16-bit bus transceiver with direction pin; 5 V tolerant; 3-stateRev. 12 — 13 February 2012Product data sheet

1. General description

The 74LVC16245A; 74LVCH16245A are 16-bit transceivers featuring non-inverting 3-state bus compatible outputs in both send and receive directions. The device features two output enable $(n\overline{OE})$ inputs for easy cascading and two send/receive (nDIR) inputs for direction control. nOE controls the outputs so that the buses are effectively isolated. This device can be used as two 8-bit transceivers or one 16-bit transceiver.

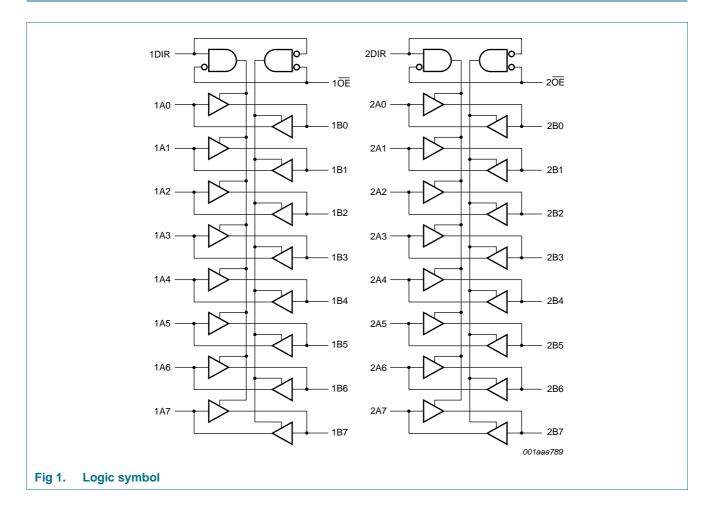
Inputs can be driven from either 3.3 V or 5 V devices. When disabled, up to 5.5 V can be applied to the outputs. These features allow the use of these devices in mixed 3.3 V and 5 V applications.

The 74LVCH16245A bus hold on data inputs eliminates the need for external pull-up resistors to hold unused inputs.

2. Features and benefits

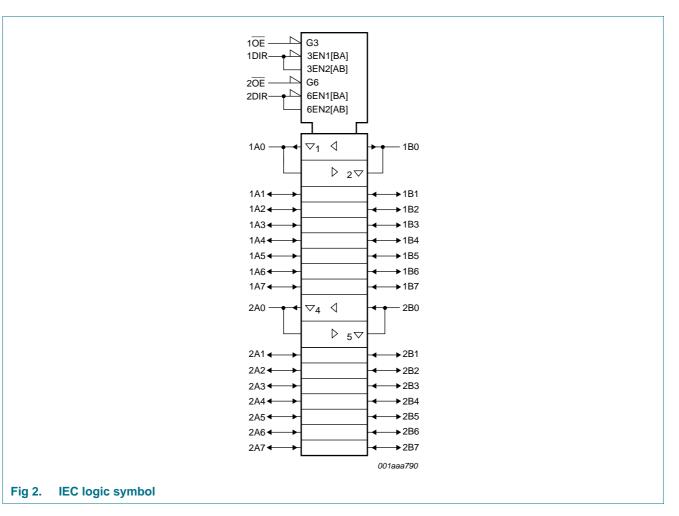
- 5 V tolerant inputs/outputs for interfacing with 5 V logic
- Wide supply voltage range from 1.2 V to 3.6 V
- CMOS low power consumption
- MULTIBYTE flow-through standard pin-out architecture
- Low inductance multiple power and ground pins for minimum noise and ground bounce
- Direct interface with TTL levels
- High-impedance when V_{CC} = 0 V
- All data inputs have bus hold (74LVCH16245A only)
- Complies with JEDEC standard:
 - JESD8-7A (1.65 V to 1.95 V)
 - JESD8-5A (2.3 V to 2.7 V)
 - JESD8-C/JESD36 (2.7 V to 3.6 V)
- ESD protection:
 - HBM JESD22-A114F exceeds 2000 V
 - MM JESD22-A115-B exceeds 200 V
 - CDM JESD22-C101E exceeds 1000 V
- Specified from -40 °C to +85 °C and -40 °C to +125 °C

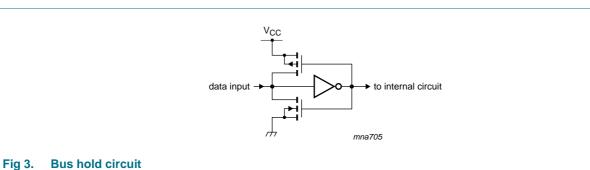
nexperia


16-bit bus transceiver with direction pin; 5 V tolerant; 3-state

3. Ordering information

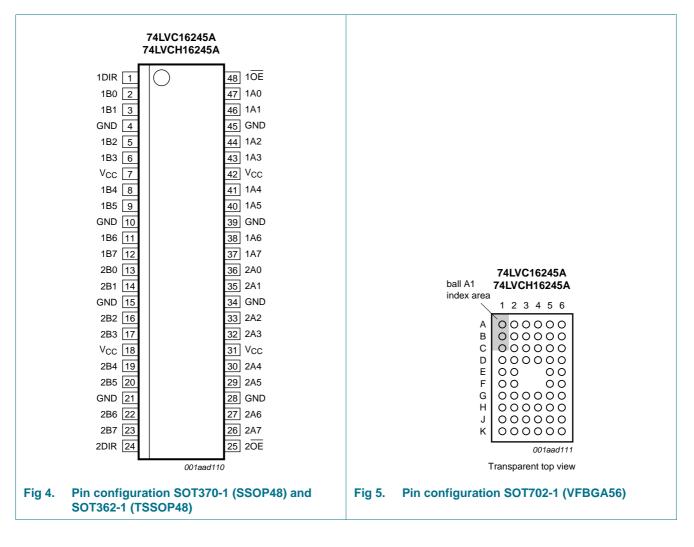
Table 1.	Ordering information
----------	----------------------


