Is Now Part of

ON Semiconductor ${ }^{\circledR}$

To learn more about ON Semiconductor, please visit our website at www.onsemi.com

[^0]
Features

■ 1.4 V to $3.6 \mathrm{~V} \mathrm{~V}_{\mathrm{CC}}$ supply operation
■ 3.6V tolerant inputs and outputs

- Power-off high impedance inputs and outputs

■ Supports Live Insertion and Withdrawal (Note 1)

- $\mathrm{tpD}_{\mathrm{PD}}$
3.5 ns max for 3.0 V to $3.6 \mathrm{~V} \mathrm{~V}_{\mathrm{CC}}$
- Static Drive ($\mathrm{I}_{\mathrm{OH}} / \mathrm{I}_{\mathrm{OL}}$)
$\pm 24 \mathrm{~mA} @ 3.0 \mathrm{~V} \mathrm{~V}_{\mathrm{CC}}$
■ Uses proprietary noise/EMI reduction circuitry
- Latchup performance exceeds 300 mA
- ESD performance:

Human body model > 2000V
Machine model > 200V
Leadless DQFN Pb-Free package
Note 1: To ensure the high impedance state during power up and power down, OE_{n} should be tied to V_{CC} through a pull up resistor. The minimum value of the resistor is determined by the current sourcing capability of the driver.

Ordering Code:

Order Number	Package Number	Package Description
74VCX245WM (Note 2)	M20B	20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300" Wide
$\begin{aligned} & \hline \text { 74VCX245BQX } \\ & \text { (Note 3) } \end{aligned}$	MLP020B	Pb-Free 20-Terminal Depopulated Quad Very-Thin Flat Pack No Leads (DQFN), JEDEC MO-241, $2.5 \times 4.5 \mathrm{~mm}$
$\begin{aligned} & \hline 74 \mathrm{VCX245MTC} \\ & \text { (Note 2) } \end{aligned}$	MTC20	20-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide

Note: DAP (Die Attach Pad)

Absolute Maximum Ratings（Note 5）

Supply Voltage（ V_{CC} ）	-0.5 V to +4.6 V
DC Input Voltage（ V_{1} ）	-0.5 V to +4.6 V
DC Output Voltage（ V_{O} ）	
Outputs 3－STATE	-0.5 V to +4.6 V
Outputs Active（Note 6）	-0.5 V to $\mathrm{V}_{\text {CC }}+0.5 \mathrm{~V}$
DC Input Diode Current（ $\mathrm{I}_{1 \mathrm{~K}}$ ） $\mathrm{V}_{1}<0 \mathrm{~V}$	$-50 \mathrm{~mA}$
DC Output Diode Current（lok）	
$\mathrm{V}_{\mathrm{O}}<0 \mathrm{~V}$	－50 mA
$\mathrm{V}_{\mathrm{O}}>\mathrm{V}_{\mathrm{cc}}$	＋50 mA
DC Output Source／Sink Current	
（ $\mathrm{lOH}^{\text {／}} \mathrm{l} \mathrm{LL}$ ）	$\pm 50 \mathrm{~mA}$
DC V $\mathrm{CC}^{\text {or Ground Current }}$	$\pm 100 \mathrm{~mA}$
Storage Temperature（ $\mathrm{T}_{\text {STG }}$ ）	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Recommended Operating

 Conditions（Note 7）| Power Supply | |
| :--- | ---: |
| Operating | 1.4 V to 3.6 V |
| Input Voltage | -0.3 V to 3.6 V |
| Output Voltage $\left(\mathrm{V}_{\mathrm{O}}\right)$ | |
| Output in Active States | 0 V to V_{CC} |
| Output in 3－STATE | 0 V to 3.6 V |
| Output Current in $\mathrm{I}_{\mathrm{OH}} / \mathrm{l}_{\mathrm{OL}}$ | |
| $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6 V | $\pm 24 \mathrm{~mA}$ |
| $\mathrm{~V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to 2.7 V | $\pm 18 \mathrm{~mA}$ |
| $\mathrm{~V}_{\mathrm{CC}}=1.65 \mathrm{~V}$ to 2.3 V | $\pm 6 \mathrm{~mA}$ |
| $\mathrm{~V}_{\mathrm{CC}}=1.4 \mathrm{~V}$ to 1.6 V | $\pm 2 \mathrm{~mA}$ |
| Free Air Operating Temperature $\left(\mathrm{T}_{\mathrm{A}}\right)$ | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ |
| Minimum Input Edge Rate $(\Delta \mathrm{t} / \Delta \mathrm{V})$ | |
| $\mathrm{V}_{\text {IN }}=0.8 \mathrm{~V}$ to $2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ | $10 \mathrm{~ns} / \mathrm{V}$ |

Note 5：The Absolute Maximum Ratings are those values beyond which the safety of the device cannot be guaranteed．The device should not be operated at these limits．The parametric values defined in the Electrical Characteristics tables are not guaranteed at the Absolute Maximum Rat－ ings．The＂Recommended Operating Conditions＂table will define the condi－ tions for actual device operation．
Note 6：I_{0} Absolute Maximum Rating must be observed．
Note 7：Floating or unused inputs must be held HIGH or LOW．

