SYNCHRONOUS SEPARATOR WITH AFC

■ GENERAL DESCRIPTION

The NJM2257 excutes Horizontal and Vertical synchronous signal separation, and odd / even field signal detection, from composit video signals.

Built-in $1 / 2 \mathrm{fH}$ Killer Function circuit can make stabilization of the Horizontal signal oscillation output during the vertical period.

- FEATURES

- Operating Voltage (+4.5 to +5.3V)
- Internal AFC circuit (Horizontal sync. signal.)
- Internal 1 / 2 fH Killer Function
- AFC output Pulse Delay time is Adjustable
- Vertical synchronous pulse width is Adjustable
- Internal Field Discrlainat Function
- Package Outline DIP16, DMP16
- Bipolar Technology

- APPLICATION

- VTR, TV, AV components etc.

- BLOCK DIAGRAM

NJM2257

\square ABSOLUTE MAXIMUM RATINGS $\quad\left(T_{a}=25^{\circ} \mathrm{C}\right)$

PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	V^{+}	+7	V
Power Dissipation	P_{D}	$(\mathrm{DIP16)500}$	
		$(\mathrm{DMP16)} 350$	mW
Operating Temperature Range	$\mathrm{T}_{\text {opr }}$	-20 to +75	mW
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-40 to +125	${ }^{\circ} \mathrm{C}$

- ELECTRICAL CHARACTERISTICS
$\left(\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=25^{\circ} \mathrm{C}\right)$

PARAMETER		SYMBOL	TESTCONDITION	MIN.	TYP.	MAX.	UNIT
Quiessent Current		l_{Q}		-	23.0	30.0	mA
AFC Free Run Frequency		foH		15.54	15.74	15.94	KHz
AFC HD pulse width	none adiust	$\mathrm{T}_{\text {AHW1 }}$	SW=a	3.5	4.0	4.5	$\mu \mathrm{S}$
	adjust	$\mathrm{T}_{\text {AHW2 }}$	SW=b	2.5	4.0	5.5	
AFC HD Delet Time		$\mathrm{T}_{\text {AHD }}$		-1.0	0.5	2.0	$\mu \mathrm{S}$
AFC Lock Range		$\Delta \mathrm{ffL}_{\text {L }}$		500	700	-	Hz
AFC Cap Charange		$\Delta \mathrm{f}_{\mathrm{HP}}$		400	600	-	Hz
AFC Output Voltage	H	$\mathrm{V}_{\text {HAH }}$		4.0	4.2	-	V
	L	$\mathrm{V}_{\text {HAL }}$		-	0	0.1	
Sync Sepa Sync. Separation Level		$V_{\text {HSR }}$		-	0.16	0.18	V
Sync Sepa Delay Time		THCD		0.05	0.20	0.35	$\mu \mathrm{S}$
Sync Sepa Output Voltage	H	$\mathrm{V}_{\text {HCH }}$		4.0	4.2	-	V
	L	$\mathrm{V}_{\text {HCL }}$		-	0	0.1	
HD Output Palth Width		THPW		4.0	5.5	7.0	$\mu \mathrm{S}$
HD Output Delay Time		THPD		0.35	0.6	0.8	$\mu \mathrm{S}$
HD Output Voltage	H	$\mathrm{V}_{\text {HiH }}$		4.0	4.2	-	V
	L	$\mathrm{V}_{\text {Hil }}$		-	0	0.1	
V Sync Palth Width		V_{Ww}		170	190	210	$\mu \mathrm{S}$
\checkmark Sync Delay Time		TVD		7.0	10.0	13.0	$\mu \mathrm{S}$
V Sync Output Voltage	H	TVH		4.0	4.2	-	V
	L	V_{V}		-	0	0.1	
Field Distinction Delay Time	odd	T FOD		246	256	266	$\mu \mathrm{S}$
	even	T FED		216	226	236	
Fideld Distinction Output Voltage	odd	Vfor		4.0	4.2	-	V
	even	Vfer		-	0	0.1	

- APPLICATION CIRCUIT

- APPLICATION NOTES

It shows the characteristics by changing of the following resistor.

- The resistance between 9 Pin and GND

High resistance \qquad AFC HD pulse is wide
Low resistance \qquad AFC HD pulse is narrow

- The resistor between 9 Pin and V^{+}

At the resistor is 100Ω. AFC HD Delay adjustment is off, and AFC HD output width is $4 \mu \mathrm{~s}$ (typ.)

- The resistor between 9 Pin and GND is fundamentally $14.2 \mathrm{k} \Omega$, because the purpose of this resistor is pulse width adjusts $4 \mu \mathrm{~s}$.
- The resistor between 10 Pin and GND

High resistance \qquad AFC HD Delay time gains
Low resistance - AFC HD Delay time loses

- The resistor between 13 Pin and GND

High resistance \qquad Vsync pulse is wide
Low resistance

- Vsync pulse is narrow
- The resistor joind 2 Pin

Please adjust the wide of following W is from $33 \mu \mathrm{~s}$ to $37 \mu \mathrm{~s}(\mathrm{~W}=-(\mathrm{C} \cdot \mathrm{R}) \mathrm{ln} 0.5)$