Type number	Temperature range	Package		
		Name	Description	Version
74LVC16245ADL	–40 °C to +125 °C	SSOP48	plastic shrink small outline package; 48 leads;	SOT370-1
74LVCH16245ADL			body width 7.5 mm	
74LVC16245ADGG	–40 °C to +125 °C	TSSOP48	······································	
74LVCH16245ADGG			48 leads; body width 6.1 mm	
74LVC16245AEV	–40 °C to +125 °C	VFBGA56	plastic very thin fine-pitch ball grid array package;	SOT702-1
74LVCH16245AEV			56 balls; body 4.5 \times 7 \times 0.65 mm	
74LVC16245ABX	–40 °C to +125 °C	HXQFN60	plastic compatible thermal enhanced extremely	SOT1134-2
74LVCH16245ABX			thin quad flat package; no leads; 60 terminals; body $4 \times 6 \times 0.5$ mm	

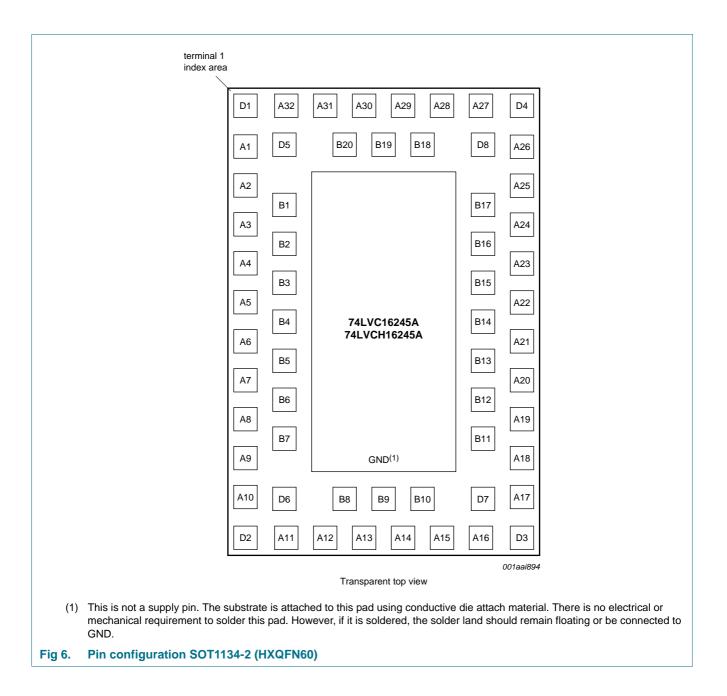

4. Functional diagram

74LVC16245A; 74LVCH16245A

16-bit bus transceiver with direction pin; 5 V tolerant; 3-state



Product data sheet


16-bit bus transceiver with direction pin; 5 V tolerant; 3-state

5. Pinning information

5.1 Pinning

16-bit bus transceiver with direction pin; 5 V tolerant; 3-state

. .

_

74LVC16245A; 74LVCH16245A

16-bit bus transceiver with direction pin; 5 V tolerant; 3-state

5.2 Pin description

. ..

Symbol	Pin			Description
	SOT370-1 and SOT362-1	SOT702-1	SOT1134-2	-
1DIR, 2DIR	1, 24	A1, K1	A30, A13	direction control input
1B0 to 1B7	2, 3, 5, 6, 8, 9, 11, 12	B2, B1, C2, C1, D2, D1, E2, E1	B20, A31, D5, D1, A2, B2, B3, A5	data input/output
2B0 to 2B7	13, 14, 16, 17, 19, 20, 22, 23	F1, F2, G1, G2, H1, H2, J1, J2	A6, B5, B6, A9, D2, D6, A12, B8	data input/output
GND	4, 10, 15, 21, 28, 34, 39, 45	B3, B4, D3, D4, G3, G4, J3, J4	A32, A3, A8, A11, A16, A19, A24, A27	ground (0 V)
V _{CC}	7, 18, 31, 42	C3, C4, H3, H4	A1, A10, A17, A26	supply voltage
1 <u>0E</u> , 2 <u>0E</u>	48, 25	A6, K6	A29, A14	output enable input (active LOW)
1A0 to 1A7	47, 46, 44, 43, 41, 40, 38, 37	B5, B6, C5, C6, D5, D6, E5, E6	B18, A28, D8, D4, A25, B16, B15, A22	data input/output
2A0 to 2A7	36, 35, 33, 32, 30, 29, 27, 26	F6, F5, G6, G5, H6, H5, J6, J5	A21, B13, B12, A18, D3, D7, A15, B10	data input/output
n.c.	-	A2, A3, A4, A5, K2, K3, K4, K5	A4, A7, A20, A23, B1, B4, B7, B9, B11, B14, B17, B19	not connected

6. Functional description

Table 3. Function table^[1]

		Outputs		
nOE	nDIR	nAn	nBn	
L	L	nAn = nBn	inputs	
L	Н	inputs	nBn = nAn	
Н	Х	Z	Z	

[1] H = HIGH voltage level; L = LOW voltage level; X = don't care; Z = high-impedance OFF-state.

16-bit bus transceiver with direction pin; 5 V tolerant; 3-state

7. Limiting values

Table 4. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).

