74LV00 Quad 2-input NAND gate Rev. 03 — 20 December 2007 **Product data sheet** ### **General description** 1. The 74LV00 is a low-voltage Si-gate CMOS device that is pin and function compatible with 74HC00 and 74HCT00. The 74LV00 provides a quad 2-input NAND function. ### 2. **Features** - Wide operating voltage: 1.0 V to 5.5 V - Optimized for low voltage applications: 1.0 V to 3.6 V - Accepts TTL input levels between V_{CC} = 2.7 V and V_{CC} = 3.6 V - Typical output ground bounce < 0.8 V at V_{CC} = 3.3 V and T_{amb} = 25 °C - Typical HIGH-level output voltage (V_{OH}) undershoot: > 2 V at V_{CC} = 3.3 V and $T_{amb} = 25 \, ^{\circ}C$ - ESD protection: - ◆ HBM JESD22-A114E exceeds 2000 V - MM JESD22-A115-A exceeds 200 V - Multiple package options - Specified from -40 °C to +85 °C and from -40 °C to +125 °C # **Ordering information** Table 1. **Ordering information** | Type number | Package | | | | |-------------|-------------------|----------|--|----------| | | Temperature range | Name | Description | Version | | 74LV00N | -40 °C to +125 °C | DIP14 | plastic dual in-line package; 14 leads (300 mil) | SOT27-1 | | 74LV00D | –40 °C to +125 °C | SO14 | plastic small outline package; 14 leads;
body width 3.9 mm | SOT108-1 | | 74LV00DB | –40 °C to +125 °C | SSOP14 | plastic shrink small outline package; 14 leads; body width 5.3 mm | SOT337-1 | | 74LV00PW | –40 °C to +125 °C | TSSOP14 | plastic thin shrink small outline package; 14 leads;
body width 4.4 mm | SOT402-1 | | 74LV00BQ | –40 °C to +125 °C | DHVQFN14 | plastic dual in-line compatible thermal enhanced very thin quad flat package; no leads; 14 terminals; body $2.5\times3\times0.85$ mm | SOT762-1 | **Quad 2-input NAND gate** © NXP B.V. 2007. All rights reserved. # 4. Functional diagram # 5. Pinning information ## 5.1 Pinning ## 5.2 Pin description Table 2. Pin description | Symbol | Pin | Description | |--------|-----|-------------| | 1A | 1 | data input | | 1B | 2 | data input | | 1Y | 3 | data output | | 2A | 4 | data input | | 2B | 5 | data input | | 2Y | 6 | data output | | | | | ### **Quad 2-input NAND gate** Table 2. Pin description ... continued | Symbol | Pin | Description | |-----------------|-----|----------------| | GND | 7 | ground (0 V) | | 3Y | 8 | data output | | 3A | 9 | data input | | 3B | 10 | data input | | 4Y | 11 | data output | | 4A | 12 | data input | | 4B | 13 | data input | | V _{CC} | 14 | supply voltage | # 6. Functional description Table 3. Function table[1] | Input | Output | | |-------|--------|----| | nA | nB | nY | | L | X | Н | | X | L | Н | | Н | Н | L | ^[1] H = HIGH voltage level; L = LOW voltage level; X = don't care # 7. Limiting values Table 4. Limiting values In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V). | Symbol | Parameter | Conditions | Min | Max | Unit | |------------------|-------------------------|--|--------------|------|------| | V_{CC} | supply voltage | | -0.5 | +7.0 | V | | I _{IK} | input clamping current | $V_I < -0.5 \text{ V or } V_I > V_{CC} + 0.5 \text{ V}$ | <u>[1]</u> _ | ±20 | mA | | l _{OK} | output clamping current | $V_O < -0.5 \text{ V or } V_O > V_{CC} + 0.5 \text{ V}$ | <u>[1]</u> _ | ±50 | mA | | Io | output current | $V_{O} = -0.5 \text{ V to } (V_{CC} + 0.5 \text{ V})$ | - | ±25 | mA | | I _{CC} | supply current | | - | 50 | mA | | I _{GND} | ground current | | -50 | - | mA | | T _{stg} | storage temperature | | -65 | +150 | °C | | P _{tot} | total power dissipation | $T_{amb} = -40 ^{\circ}\text{C} \text{ to } +125 ^{\circ}\text{C}$ | | | | | | | DIP14 package | [2] _ | 750 | mW | | | | SO14 package | [3] _ | 500 | mW | | | | (T)SSOP14 package | <u>[4]</u> _ | 500 | mW | | | | DHVQFN14 package | <u>[5]</u> _ | 500 | mW | | | | | | | | ^[1] The input and output voltage ratings may be exceeded if the input and output current ratings are observed. ^[2] Ptot derates linearly with 12 mW/K above 70 °C. ^[3] P_{tot} derates linearly with 8 mW/K above 70 °C. ^[4] P_{tot} derates linearly with 5.5 mW/K above 60 °C. ^[5] P_{tot} derates linearly with 4.5 mW/K above 60 °C. **Quad 2-input NAND gate** # 8. Recommended operating conditions Table 5. Recommended operating conditions Voltages are referenced to GND (ground = 0 V). | Symbol | Parameter | Conditions | Min | Тур | Max | Unit | |---------------------|-------------------------------------|--|----------------|-----|----------|------| | V_{CC} | supply voltage | | <u>[1]</u> 1.0 | 3.3 | 5.5 | V | | V_{I} | input voltage | | 0 | - | V_{CC} | V | | Vo | output voltage | | 0 | - | V_{CC} | V | | T _{amb} | ambient temperature | | -40 | +25 | +125 | °C | | $\Delta t/\Delta V$ | input transition rise and fall rate | $V_{CC} = 1.0 \text{ V to } 2.0 \text{ V}$ | - | - | 500 | ns/V | | | | $V_{CC} = 2.0 \text{ V to } 2.7 \text{ V}$ | - | - | 200 | ns/V | | | | $V_{CC} = 2.7 \text{ V to } 3.6 \text{ V}$ | - | - | 100 | ns/V | | | | $V_{CC} = 3.6 \text{ V to } 5.5 \text{ V}$ | - | - | 50 | ns/V | ^[1] The static characteristics are guaranteed from V_{CC} = 1.2 V to V_{CC} = 5.5 V, but LV devices are guaranteed to function down to V_{CC} = 1.0 V (with input levels GND or V_{CC}). # 9. Static characteristics Table 6. Static characteristics Voltages are referenced to GND (ground = 0 V). | Symbol | Parameter | Conditions | -40 | °C to +8 | 35 °C | -40 °C to | +125 °C | Unit | |----------|---------------------------|--|-------------|----------|-------------|-------------|-------------|------| | | | | Min | Typ[1] | Max | Min | Max | 1 | | V_{IH} | HIGH-level input voltage | V _{CC} = 1.2 V | 0.9 | - | - | 0.9 | - | V | | | | V _{CC} = 2.0 V | 1.4 | - | - | 1.4 | - | V | | | | $V_{CC} = 2.7 \text{ V to } 3.6 \text{ V}$ | 2.0 | - | - | 2.0 | - | V | | | | $V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$ | $0.7V_{CC}$ | - | - | $0.7V_{CC}$ | - | V | | V_{IL} | LOW-level input voltage | $V_{CC} = 1.2 \text{ V}$ | - | - | 0.3 | - | 0.3 | V | | | | $V_{CC} = 2.0 \text{ V}$ | - | - | 0.6 | - | 0.6 | V | | | | $V_{CC} = 2.7 \text{ V to } 3.6 \text{ V}$ | - | - | 0.8 | - | 8.0 | V | | | | $V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$ | - | - | $0.3V_{CC}$ | - | $0.3V_{CC}$ | V | | V_{OH} | HIGH-level output voltage | $V_I = V_{IH}$ or V_{IL} | | | | | | | | | | $I_O = -100 \ \mu A; \ V_{CC} = 1.2 \ V$ | - | 1.2 | - | - | - | V | | | | I_O = $-100~\mu A$; V_{CC} = $2.0~V$ | 1.8 | 2.0 | - | 1.8 | - | V | | | | I_O = $-100~\mu A$; V_{CC} = $2.7~V$ | 2.5 | 2.7 | - | 2.5 | - | V | | | | I_O = $-100~\mu A$; V_{CC} = $3.0~V$ | 2.8 | 3.0 | - | 2.8 | - | V | | | | $I_O = -100 \ \mu A; \ V_{CC} = 4.5 \ V$ | 4.3 | 4.5 | - | 4.3 | - | V | | | | $I_{O} = -6 \text{ mA}; V_{CC} = 3.0 \text{ V}$ | 2.4 | 2.82 | - | 2.2 | - | V | | | | $I_{O} = -12 \text{ mA}; V_{CC} = 4.5 \text{ V}$ | 3.6 | 4.2 | - | 3.5 | - | V | ### **Quad 2-input NAND gate** **Table 6. Static characteristics** ...continued Voltages are referenced to GND (ground = 0 V). | Symbol | Parameter | Conditions | -40 | °C to +8 | 5 °C | –40 °C to | +125 °C | Unit | |-----------------|---------------------------|---|-----|----------|------|-----------|---------|------| | | | | Min | Typ[1] | Max | Min | Max | | | V_{OL} | LOW-level output voltage | $V_I = V_{IH}$ or V_{IL} | | | | | | | | | | $I_O = 100 \mu A; V_{CC} = 1.2 V$ | - | 0 | - | - | - | V | | | | $I_O = 100 \mu A; V_{CC} = 2.0 V$ | - | 0 | 0.2 | - | 0.2 | V | | | | $I_O = 100 \mu A; V_{CC} = 2.7 V$ | - | 0 | 0.2 | - | 0.2 | V | | | | $I_O = 100 \mu A; V_{CC} = 3.0 V$ | - | 0 | 0.2 | - | 0.2 | V | | | | $I_O = 100 \mu A; V_{CC} = 4.5 V$ | - | 0 | 0.2 | - | 0.2 | V | | | | $I_O = 6 \text{ mA}; V_{CC} = 3.0 \text{ V}$ | - | 0.25 | 0.40 | - | 0.50 | V | | | | $I_O = 12 \text{ mA}; V_{CC} = 4.5 \text{ V}$ | - | 0.35 | 0.55 | - | 0.65 | V | | I _I | input leakage current | $V_I = V_{CC}$ or GND; $V_{CC} = 5.5 \text{ V}$ | - | - | 1.0 | - | 1.0 | μΑ | | I _{CC} | supply current | $V_1 = V_{CC}$ or GND; $I_O = 0$ A;
$V_{CC} = 5.5 \text{ V}$ | - | - | 20.0 | - | 40 | μΑ | | ΔI_{CC} | additional supply current | per input; $V_I = V_{CC} - 0.6 \text{ V}$; $V_{CC} = 2.7 \text{ V}$ to 3.6 V | - | - | 500 | - | 850 | μΑ | | CI | input capacitance | | - | 3.5 | - | - | - | pF | ^[1] Typical values are measured at T_{amb} = 25 °C. # 10. Dynamic characteristics **Table 7. Dynamic characteristics** *GND = 0 V; For test circuit see Figure 7.* | Symbol | Parameter | Conditions | | -40 | °C to +85 | S°C | –40 °C t | o +125 °C | Unit | |-----------------|-------------------------------|--|------------|-----|-----------|-----|----------|-----------|------| | | | | | Min | Typ[1] | Max | Min | Max | | | t _{pd} | propagation delay | nA, nB to nY; see Figure 6 | [2] | | | | | | | | | | V _{CC} = 1.2 V | | - | 45 | - | - | - | ns | | | | V _{CC} = 2.0 V | | - | 15 | 26 | - | 31 | ns | | | | V _{CC} = 2.7 V | | - | 11 | 18 | - | 23 | ns | | | | $V_{CC} = 3.0 \text{ V to } 3.6 \text{ V; } C_L = 15 \text{ pF}$ | [3] | - | 7 | - | - | - | ns | | | | V _{CC} = 3.0 V to 3.6 V | [3] | - | 9.0 | 15 | - | 18 | ns | | | | V _{CC} = 4.5 V to 5.5 V | [3] | - | 6.5 | 11 | - | 14 | ns | | C _{PD} | power dissipation capacitance | $C_L = 50 \text{ pF}; f_i = 1 \text{ MHz};$
$V_I = \text{GND to } V_{CC}$ | <u>[4]</u> | - | 22 | - | - | - | pF | ^[1] All typical values are measured at T_{amb} = 25 °C. $P_D = C_{PD} \times V_{CC}^2 \times f_i \times N + \Sigma (C_L \times V_{CC}^2 \times f_o) \text{ where:}$ f_i = input frequency in MHz, f_o = output frequency in MHz C_L = output load capacitance in pF V_{CC} = supply voltage in V N = number of inputs switching $\Sigma(C_L \times V_{CC}{}^2 \times f_o)$ = sum of the outputs. ^[2] t_{pd} is the same as t_{PLH} and t_{PHL} . ^[3] Typical values are measured at nominal supply voltage (V_{CC} = 3.3 V and V_{CC} = 5.0 V). ^[4] C_{PD} is used to determine the dynamic power dissipation (P_D in μW). **Quad 2-input NAND gate** ## 11. Waveforms Measurement points are given in Table 8. $V_{\mbox{\scriptsize OL}}$ and $V_{\mbox{\scriptsize OH}}$ are typical voltage output levels that occur with the output load. Fig 6. The input (nA, nB) to output (nY) propagation delays Table 8. Measurement points | Supply voltage | Input | Output | |-----------------|--------------------|--------------------| | V _{CC} | V _M | V _M | | < 2.7 V | 0.5V _{CC} | 0.5V _{CC} | | 2.7 V to 3.6 V | 1.5 V | 1.5 V | | ≥ 4.5 V | 0.5V _{CC} | 0.5V _{CC} | Test data is given in Table 9. Definitions test circuit: R_T = Termination resistance