Tested at: Supply Voltage $= \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}^{+}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}^{-}}=0 \mathrm{~V}$, unless otherwise specified.

D.C. PARAMETERS	SYMBOL	CONDITIONS	GROUP A SUBGROUPS	TEMP (${ }^{\circ} \mathrm{C}$)	MIN	MAX	UNITS
Input Offset Voltage	V_{10}	$\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=1.4 \mathrm{~V}($ See Note 4)	1	+25	-5	5	mV
			2, 3	+125, -55	-8	8	mV
Input Bias Current	$+\mathrm{I}_{\mathrm{B}}$	$\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$	1	+25	-150	150	nA
			2, 3	+125, -55	-200	200	nA
	${ }^{-}{ }_{B}$	$V_{C M}=0 V$	1	+25	-150	150	nA
			2, 3	+125, -55	-200	200	nA
Input Offset Current	10	$V_{C M}=0 V$	1	+25	-35	35	nA
			2, 3	+125, -55	-45	45	nA
Input Sensitivity	$\mathrm{IN}_{\text {SEN }}$	(See Note 4)	1	+25	-0.5	0.5	mV
			2, 3	+125, -55	-0.6	0.6	mV
Output Voltage Levels	V_{OL}	$\mathrm{I}_{\text {SINK }}=3 \mathrm{~mA}$	1	+25	-	0.4	V
			2, 3	+125, -55	-	0.4	V
	V_{OH}	$\mathrm{I}_{\text {SOURCE }}=3 \mathrm{~mA}$	1	+25	3.5	-	V
			2, 3	+125, -55	3.5	-	V
Output Current	ISINK	$\mathrm{V}_{\text {OUT }} \leq 0.4 \mathrm{~V}$	1	+25	3	-	mA
			2, 3	+125, -55	3	-	mA
	ISOURCE	$\mathrm{V}_{\text {OUT }} \geq 3.5 \mathrm{~V}$	1	+25	-	-3	mA
			2, 3	+125, -55	-	-3	mA
Supply Current	${ }^{+} \mathrm{CC}$	$\mathrm{V}_{\mathrm{OUT}}=\mathrm{V}_{\mathrm{OL},} \mathrm{~V}_{\mathrm{OH}}$	1	+25	-	20	mA
			2, 3	+125, -55	-	20	mA
	${ }^{-1} \mathrm{CC}$	$\mathrm{v}_{\mathrm{OUT}}=\mathrm{V}_{\mathrm{OL}}, \mathrm{v}_{\mathrm{OH}}$	1	+25	-	8	mA
			2, 3	+125, -55	-	10	mA
Logic Current	I_{L}	$\mathrm{V}_{\mathrm{OUT}}=\mathrm{V}_{\mathrm{OL}}, \mathrm{V}_{\mathrm{OH}}$	1	+25	-	6	mA
			2, 3	+125, -55	-	8	mA

HA-4902/883

TABLE 2. AC ELECTRICAL PERFORMANCE CHARACTERISTICS
Table 2 Intentionally left blank. See A. C. Specifications on Table 3.

TABLE 3. ELECTRICAL PERFORMANCE CHARACTERISTICS
Device Characterized at: Supply Voltage $= \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}+=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}^{-}}=0 \mathrm{~V}$, unless otherwise specified.

PARAMETER	SYMBOL	CONDITIONS	NOTES	TEMP (${ }^{\circ} \mathrm{C}$)	MIN	MAX	UNITS
Response Time	$\mathrm{t}_{\mathrm{pd} 0}$	+100mV Input Step, +10mV Overdrive	2, 3	+25	-	200	ns
	$\mathrm{t}_{\mathrm{pd} 1}$	-100mV Input Step, -10mV Overdrive	2, 3	+25	-	200	ns
Common Mode Range	+CMR		2	+25	-	12.4	V
	-CMR		2	+25	-15	-	V

NOTES:

2. Parameters listed in Table 3 are controlled via design or process parameters and are not directly tested at final production. These parameters are lab characterized upon initial design release, or upon design changes. These parameters are guaranteed by characterization based upon data from multiple production runs which reflect lot to lot and within lot variation.
3. $F \approx 100 \mathrm{~Hz}$, duty cycle $\approx 50 \%$, inverting input driven, all unused inverting inputs tie to +5 V .
4. Refer to enlarged area of test waveform A . Offset voltage is measured when $\mathrm{V}_{\mathrm{OUT}}=1.4 \mathrm{~V}$. Sensitivity is measured on the transition edge at 0.4 V and 3.5V. Sensitivity is the change in differential input voltage required to change the output state. Sensitivity includes the effects of offset voltage, offset current, common mode rejection and voltage gain.