Parameter	Conditions	Min	Max	Unit
supply voltage		-0.5	+6.5	V
input clamping current	V ₁ < 0 V	-50	-	mA
input voltage		<u>[1]</u> –0.5	+6.5	V
output clamping current	$V_{\rm O}$ > $V_{\rm CC}$ or $V_{\rm O}$ < 0 V	-	±50	mA
output voltage	output HIGH or LOW	[2] _0.5	V _{CC} + 0.5	V
	output 3-state	[2] _0.5	+6.5	V
output current	$V_{O} = 0 V$ to V_{CC}	-	±50	mA
supply current		-	100	mA
ground current		-100	-	mA
storage temperature		-65	+150	°C
total power dissipation	$T_{amb} = -40 \ ^{\circ}C$ to +125 $^{\circ}C$;			
	(T)SSOP48 package	<u>[3]</u> _	500	mW
	VFBGA56 package	[4] _	1000	mW
	HXQFN60 package	[4] _	1000	mW
	supply voltage input clamping current input voltage output clamping current output voltage output voltage output current supply current ground current storage temperature	$\begin{tabular}{ c c c } & $$ upply voltage & $$ V_1 < 0 V$ \\ $$ input clamping current & $$ V_0 > V_{CC} \ or \ V_0 < 0 V$ \\ $$ output clamping current & $$ output HIGH \ or \ LOW$ \\ $$ output voltage & $$ output 3-state$ \\ $$ output current & $$ V_0 = 0 V \ to \ V_{CC}$ \\ $$ supply current & $$ y_0 = 0 V \ to \ V_{CC}$ \\ $$ supply current & $$ storage temperature$ \\ $$ total power dissipation & $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$	$\begin{tabular}{ c c c } & & & & & & & & & & & & & & & & & & &$	supply voltage -0.5 +6.5 input clamping current $V_1 < 0 V$ -50 - input voltage [1] -0.5 +6.5 output clamping current $V_0 > V_{CC}$ or $V_0 < 0 V$ - ±50 output voltage output HIGH or LOW [2] -0.5 $V_{CC} + 0.5$ output voltage output 3-state [2] -0.5 +6.5 output current $V_0 = 0 V$ to V_{CC} - ±50 supply current $V_0 = 0 V$ to V_{CC} - ±50 supply current - 100 - ground current $V_0 = 0^\circ C$ to +125 °C; - 150 total power dissipation $T_{amb} = -40^\circ C$ to +125 °C; (T)SSOP48 package [3] - 500 VFBGA56 package [4] - 1000 - -

[1] The minimum input voltage ratings may be exceeded if the input current ratings are observed.

[2] The output voltage ratings may be exceeded if the output current ratings are observed.

[3] Above 60 °C the value of P_{tot} derates linearly with 5.5 mW/K.

[4] Above 70 °C the value of P_{tot} derates linearly with 1.8 mW/K.

8. Recommended operating conditions

Table 5. Recommended operating conditions

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{CC}	supply voltage		1.65	-	3.6	V
		functional	1.2	-	3.6	V
VI	input voltage		0	-	5.5	V
Vo	output voltage	output HIGH or LOW	0	-	V _{CC}	V
		output 3-state	0	-	5.5	V
T _{amb}	ambient temperature	in free air	-40	-	+125	°C
$\Delta t / \Delta V$	input transition rise and fall rate	V_{CC} = 1.2 V to 2.7 V	0	-	20	ns/V
		V_{CC} = 2.7 V to 3.6 V	0	-	10	ns/V
-						