should be equal to output impedance Z_0 of the pulse generator. R_L = Load resistance. C_L = Load capacitance including jig and probe capacitance. ### Fig 7. Load circuit for switching times Table 9. Test data | Supply voltage | Input | | |-----------------|-----------------|---------------------------------| | V _{CC} | V _I | t _r , t _f | | < 2.7 V | V _{CC} | ≤ 2.5 ns | | 2.7 V to 3.6 V | 2.7 V | ≤ 2.5 ns | | ≥ 4.5 V | V _{CC} | ≤ 2.5 ns | # 12. Package outline ### DIP14: plastic dual in-line package; 14 leads (300 mil) SOT27-1 | UNIT | A
max. | A ₁
min. | A ₂
max. | b | b ₁ | С | D ⁽¹⁾ | E (1) | е | e ₁ | L | ME | Мн | w | Z ⁽¹⁾
max. | |--------|-----------|------------------------|------------------------|----------------|----------------|----------------|------------------|--------------|------|----------------|--------------|--------------|--------------|-------|--------------------------| | mm | 4.2 | 0.51 | 3.2 | 1.73
1.13 | 0.53
0.38 | 0.36
0.23 | 19.50
18.55 | 6.48
6.20 | 2.54 | 7.62 | 3.60
3.05 | 8.25
7.80 | 10.0
8.3 | 0.254 | 2.2 | | inches | 0.17 | 0.02 | 0.13 | 0.068
0.044 | 0.021
0.015 | 0.014
0.009 | 0.77
0.73 | 0.26
0.24 | 0.1 | 0.3 | 0.14
0.12 | 0.32
0.31 | 0.39
0.33 | 0.01 | 0.087 | ### Note 1. Plastic or metal protrusions of 0.25 mm (0.01 inch) maximum per side are not included. | OUTLINE | | REFER | EUROPEAN | ISSUE DATE | | | | |---------|---------|-------------|-------------------|-------------------------|-------------------------|------------------------------------|--| | VERSION | IEC | JEDEC | JEITA | | PROJECTION | 1330E DATE | | | SOT27-1 | 050G04 | MO-001 | SC-501-14 | | | 99-12-27
03-02-13 | | | | VERSION | VERSION IEC | VERSION IEC JEDEC | VERSION IEC JEDEC JEITA | VERSION IEC JEDEC JEITA | VERSION IEC JEDEC JEITA PROJECTION | | Fig 8. Package outline SOT27-1 (DIP14) SO14: plastic small outline package; 14 leads; body width 3.9 mm SOT108-1 | UNIT | A
max. | A ₁ | A ₂ | A ₃ | bp | С | D ⁽¹⁾ | E ⁽¹⁾ | е | HE | L | Lp | Q | v | w | у | z ⁽¹⁾ | θ | |--------|-----------|----------------|----------------|----------------|--------------|------------------|------------------|------------------|------|----------------|-------|----------------|----------------|------|------|-------|------------------|----| | mm | 1.75 | 0.25
0.10 | 1.45
1.25 | 0.25 | 0.49
0.36 | 0.25
0.19 | 8.75
8.55 | 4.0
3.8 | 1.27 | 6.2
5.8 | 1.05 | 1.0
0.4 | 0.7
0.6 | 0.25 | 0.25 | 0.1 | 0.7
0.3 | 8° | | inches | 0.069 | 0.010
0.004 | 0.057
0.049 | 0.01 | | 0.0100
0.0075 | 0.35
0.34 | 0.16
0.15 | 0.05 | 0.244
0.228 | 0.041 | 0.039
0.016 | 0.028
0.024 | 0.01 | 0.01 | 0.004 | 0.028
0.012 | 0° | ### Note 1. Plastic or metal protrusions of 0.15 mm (0.006 inch) maximum per side are not included. | OUTLINE | | REFER | EUROPEAN | ISSUE DATE | | | |----------|--------|--------|----------|------------|------------|---------------------------------| | VERSION | IEC | JEDEC | JEITA | PROJECTION | ISSUE DATE | | | SOT108-1 | 076E06 | MS-012 | | | | 99-12-27
03-02-19 | Fig 9. Package outline SOT108-1 (SO14) SSOP14: plastic shrink small outline package; 14 leads; body width 5.3 mm SOT337-1 | UNIT | A
max. | A ₁ | A ₂ | A ₃ | bp | С | D ⁽¹⁾ | E ⁽¹⁾ | е | HE | ٦ | Lp | Q | v | w | у | z ⁽¹⁾ | θ | |------|-----------|----------------|----------------|----------------|--------------|--------------|------------------|------------------|------|------------|------|--------------|------------|-----|------|-----|------------------|----------| | mm | 2 | 0.21