TABLE 4. ELECTRICAL TEST REQUIREMENTS

MIL-STD-883 TEST REQUIREMENTS	SUBGROUPS (SEE TABLE 1)
Interim Electrical Parameters (Pre Burn-In)	$\mathbf{1}$
Final Electrical Test Parameters	1 (Note 5), 2, 3
Group A Test Requirements	$1,2,3$
Groups C and D Endpoints	1

NOTE:
5. PDA applies to Subgroup 1 only.

Test Circuit (Applies to Tables 1 and 2)

Test Waveform A (Applies to tanle 1)

DUT OUTPUT: CHANNEL B

Test Waveform B ${ }_{\text {(Applies } 5 \text { o table } 3 \text {) }}$
RESPONSE TIME

NOTE: Response time testing is done after $V_{I O}$ testing to acquire the actual device offset voltage. 10 mV overdrive is then added (or subtracted depending on state) to this measured $V_{I O}$ value.

Burn-in Circuit

NOTES:
$\mathrm{R}_{1}=5 \mathrm{k} \Omega, \pm 5 \%$
$\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}=0.01 \mu \mathrm{~F} /$ Socket (Min) or 0.1 $\mu \mathrm{F} /$ Row (Min)
$\mathrm{C}_{4}, \mathrm{C}_{5}, \mathrm{C}_{6}=0.01 \mu \mathrm{~F} /$ Socket (Min) or $0.1 \mu \mathrm{~F} /$ Row (Min)
$D_{1}, D_{2}, D_{3}=1 \mathrm{~N} 4002$ or Equivalent/Board
$|(\mathrm{V}+)-(\mathrm{V}-)|=30 \mathrm{~V}$
$\mathrm{V}_{\mathrm{L}^{-}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}+=0.5 \mathrm{~V}$
$\mathrm{f}_{\mathrm{O}}=5 \mathrm{~V}$ (Static Burn-In)

Schematic Diagram ${ }_{(1 / 4 \text { of HA-4902/883) }}$

Die Characteristics

DIE DIMENSIONS:

90mils x 102mils x 20mils $\pm 1 \mathrm{mil}$
$2280 \mu \mathrm{~m} \times 2600 \mu \mathrm{~m} \times 508 \mu \mathrm{~m} \pm 25.4 \mu \mathrm{~m}$

METALLIZATION:

Type: AI, 1\% Cu
Thickness: $16 k \AA \pm 2 k \AA$

GLASSIVATION:

Type: Nitride (Si3N4) over Silox (SiO2, 5\% Phos.)
Silox Thickness: 12kÅ $\pm 2 k \AA$
Nitride Thickness: $3.5 \mathrm{kA} \pm 1.5 \mathrm{k} \AA$

WORST CASE CURRENT DENSITY:

$0.4 \times 10^{5} \mathrm{~A} / \mathrm{cm}^{2}$
SUBSTRATE POTENTIAL (POWERED UP): V-
TRANSISTOR COUNT: 137
PROCESS: Bipolar and MOS Dielectric Isolation

Metallization Mask Layout

Design Information
The information contained in this section has been developed through characterization and is for use as application and design aid only. These characteristics are not 100% tested and no product guarantee is implied.

Typical Performance Curves $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\text {LoGIC }^{+}}=5 \mathrm{~V}, \mathrm{~V}_{\text {LOGIC }}=0 \mathrm{~V}$, Unless Otherwise Specified

FIGURE 1. INPUT BIAS CURRENT vs TEMPERATURE

FIGURE 2. INPUT OFFSET CURRENT vs TEMPERATURE

FIGURE 3. INPUT BIAS CURRENT vs COMMON MODE INPUT VOLTAGE ($\mathbf{V}_{\text {DIFF }}=\mathbf{O V}$)

Design Information (continued) The information contained in this section has been developed through characterization and is for use as application and design aid only. These characteristics are not 100% tested and no product guarantee is implied.

Typical Performance Curves $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\text {LoGIC }^{+}}=5 \mathrm{~V}, \mathrm{~V}_{\text {LOGIC }}=\mathrm{OV}$, Unless Otherwise Specified (Continued)

FIGURE 4. SUPPLY CURRENT vs TEMPERATURE (FOR $\pm 15 \mathrm{~V}$ SUPPLIES AND +5V LOGIC SUPPLY)

FIGURE 5. SUPPLY CURRENT vs TEMPERATURE (FOR SINGLE +5V OPERATION)

FIGURE 6. RESPONSE TIME FOR VARIOUS INPUT OVERDRIVES

Design Information
(Continued) The information contained in this section has been developed through characterization and is for use as application and design aid only. These characteristics are not 100% tested and no product guarantee is implied.