16-bit bus transceiver with direction pin; 5 V tolerant; 3-state

9. Static characteristics

Table 6. Static characteristics

At recommended operating conditions. Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	-40	°C to +8	35 °C	–40 °C to	o +125 °C	Unit
			Min	Typ <mark>[1]</mark>	Max	Min	Max	1
VIH	HIGH-level input	V _{CC} = 1.2 V	1.08	-	-	1.08	-	V
	voltage	V_{CC} = 1.65 V to 1.95 V	$0.65 \times V_{CC}$	-	-	$0.65 \times V_{CC}$	-	V
		V_{CC} = 2.3 V to 2.7 V	1.7	-	-	1.7	-	V
		V_{CC} = 2.7 V to 3.6 V	2.0	-	-	2.0	-	V
V _{IL}	LOW-level input	V _{CC} = 1.2 V	-	-	0.12	-	0.12	V
	voltage	V_{CC} = 1.65 V to 1.95 V	-	-	$0.35 \times V_{CC}$	-	$0.35 \times V_{CC}$	V
		V_{CC} = 2.3 V to 2.7 V	-	-	0.7	-	0.7	V
		V_{CC} = 2.7 V to 3.6 V	-	-	0.8	-	0.8	V
V _{OH}	HIGH-level	$V_{I} = V_{IH} \text{ or } V_{IL}$						
	output voltage	$I_{O} = -100 \ \mu\text{A};$ $V_{CC} = 1.65 \ \text{V} \text{ to } 3.6 \ \text{V}$	$V_{CC}-0.2$	-	-	$V_{CC}-0.3$	-	V
		$I_{O} = -4 \text{ mA}; V_{CC} = 1.65 \text{ V}$	1.2	-	-	1.05	-	V
		$I_{O} = -8 \text{ mA}; V_{CC} = 2.3 \text{ V}$	1.8	-	-	1.65	-	V
		$I_0 = -12 \text{ mA}; V_{CC} = 2.7 \text{ V}$	2.2	-	-	2.05	-	V
		$I_{O} = -18 \text{ mA}; V_{CC} = 3.0 \text{ V}$	2.4	-	-	2.25	-	V
		$I_0 = -24 \text{ mA}; V_{CC} = 3.0 \text{ V}$	2.2	-	-	2.0	-	V
V _{OL}	LOW-level output	$V_{I} = V_{IH} \text{ or } V_{IL}$						
	voltage	I _O = 100 μA; V _{CC} = 1.65 V to 3.6 V	-	-	0.2	-	0.3	V
		$I_{O} = 4 \text{ mA}; V_{CC} = 1.65 \text{ V}$	-	-	0.45	-	0.65	V
		I_0 = 8 mA; V_{CC} = 2.3 V	-	-	0.6	-	0.8	V
		$I_0 = 12 \text{ mA}; V_{CC} = 2.7 \text{ V}$	-	-	0.4	-	0.6	V
		$I_0 = 24 \text{ mA}; V_{CC} = 3.0 \text{ V}$	-	-	0.55	-	0.8	V
I	input leakage current ^[2]	$V_1 = 5.5 V \text{ or GND};$ $V_{CC} = 3.6 V$	-	±0.1	±5	-	±20	μA
I _{OZ}	OFF-state output current ^{[2][3]}	$V_{I} = V_{IH} \text{ or } V_{IL};$ $V_{O} = 5.5 \text{ V or GND};$ $V_{CC} = 3.6 \text{ V}$	-	±0.1	±5	-	±20	μΑ
I _{OFF}	power-off leakage current	$V_{\rm I}~\text{or}~V_{O}$ = 5.5 V; V_{CC} = 0.0 V	-	±0.1	±10	-	±20	μΑ
I _{CC}	supply current	$V_I = V_{CC}$ or GND; $I_O = 0$ A; $V_{CC} = 3.6$ V	-	0.1	20	-	80	μA
Δl _{CC}	additional supply current	per input pin; V_I = V_{CC} - 0.6 V; I_O = 0 A; V_{CC} = 2.7 V to 3.6 V	-	5	500	-	5000	μΑ
Cı	input capacitance	$V_{CC} = 0 V$ to 3.6 V; V ₁ = GND to V _{CC}	-	5.0	-	-	-	pF
C _{I/O}	input/output capacitance	$V_{CC} = 0 V \text{ to } 3.6 V;$ $V_{I} = GND \text{ to } V_{CC}$	-	10	-	-	-	pF

74LVC_LVCH16245A
Product data sheet

© Nexperia B.V. 2017. All rights reserved

8 of 20

16-bit bus transceiver with direction pin; 5 V tolerant; 3-state

Symbol	Parameter	Conditions	-40) °C to +85	5 °C	–40 °C to	o +125 ℃	Unit
			Min	Typ <mark>[1]</mark>	Max	Min	Max	-
I _{BHL}	bus hold LOW	$V_{CC} = 1.65; V_I = 0.58 V$	10	-	-	10	-	μA
	current [4][5]	$V_{CC} = 2.3; V_I = 0.7 V$	30	-	-	25	-	μA
		$V_{CC} = 3.0; V_I = 0.8 V$	75	-	-	60	-	μA
I _{BHH}	BHH bus hold HIGH current [4][5]	$V_{CC} = 1.65; V_I = 1.07 V$	-10	-	-	-10	-	μA
		V _{CC} = 2.3; V _I = 1.7 V	-30	-	-	-25	-	μA
		V _{CC} = 3.0; V _I = 2.0 V	-75	-	-	-60	-	μA
I _{BHLO}	bus hold LOW	V _{CC} = 1.95 V	200	-	-	200	-	μA
	overdrive current	V _{CC} = 2.7 V	300	-	-	300	-	μA
	<u>1901</u>	V _{CC} = 3.6 V	500	-	-	500	-	μA
I _{BHHO}	bus hold HIGH	V _{CC} = 1.95 V	-200	-	-	-200	-	μA
	overdrive current	V _{CC} = 2.7 V	-300	-	-	-300	-	μA
		V _{CC} = 3.6 V	-500	-	-	-500	-	μA

Table 6. Static characteristics ...continued

At recommended operating conditions. Voltages are referenced to GND (ground = 0 V).

[1] All typical values are measured at V_{CC} = 3.3 V (unless stated otherwise) and T_{amb} = 25 °C.

[2] The bus hold circuit is switched off when V_I > V_{CC} allowing 5.5 V on the input terminal.

[3] For I/O ports the parameter I_{OZ} includes the input leakage current.

[4] Valid for data inputs of bus hold parts only (74LVCH16245A). Note that control inputs do not have a bus hold circuit.

[5] The specified sustaining current at the data input holds the input below the specified V_I level.

[6] The specified overdrive current at the data input forces the data input to the opposite input state.

10. Dynamic characteristics

Table 7.Dynamic characteristics

Voltages are referenced to GND (ground = 0 V). For test circuit see Figure 9.