0.05 | 1.80
1.65 | 0.25 | 0.38
0.25 | 0.20
0.09 | 6.4
6.0 | 5.4
5.2 | 0.65 | 7.9
7.6 | 1.25 | 1.03
0.63 | 0.9
0.7 | 0.2 | 0.13 | 0.1 | 1.4
0.9 | 8°
0° | ### Note 1. Plastic or metal protrusions of 0.25 mm maximum per side are not included. | OUTLINE | | REFER | ENCES | EUROPEAN | ISSUE DATE | |----------|-----|--------|-------|------------|----------------------------------| | VERSION | IEC | JEDEC | JEITA | PROJECTION | ISSUE DATE | | SOT337-1 | | MO-150 | | | -99-12-27
03-02-19 | Fig 10. Package outline SOT337-1 (SSOP14) TSSOP14: plastic thin shrink small outline package; 14 leads; body width 4.4 mm SOT402-1 | UNIT | A
max. | A ₁ | A ₂ | A ₃ | bp | С | D ⁽¹⁾ | E ⁽²⁾ | е | HE | L | Lp | ø | v | w | у | Z ⁽¹⁾ | θ | |------|-----------|----------------|----------------|----------------|--------------|------------|------------------|------------------|------|------------|---|--------------|------------|-----|------|-----|------------------|----------| | mm | 1.1 | 0.15
0.05 | 0.95
0.80 | 0.25 | 0.30
0.19 | 0.2
0.1 | 5.1
4.9 | 4.5
4.3 | 0.65 | 6.6
6.2 | 1 | 0.75
0.50 | 0.4
0.3 | 0.2 | 0.13 | 0.1 | 0.72
0.38 | 8°
0° | ### Notes - 1. Plastic or metal protrusions of 0.15 mm maximum per side are not included. - 2. Plastic interlead protrusions of 0.25 mm maximum per side are not included. | OUTLINE | | REFER | ENCES | | EUROPEAN | ISSUE DATE | |----------|-----|--------|-------|------------|------------|---------------------------------| | VERSION | IEC | JEDEC | JEITA | PROJECTION | ISSUE DATE | | | SOT402-1 | | MO-153 | | | | 99-12-27
03-02-18 | | | | | | | | | Fig 11. Package outline SOT402-1 (TSSOP14) DHVQFN14: plastic dual in-line compatible thermal enhanced very thin quad flat package; no leads; 14 terminals; body 2.5 x 3 x 0.85 mm SOT762-1 Fig 12. Package outline SOT762-1 (DHVQFN14) % NXP B.V. 2007. All rights reserved. 74LV00 **NXP Semiconductors** # Quad 2-input NAND gate # 13. Abbreviations ### Table 10. Abbreviations | Acronym | Description | |---------|---| | CMOS | Complementary Metal Oxide Semiconductor | | DUT | Device Under Test | | ESD | ElectroStatic Discharge | | HBM | Human Body Model | | MM | Machine Model | | TTL | Transistor-Transistor Logic | # 14. Revision history ### Table 11. Revision history | | • | | | | |----------------|--|-----------------------------|-------------------------|-----------------------------| | Document ID | Release date | Data sheet status | Change notice | Supersedes | | 74LV00_3 | 20071220 | Product data sheet | - | 74LV00_2 | | Modifications: | The format of of NXP Semic | | designed to comply with | the new identity guidelines | | | Legal texts ha | ve been adapted to the new | company name where | appropriate. | | | Section 3: DH | VQFN14 package added. | | | | | Section 7: der | ating values added for DHV | QFN14 package. | | | | • Section 12: ou | utline drawing added for DH | /QFN14 package. | | | 74LV00_2 | 19980420 | Product specification | - | 74LV00_1 | | 74LV00_1 | 19970203 | Product specification | - | - | | | | | | | **Quad 2-input NAND gate** # 15. Legal information ### 15.1 Data sheet status | Document status[1][2] | Product status[3] | Definition | |--------------------------------|-------------------|---| | Objective [short] data sheet | Development | This document contains data from the objective specification for product development. | | Preliminary [short] data sheet | Qualification | This document contains data from the preliminary specification. | | Product [short] data sheet | Production | This document contains the product specification. | - [1] Please consult the most recently issued document before initiating or completing a design. - [2] The term 'short data sheet' is explained in section "Definitions" - [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com. ### 15.2 Definitions Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information. Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail. ### 15.3 Disclaimers **General** — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof. **Suitability for use** — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk. **Applications** — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification. Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) may cause permanent damage to the device. Limiting values are stress ratings only and operation of the device at these or any other conditions above those given in the Characteristics sections of this document is not implied. Exposure to limiting values for extended periods may affect device reliability. Terms and conditions of sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, including those pertaining to warranty, intellectual property rights infringement and limitation of liability, unless explicitly otherwise agreed to in writing by NXP Semiconductors. In case of any inconsistency or conflict between information in this document and such terms and conditions, the latter will prevail. No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights. ### 15.4 Trademarks Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners. ### 16. Contact information For additional information, please visit: http://www.nxp.com For sales office addresses, send an email to: salesaddresses@nxp.com % NXP B.V. 2007. All rights reserved. ## **Quad 2-input NAND gate** # 17. Contents | 1 | General description | |------|------------------------------------| | 2 | Features | | 3 | Ordering information | | 4 | Functional diagram 2 | | 5 | Pinning information | | 5.1 | Pinning | | 5.2 | Pin description 2 | | 6 | Functional description 3 | | 7 | Limiting values 3 | | 8 | Recommended operating conditions 4 | | 9 | Static characteristics 4 | | 10 | Dynamic characteristics 5 | | 11 | Waveforms 6 | | 12 | Package outline 7 | | 13 | Abbreviations12 | | 14 | Revision history 12 | | 15 | Legal information | | 15.1 | Data sheet status | | 15.2 | Definitions | | 15.3 | Disclaimers | | 15.4 | Trademarks13 | | 16 | Contact information | | 17 | Contents | | | | Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'. Document identifier: 74LV00_3 # **X-ON Electronics** Largest Supplier of Electrical and Electronic Components Click to view similar products for Logic Gates category: Click to view products by NXP manufacturer: Other Similar products are found below: 5962-8769901BCA 74HC85N NL17SG08P5T5G NL17SG32DFT2G NLU1G32AMUTCG NLV7SZ58DFT2G NLVHC1G08DFT1G NLVVHC1G14DTT1G NLX2G08DMUTCG NLX2G08MUTCG MC74HCT20ADR2G 091992B 091993X 093560G 634701C 634921A NL17SG32P5T5G NL17SG86DFT2G NLU1G32CMUTCG NLV14001UBDR2G NLVVHC1G132DTT1G NLVVHC1G86DTT1G NLX1G11AMUTCG NLX1G97MUTCG 746427X 74AUP1G17FW5-7 74LS38 74LVC1G08Z-7 74LVC32ADTR2G 74LVC1G125FW4-7 74LVC08ADTR2G MC74HCT20ADTR2G NLU1G08CMX1TCG NLV14093BDTR2G NLV17SZ00DFT2G NLV17SZ02DFT2G NLV17SZ126DFT2G NLV27WZ17DFT2G NLV74HC02ADR2G NLV74HC08ADR2G NLVVHC1GT32DFT1G 74HC32S14-13 74LS133 74LVC1G32Z-7 M38510/30402BDA 74LVC1G86Z-7 74LVC2G08RA3-7 M38510/06202BFA NLV74HC08ADTR2G NLV74HC14ADR2G