Typical Performance Curves $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\text {LoGic }^{+}}=5 \mathrm{~V}, \mathrm{~V}_{\text {LOGIC }}=\mathrm{OV}$, Unless Otherwise Specified (Continued)

FIGURE 7. MAXIMUM PACKAGE DISSIPATION vs AMBIENT TEMPERATURE

FIGURE 8. POWER DISSIPATION vs SUPPLY VOLTAGE (NO LOAD CONDITION)

NOTE: Total Power Dissipation (TPD) is the sum of individual dissipation contributions of $\mathrm{V}+$, V -, and $\mathrm{V}_{\text {LOGIC }}$ shown in curves of Power Dissipation vs Supply Voltages. The calculated TPD is then located on the graph of maximum Allowable Package Dissipation vs Ambient Temperature to determine ambient temperature operating limits imposed by the calculated TPD (see Performance Curves). For instance, the combination of $\pm 15 \mathrm{~V}, 5 \mathrm{~V}, 0 \mathrm{~V}\left(\pm \mathrm{V}, \mathrm{V}_{\mathrm{LOGI}}{ }^{+}\right.$, $\mathrm{V}_{\text {LOGIC }}{ }^{-}$) gives a TPD of 350 mW , the combination $\pm 15 \mathrm{~V}$, 0 V gives a TPD of 450 mW .

Typical Performance Characteristics Device Characterized at: Supply Voltage $= \pm 15 \mathrm{~V}, \mathrm{v}_{\mathrm{L}+}=5 \mathrm{~V}, \mathrm{v}_{\mathrm{L}-}=0 \mathrm{~V}$, unless otherwise specified.

PARAMETERS	CONDITIONS	TEMP	TYPICAL	DESIGN LIMIT	UNITS
Offset Voltage	Note 4	Full	0.5	Table 1	mV
Input Bias Current		$+25^{\circ} \mathrm{C}$	50	Table 1	nA
		Full	90	Table 1	nA
Input Offset Current		$+25^{\circ} \mathrm{C}$	10	Table 1	nA
		Full	20	Table 1	nA
Input Sensitivity	Note 4	Full	50	Table 1	$\mu \mathrm{V}$
Output Level	$\mathrm{V}_{\text {OL }} ; \mathrm{I}_{\text {SINK }}=3 \mathrm{~mA}$	Full	0.15	Table 1	V
	$\mathrm{V}_{\text {OH; }}$; $\mathrm{ISOURCE}=3 \mathrm{~mA}$	Full	4.3	Table 1	V
Supply Current	$+\mathrm{I}_{\text {CC }} ; \mathrm{V}_{\text {OUT }}=\mathrm{V}_{\mathrm{OH}}$	Full	10	Table 1	mA
	$+_{\mathrm{CC}} ; \mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {OL }}$	Full	15	Table 1	mA
	${ }^{-1} \mathrm{ICC} ; \mathrm{V}_{\text {OUT }}=\mathrm{V}_{\mathrm{OH}}$	Full	-6	Table 1	mA
	${ }^{-1} \mathrm{CC} ; \mathrm{V}_{\mathrm{OUT}}=\mathrm{V}_{\mathrm{OL}}$	Full	-8	Table 1	mA
Logic Current	$\mathrm{I}_{\mathrm{L}} ; \mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {OH }}$	Full	2	Table 1	mA
	$\mathrm{I}_{\mathrm{L}} ; \mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {OL }}$	Full	4	Table 1	mA
Response Time	$\mathrm{t}_{\text {pd0 }}$	Full	150	Table 3	ns
	$\mathrm{t}_{\text {pd1 }}$	Full	150	Table 3	ns