Symbol Parameter		Conditions		°C to +8	5 °C	-40 °C to	o +125 °C	Unit
				Typ ^[2]	Max	Min	Max	
t _{pd}	propagation	nAn to nBn; nBn to nAn; see Figure 7						
	delay	V _{CC} = 1.2 V	-	13.0	-	-	-	ns
		V_{CC} = 1.65 V to 1.95 V	1.5	5.2	12.2	1.5	13.8	ns
		V_{CC} = 2.3 V to 2.7 V	1.0	2.8	6.0	1.0	6.7	ns
		$V_{CC} = 2.7 V$	1.0	2.7	4.7	1.0	6.0	ns
		V_{CC} = 3.0 V to 3.6 V	1.0	2.4	4.5	1.0	6.0	ns
t _{en}	enable time	nOE to nAn, nBn; see Figure 8 [1]						
		V _{CC} = 1.2 V	-	15.0	-	-	-	ns
		V_{CC} = 1.65 V to 1.95 V	1.5	5.9	15.0	1.5	16.9	ns
		V_{CC} = 2.3 V to 2.7 V	1.0	3.3	7.9	1.0	8.8	ns
		$V_{CC} = 2.7 V$	1.5	3.5	6.7	1.5	8.5	ns
		$V_{CC} = 3.0 \text{ V} \text{ to } 3.6 \text{ V}$	1.0	2.7	5.5	1.0	7.0	ns

16-bit bus transceiver with direction pin; 5 V tolerant; 3-state

Table 7. Dynamic characteristics ...continued

Voltages are referenced to GND (ground = 0 V). For test circuit see Figure 9.

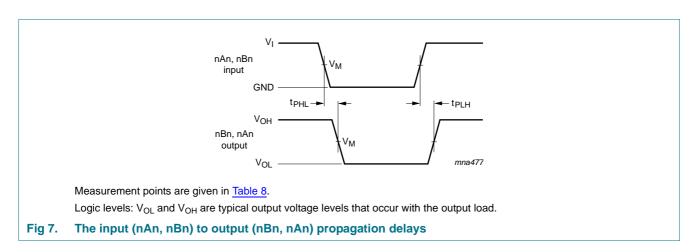
Symbol	Parameter	Conditions		-40	°C to +8	5 °C	-40 °C to	o +125 ℃	Unit
				Min	Typ ^[2]	Max	Min	Max	
t _{dis}	disable time	nOE to nAn, nBn; see Figure 8	[1]						
		$V_{CC} = 1.2 V$		-	11.0	-	-	-	ns
		V_{CC} = 1.65 V to 1.95 V		1.0	4.9	13.1	1.0	14.7	ns
		V_{CC} = 2.3 V to 2.7 V		0.5	2.7	7.1	0.5	7.9	ns
		$V_{CC} = 2.7 V$		1.5	3.4	6.6	1.5	8.5	ns
		$V_{CC} = 3.0 \text{ V} \text{ to } 3.6 \text{ V}$		1.5	3.3	5.6	1.5	7.0	ns
C _{PD}	power	per input; $V_I = GND$ to V_{CC}	[3]						
	dissipation capacitance	V_{CC} = 1.65 V to 1.95 V		-	11.5	-	-	-	pF
		V_{CC} = 2.3 V to 2.7 V		-	15.2	-	-	-	pF
		$V_{CC} = 3.0 \text{ V} \text{ to } 3.6 \text{ V}$		-	18.5	-	-	-	pF

[2] Typical values are measured at T_{amb} = 25 °C and V_{CC} = 1.2 V, 1.8 V, 2.5 V, 2.7 V and 3.3 V respectively.

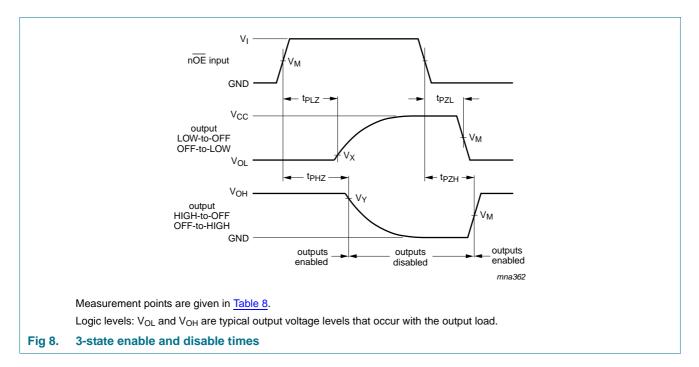
[3] C_{PD} is used to determine the dynamic power dissipation (P_D in μ W).

 $P_D = C_{PD} \times V_{CC}^2 \times f_i \times N + \Sigma (C_L \times V_{CC}^2 \times f_o)$ where:

 f_i = input frequency in MHz; f_o = output frequency in MHz


 C_{L} = output load capacitance in pF

V_{CC} = supply voltage in Volts


N = number of inputs switching

 $\Sigma(C_L \times V_{CC}^2 \times f_0)$ = sum of the outputs.