Fig 1 I/ O PULSE

NOTE3

NOTE5

- TERMINAL EXPLANATION

PINNO.	PIN NAME	FUNCTION	INSIDE EQUIVALENT CIRCUIT
1	VIDEO-IN	Composit Video Signal Input	
2	MM-HT	HD \& FD puse are Controlled by seting mono multi	
3	HD-OUT	1/2 f_{H} Killer D Output	
4	VCO-OUT	VCO Output is to be given to Ceramic Oscillator	
5	VCO-FILTER 1	Decide the Volume to be transfered shall by decided of Ceramic Oscillator. (90° late)	

- TERMINAL EXPLANATION

PIN NO.	PIN NAME	FUNCTION	INSIDE EQUIVALENT CIRCUIT
6	VCO-FILTER 2	Decide the Volume to be transfered shall by decided of Cramic Oscillator. (90° late)	
7	L. P. F	L. P. F. of AFC	
8	V^{+}	Supply Voltage	
9	VR-1	AFC-HD Output Can be adjusted by putting resistor between 9 to GND (9 to V_{cc} no adjustment). The pulse width cam be adjusted by making changeable of resister (Adjusting mode)	
10	VR-2	AFC-HD Output delay adjustment by putting 10 pin resister changeable at 9 pin ajustment mode.	
11	GND	Ground	

- TERMINAL EXPLANATION

PIN NO.	PIN NAME	FUNCTION	INSIDE EQUIVALENT CIRCUIT
12	AFC, HD-OUT	AFC-HD Output	
13	MM-VT	Pulse Width of Vsync-OUT is adjusted by setting mono multi time constant.	
14	Vsync-OUT	Vertical Synchronous Signal Output.	
15	FD-OUT discrimination	Field Distiniction Signal Output.	
16	Csyne-OUT	Synchronous Separation Output	

- PIN FUNCTION

PIN NO.	FUNCTION BLOCK	OPERATIONAL DESCRIPTION	NOTE
(1)Pin	Signal Input	Video Signal input	Sync tip clump
(2)Pin	HD pulse control	HD pulse and FD pulse control by time constant of CR	
(3) Pin	HD pulse output	1/2 f f killer HD pulse output	In a period of vertical synchronizing, a f_{H} is converted to f_{H}
$\begin{aligned} & \text { (4) Pin } \\ & \text { (5) Pin } \\ & \text { (6) Pin } \end{aligned}$	AFC Oscillation	Oscillation of 503 KHz by a ceramic oscillator, and divided by 32 to get down to 15.74 KHz	
(7) Pin	AFC control	Leg Lead filter for phase detection	
(8)Pin	V Cc	Vcc	
(9)Pin	AFC HD output Switch (AFC HD pulse width adjustment)	The case that R is connected between 9pin and $V_{c c} \cdots$ Fixed output The case that R is connected between 9pin and GND \cdots Adjustable AFC HD Delay Mode	High Resistance \rightarrow Wide pulse width Low Resistance \rightarrow Narrow pulse width
(10) Pin	AFC HD Delay adjustment	The case that R is connected between 9pin and GND \cdots Adjustable AFC HD Delay output	High Resistance \rightarrow AFC HD Delay time gains Low Resistance \rightarrow AFC HD Delay time loses
(11) Pin	GND	GND	
(12) Pin	AFC HD output	AFC HD pulse output	Positive polarity
(13) Pin	VD pulse width adujstment	VD pulse width control by time constant of CR	
(14) Pin	VD output	Vertical synchronizing signal output	Positive polarity
(15) Pin	FD output	Field discriminating signal output	odd field \rightarrow High Output even field \rightarrow Low Output
(16) Pin	C Sync. output	Composite Sync Signal output	Positive polarity

[^0]
X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Video ICs category:
Click to view products by NJR manufacturer:

Other Similar products are found below :
ADV7343WBSTZ TW2964-LA2-CR TW9903-FB TW9919-PE1-GR TW9960-TA1-GR LA9520V-TLM-E TW9910-NA2-GR TW9900-TA1-GR ADV7625KBCZ-8 MAX9406ETM+T PI3HDX414FCEEX PI3HDX511FZLEX M31245G-15 PI3HDX511DZLEX MAX4895EETE+T M23428G-33 PI7VD9008ABHFDE TW2984-NA2-CR ADV7186BBCZ-RL ADV7186BBCZ-TL PI3HDMI521FBE ADV7186BBCZ-T-RL ADV8003KBCZ-7C LT6554IGN\#PBF M21324G-13 GS12181-INE3 PI3VDP411LSAZBEX PI3VDP411LSTZBEX M23145G-14 PI3VDP411LSRZBEX PI3HDX511EZLSEX TW2835-BA1-GR ISL59913IRZ TW9910-NB2-GR CM5100-01CP ADV7610BBCZ-RL BA7653AFV-E2 BA7654F-E2 BA7657F-E2 BH76331FVM-TR BH76332FVM-TR BH76363FV-E2 TVP5160PNP $\underline{\mathrm{MAX} 9597 \mathrm{CTI}+\mathrm{BA} 7602 \mathrm{~F}-\mathrm{E} 2} \underline{\mathrm{BA} 7606 \mathrm{FS}-\mathrm{E} 2} \underline{\mathrm{BA} 7612 \mathrm{~F}-\mathrm{E} 2} \underline{\mathrm{BA} 7626 \mathrm{~F}-\mathrm{E} 2} \underline{\mathrm{BA} 7653 A F-E 2}$ BH76112HFV-TR

[^0]: [CAUTION]
 The specifications on this databook are only given for information, without any guarantee as regards either mistakes or omissions. The application circuits in this databook are
 described only to show representative usages
 of the product and not intended for the
 guarantee or permission of any right including
 the industrial rights.