Applying the HA-4902 Comparator

Supply Connections

This device is exceptionally versatile in working with most available power supplies. The voltage applied to the $\mathrm{V}+$ and V - terminals determines the allowable input signal range; while the voltage applied to the $\mathrm{V}_{\mathrm{L}}+$ and V_{L} - determines the output swing. In systems where dual analog supplies are available, these would be connected to V+ and V-, while the logic supply and return would be connected to $\mathrm{V}_{\text {LOGIC }}{ }^{+}$and $\mathrm{V}_{\text {LOGIC }}{ }^{-}$. The analog and logic supply commons can be connected together at one point in the system, since the comparator is immune to noise on the logic supply ground. A negative output swing may be obtained by connecting $\mathrm{V}_{\mathrm{L}}+$ to ground and $\mathrm{V}_{\mathrm{L}^{-}}$to a negative supply. Bipolar output swings ($15 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}$, Max) may be obtained using dual supplies. In systems where only a single logic supply is available (+5 V to +15 V), $\mathrm{V}+$ and $\mathrm{V}_{\text {LOGIC }}+$ may be connected together to the positive supply while V - and $\mathrm{V}_{\text {LOGIC }}{ }^{-}$are grounded. If an input signal could swing negative with respect to the V - terminal, a resistor should be connected in series with the input to limit input current to $<5 \mathrm{~mA}$ since the $\mathrm{C}-\mathrm{B}$ junction of the input transistor would be forward biased.

Unused Inputs

Inputs of unused comparator sections should be tied to a differential voltage source to prevent output "chatter" ($\mathrm{V}_{\text {DIFF }} \geq \mathrm{V}_{10}$). All unused inverting inputs may be tied to +5 V and non-inverting inputs tied to ground.

Crosstalk

Simultaneous high frequency operation of all other channels in the package will not affect the output logic state of a given channel, provided that its differential input voltage is sufficient to define a given logic state ($\Delta V_{I N} \geq \pm V_{I O}$). Low level or high impedance input lines should be shielded from other signal sources to reduce crosstalk and interference.

Power Supply Decoupling

Decouple all power supply lines with $0.01 \mu \mathrm{~F}$ ceramic capacitors to a ground line located near the package to reduce coupling between channels or from external sources.

Response Time

Fast rise time (<200ns) input pulses of several volts amplitude may result in delay times somewhat longer than those illustrated for 100 mV steps. Operating speed is optimized by limiting the maximum differential input voltage applied, with resistor-diode clamping networks.

Ceramic Dual-In-Line Frit Seal Packages (CERDIP)

F16.3 MIL-STD-1835 GDIP1-T16 (D-2, CONFIGURATION A) 16 LEAD CERAMIC DUAL-IN-LINE FRIT SEAL PACKAGE

SYMBOL	INCHES		MILLIMETERS		NOTES
	MIN	MAX	MIN	MAX	
A	-	0.200	-	5.08	-
b	0.014	0.026	0.36	0.66	2
b1	0.014	0.023	0.36	0.58	3
b2	0.045	0.065	1.14	1.65	-
b3	0.023	0.045	0.58	1.14	4
c	0.008	0.018	0.20	0.46	2
c1	0.008	0.015	0.20	0.38	3
D	-	0.840	-	21.34	5
E	0.220	0.310	5.59	7.87	5
e		SC		BSC	-
eA				BSC	-
eA/2				BSC	-
L	0.125	0.200	3.18	5.08	-
Q	0.015	0.060	0.38	1.52	6
S1	0.005	-	0.13	-	7
α	90°	105°	90°	105°	-
aaa	-	0.015	-	0.38	-
bbb	-	0.030	-	0.76	-
CCC	-	0.010	-	0.25	-
M	-	0.0015	-	0.038	2, 3
N	16		16		8

Rev. 0 4/94

[^0]
X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Analog Comparators category:
Click to view products by Renesas manufacturer:
Other Similar products are found below :
633740E NCV2200SN2T1G NCV2200SQ2T2G SC339DR2G LM2901SNG LM339SNG AP393AM8G-13 TS393CD C3 LM393SNG 55122 5962-8757203IA MAX971ESA+T MAX961ESAT MAX944ESD+T MAX984CPE MAX9062EBSTG45 RT2902YDT M38510/11201B2A NTE911 MAX984ESE+T 5962-8751601DA 5962-8751601CA MAX961EUA+T MAX9065EBS+TG45 NCV2202SN2T1G MAX919ESA+T MAX19005CCS+ LM339EDR2G NTE919 NTE922 TS883IQ2T LT6700HVCS6-3\#TRMPBF LT6700HVHS6-3\#TRMPBF MAX978EEE+T MAX975ESA+T MAX9602EUG+T MAX997EUA+T MIC841NYC5-T5 LM393WDT MCP6564T-E/STVAO MAX983ESA+T NCX2200GMAZ LTC1540CMS8\#PBF MC10E1651FNG MCP6544-EP MCP6541UT-I/LT MCP6542T-E/MS MCP6542T-I/SN MCP6547T-EMS MCP6549-E/P

[^0]: Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