11. Waveforms

16-bit bus transceiver with direction pin; 5 V tolerant; 3-state

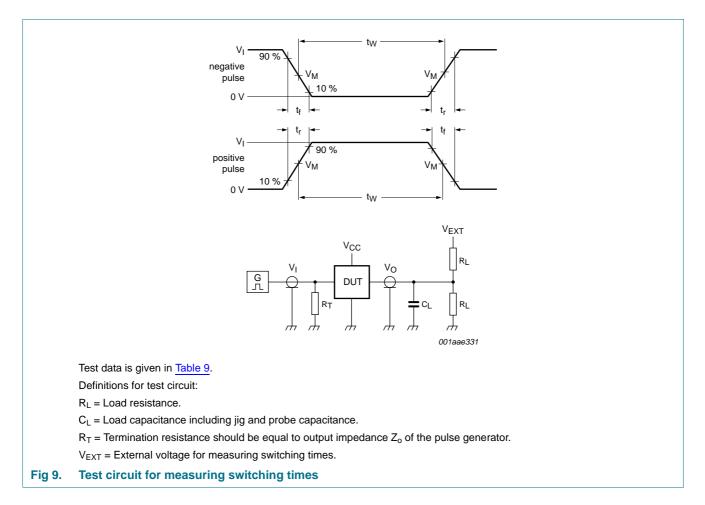
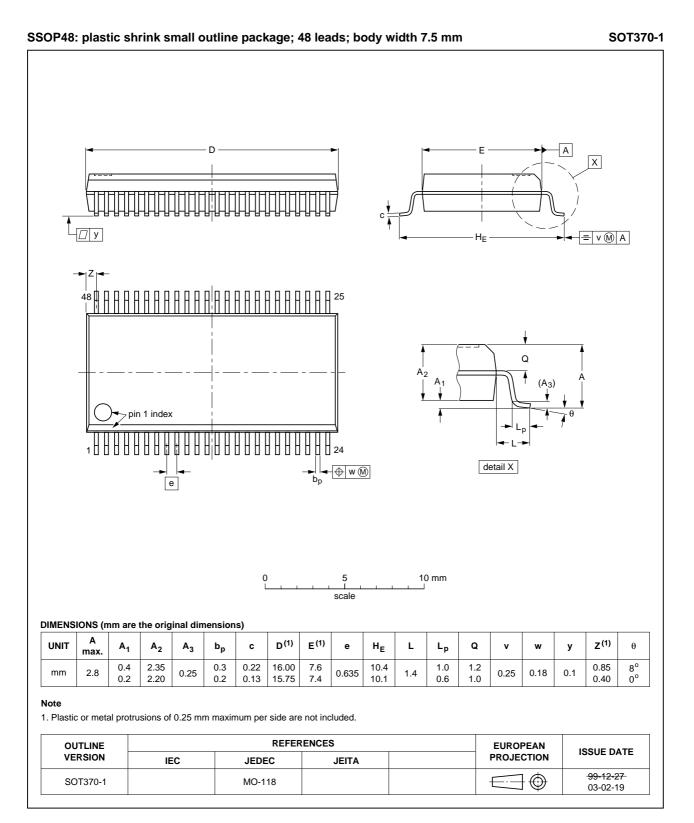


Table 8. Measurement points

Supply voltage	V _M	Input	Input				
V _{CC}		VI	$t_r = t_f$	V _X	V _Y		
1.2 V	$0.5\times V_{CC}$	V _{CC}	\leq 2.5 ns	V _{OL} + 0.15 V	$V_{OH}-0.15~V$		
1.65 V to 1.95 V	$0.5\times V_{CC}$	V _{CC}	\leq 2.5 ns	V _{OL} + 0.15 V	$V_{OH} - 0.15 \ V$		
2.3 V to 2.7 V	$0.5\times V_{CC}$	V _{CC}	\leq 2.5 ns	V _{OL} + 0.15 V	$V_{OH} - 0.15 \ V$		
2.7 V	1.5 V	2.7 V	\leq 2.5 ns	V _{OL} + 0.3 V	$V_{OH} - 0.3 \ V$		
3.0 V to 3.6 V	1.5 V	2.7 V	\leq 2.5 ns	V _{OL} + 0.3 V	$V_{OH} - 0.3 \ V$		

74LVC16245A; 74LVCH16245A

16-bit bus transceiver with direction pin; 5 V tolerant; 3-state


Table	9.	Test	data

Supply voltage	Input		Load		V _{EXT}	V _{EXT}		
	VI	t _r , t _f	CL	RL	t _{PLH} , t _{PHL}	t _{PLZ} , t _{PZL}	t _{PHZ} , t _{PZH}	
1.2 V	V _{CC}	\leq 2 ns	30 pF	1 kΩ	open	$2 \times V_{CC}$	GND	
1.65 V to 1.95 V	V _{CC}	\leq 2 ns	30 pF	1 kΩ	open	$2\times V_{CC}$	GND	
2.3 V to 2.7 V	V _{CC}	\leq 2 ns	30 pF	500 Ω	open	$2\times V_{CC}$	GND	
2.7 V	2.7 V	\leq 2.5 ns	50 pF	500 Ω	open	$2\times V_{CC}$	GND	
3.0 V to 3.6 V	2.7 V	\leq 2.5 ns	50 pF	500 Ω	open	$2\times V_{CC}$	GND	

74LVC16245A; 74LVCH16245A

16-bit bus transceiver with direction pin; 5 V tolerant; 3-state

12. Package outline

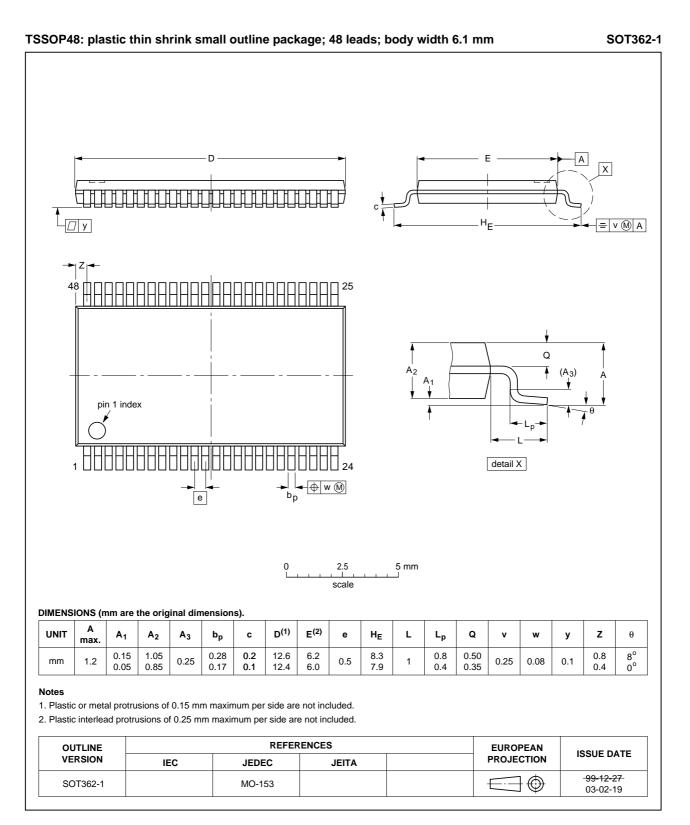


Fig 10. Package outline SOT370-1 (SSOP48)

All information provided in this document is subject to legal disclaimers.

74LVC_LVCH16245A

16-bit bus transceiver with direction pin; 5 V tolerant; 3-state

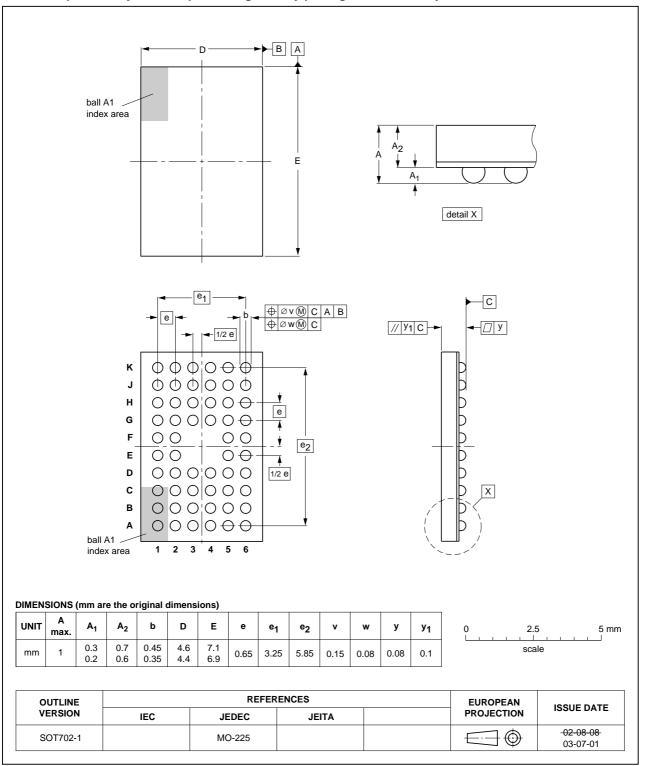


Fig 11. Package outline SOT362-1 (TSSOP48)

All information provided in this document is subject to legal disclaimers.

74LVC_LVCH16245A

16-bit bus transceiver with direction pin; 5 V tolerant; 3-state

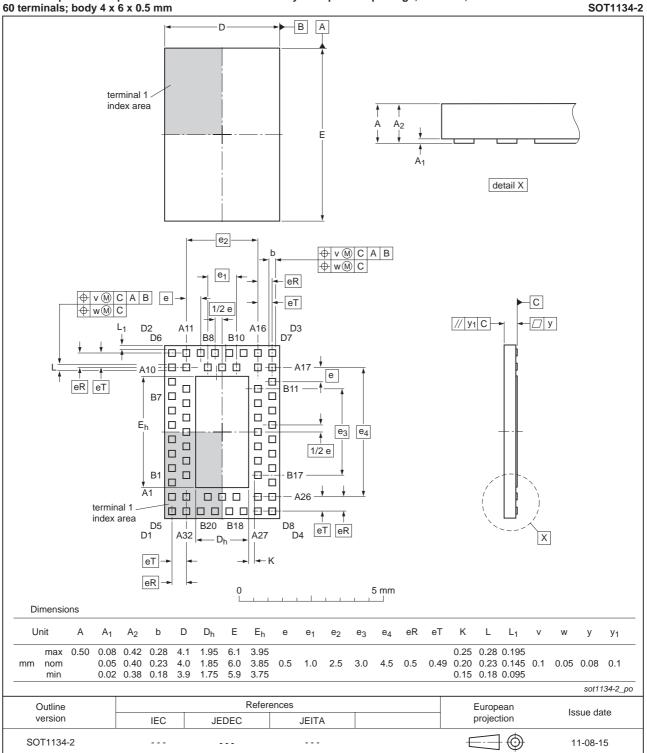

VFBGA56: plastic very thin fine-pitch ball grid array package; 56 balls; body 4.5 x 7 x 0.65 mm SOT702-1

Fig 12. Package outline SOT702-1 (VFBGA56)

All information provided in this document is subject to legal disclaimers.

74LVC LVCH16245A

16-bit bus transceiver with direction pin; 5 V tolerant; 3-state

HXQFN60: plastic compatible thermal enhanced extremely thin quad flat package; no leads; 60 terminals; body 4 x 6 x 0.5 mm

Fig 13. Package outline SOT1134-2 (HXQFN60)

All information provided in this document is subject to legal disclaimers.

74LVC LVCH16245A

16-bit bus transceiver with direction pin; 5 V tolerant; 3-state

13. Abbreviations

Table 10. Abbreviations		
Acronym	Description	
CDM	Charged Device Model	
DUT	Device Under Test	
ESD	ElectroStatic Discharge	
HBM	Human Body Model	
MM	Machine Model	
TTL	Transistor-Transistor Logic	

14. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes
74LVC_LVCH16245A v.12	20120213	Product data sheet	-	74LVC_LVCH16245A v.11
Modifications:	 For type num SOT1134-2. 	ber 74LVC16245ABX and	d 74LVCH16245ABX	the sot code has changed to
74LVC_LVCH16245A v.11	20111208	Product data sheet	-	74LVC_LVCH16245A v.10
Modifications:	• Table 4, Table	<u>e 5, Table 6, Table 7,</u> and	Table 9: values adde	d for lower voltage ranges.
74LVC_LVCH16245A v.10	20110623	Product data sheet	-	74LVC_LVCH16245A v.9
Modifications:	 type numbers and 74LVCH² 		4LVCH16245ABQ ch	nanged to 74LVC16245ABX
	 Figure 6: figu 	re note 1 changed.		
74LVC_LVCH16245A v.9	20100329	Product data sheet	-	74LVC_LVCH16245A v.8
74LVC_LVCH16245A v.8	20081106	Product data sheet	-	74LVC_LVCH16245A v.7
74LVC_LVCH16245A v.7	20031125	Product specification	-	74LVC_LVCH16245A v.6
74LVC_LVCH16245A v.6	20030130	Product specification	-	74LVC_LVCH16245A v.5
74LVC_LVCH16245A v.5	20021030	Product specification	-	74LVC_H16245A v.4
74LVC_H16245A v.4	19970925	Product specification	-	74LVC16245A_ 74LVCH16245A v.3
74LVC16245A_ 74LVCH16245A v.3	19970925	Product specification	-	74LVC16245A v.2
74LVC16245A v.2	19970801	Product specification	-	74LVC16245A v.1
74LVC16245A v.1	-	-	-	-

16-bit bus transceiver with direction pin; 5 V tolerant; 3-state

15. Legal information

15.1 Data sheet status

Document status[1][2]	Product status ^[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

[1] Please consult the most recently issued document before initiating or completing a design.

[2] The term 'short data sheet' is explained in section "Definitions".

[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nexperia.com.

15.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. Nexperia does not give any

representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local Nexperia sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between Nexperia and its customer, unless Nexperia and

customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the Nexperia product is deemed to offer functions and qualities beyond those described in the Product data sheet.

15.3 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, Nexperia does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. Nexperia takes no responsibility for the content in this document if provided by an information source outside of Nexperia.

In no event shall Nexperia be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, Nexperia's aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of Nexperia.

Right to make changes — Nexperia reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof. Suitability for use — Nexperia products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of a Nexperia product can reasonably be expected to result in personal injury, death or severe property or environmental damage. Nexperia and its suppliers accept no liability for inclusion and/or use of Nexperia products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. Nexperia makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using Nexperia products, and Nexperia accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the Nexperia product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

Nexperia does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using Nexperia products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). Nexperia does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale - Nexperia

products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nexperia.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. Nexperia hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of Nexperia products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

74LVC16245A; 74LVCH16245A

16-bit bus transceiver with direction pin; 5 V tolerant; 3-state

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Non-automotive qualified products — Unless this data sheet expressly states that this specific Nexperia product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. Nexperia accepts no liability for inclusion and/or use of

non-automotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without Nexperia's warranty of the

product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond

Nexperia's specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies Nexperia for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond Nexperia's standard warranty and Nexperia's product specifications.

Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

15.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

16. Contact information

For more information, please visit: http://www.nexperia.com

For sales office addresses, please send an email to: salesaddresses@nexperia.com

74LVC16245A; 74LVCH16245A

16-bit bus transceiver with direction pin; 5 V tolerant; 3-state

17. Contents

1	General description 1
2	Features and benefits 1
3	Ordering information 2
4	Functional diagram 2
5	Pinning information 4
5.1	Pinning
5.2	Pin description 6
6	Functional description 6
7	Limiting values7
8	Recommended operating conditions 7
9	Static characteristics 8
10	Dynamic characteristics 9
11	Waveforms 10
12	Package outline 13
13	Abbreviations 17
14	Revision history 17
15	Legal information 18
15.1	Data sheet status 18
15.2	Definitions 18
15.3	Disclaimers
15.4	Trademarks 19
16	Contact information 19
17	Contents 20

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Bus Transceivers category:

Click to view products by NXP manufacturer:

Other Similar products are found below :

 74LS645N
 DS8838
 FXL4TD245UMX
 IDT74CBTLV3257PGG
 74LVT245BBT20-13
 5962-8683401DA
 PCA9617ADMR2G
 5962

 8953501KA
 5962-86834012A
 5962-7802301Q2A
 5962-7802002MFA
 5962-7802001MFA
 74VHCV245FT(BJ)
 NCV7349D13R2G

 TC74VCX164245(EL,F
 MC74LCX245MNTWG
 TC7WPB8306L8X,LF(S
 TC7WPB9307FC(TE85L
 74FCT16245CTPVG8

 74FCT16543CTPVG
 74FCT245CTPYG8
 MM74HC245AMTCX
 74LVCH16245APVG
 74LVX245MTC
 5962-9221405M2A
 NTS0102DP

 Q100H
 74ALVC16245MTDX
 74ALVCH32245BF
 74FCT163245APVG
 74FCT245CTQG
 74FCT3245AQG

 74LCXR162245MTX
 74VHC245M
 TC7WPB9306FC(TE85L
 TC7WPB9306FK(T5L,F
 JM38510/65553BRA
 ST3384EBDR

 74LVC1T45GF,132
 74AVC4TD245BQ,115
 PQJ7980AHN/C0JL,51
 MC100EP16VBDG
 FXL2TD245L10X
 74LVC1T45GM,115

 TC74AC245P(F)
 PSB21150F S LLHR
 SNJ54AHC245J SNJ54AHC245J SNJ54AHC245J SNJ54AHC245AFK
 SNJ54AHC245J SNJ54AHC245J SNJ54AHC245AFK