DC Electrical Characteristics

Symbol	Parameter	Conditions	V_{cc} （V）	Min	Max	Units
V_{IH}	HIGH Level Input Voltage		$\begin{gathered} \hline 2.7 \text { to } 3.6 \\ 2.3 \text { to } 2.7 \\ 1.65 \text { to } 2.3 \\ 1.4 \text { to } 1.6 \end{gathered}$	2.0 1.6 $0.65 \times \mathrm{V}_{\mathrm{CC}}$ $0.65 \times \mathrm{V}_{\mathrm{CC}}$		V
V_{IL}	LOW Level Input Voltage		$\begin{gathered} \hline 2.7 \text { to } 3.6 \\ 2.3 \text { to } 2.7 \\ 1.65 \text { to } 2.3 \\ 1.4 \text { to } 1.6 \end{gathered}$		0.8 0.7 $0.35 \times V_{\mathrm{CC}}$ $0.35 \times \mathrm{V}_{\mathrm{CC}}$	V
$\overline{\mathrm{V} \text { OH }}$	HIGH Level Output Voltage	$\mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A}$ $\mathrm{I}_{\mathrm{OH}}=-12 \mathrm{~mA}$ $\mathrm{I}_{\mathrm{OH}}=-18 \mathrm{~mA}$ $\mathrm{I}_{\mathrm{OH}}=-24 \mathrm{~mA}$ $\mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A}$ $\mathrm{I}_{\mathrm{OH}}=-6 \mathrm{~mA}$ $\mathrm{I}_{\mathrm{OH}}=-12 \mathrm{~mA}$ $\mathrm{I}_{\mathrm{OH}}=-18 \mathrm{~mA}$ $\mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A}$ $\mathrm{I}_{\mathrm{OH}}=-6 \mathrm{~mA}$ $\mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A}$ $\mathrm{I}_{\mathrm{OH}}=-2 \mathrm{~mA}$	2.7 to 3.6 2.7 3.0 3.0 2.3 to 2.7 2.3 2.3 2.3 1.65 to 2.3 1.65 1.4 to 1.6 1.4	 $\mathrm{V}_{\mathrm{CC}}-0.2$ 2.2 2.4 2.2 $\mathrm{~V}_{\mathrm{CC}}-0.2$ 2.0 1.8 1.7 $\mathrm{~V}_{\mathrm{CC}}-0.2$ 1.25 $\mathrm{~V}_{\mathrm{CC}}-0.2$ 1.05		V

Dynamic Switching Characteristics					
Symbol	Parameter	Conditions	v_{cc}(V)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	Units
				Typical	
$\mathrm{V}_{\text {OLP }}$	Quiet Output Dynamic Peak $\mathrm{V}_{\text {OL }}$	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V}$	1.8	0.3	
			2.5	0.7	v
			3.3	1.0	
$\mathrm{V}_{\text {OLV }}$	Quiet Output Dynamic Valley V_{OL}	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V}$	1.8	-0.3	
			2.5	-0.7	v
			3.3	-1.0	
$\mathrm{V}_{\text {OHV }}$	Quiet Output Dynamic Valley V_{OH}	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{V}_{\text {IH }}=\mathrm{V}_{\text {CC }}, \mathrm{V}_{\text {IL }}=0 \mathrm{~V}$	1.8	1.3	
			2.5	1.7	v
			3.3	2.0	
Capacitance					
Symbol	Parameter	Conditions		$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	Units
				Typical	
$\mathrm{C}_{\text {IN }}$	Input Capacitance	$\mathrm{V}_{1}=0 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{CC}}=1.8 \mathrm{~V}$		6.0	pF
$\mathrm{Cl}_{1 / \mathrm{O}}$	Input/Output Capacitance	$\mathrm{V}_{1}=0 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{CC}}=1.8 \mathrm{~V}$		7.0	pF
$\mathrm{C}_{\text {PD }}$	Power Dissipation Capacitance	$\mathrm{V}_{1}=0 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{CC}}, \mathrm{f}=10 \mathrm{MHz}$	or 3.3V	20.0	pF

AC Loading and Waveforms ($\mathrm{V}_{\mathrm{Cc}} 3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$ to $1.8 \mathrm{~V} \pm 0.15 \mathrm{~V}$)

FIGURE 1. AC Test Circuit

TEST	SWITCH
$\mathrm{t}_{\mathrm{PLH}}, \mathrm{t}_{\mathrm{PHL}}$	Open
$\mathrm{t}_{\mathrm{PZL}}, \mathrm{t}_{\mathrm{PLZ}}$	6 V at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V} ;$
	$\mathrm{V}_{\mathrm{CC}} \times 2$ at $\mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V} \pm 0.2 \mathrm{~V} ; 1.8 \mathrm{~V} \pm 0.15 \mathrm{~V}$
$\mathrm{t}_{\mathrm{PZH}}, \mathrm{t}_{\mathrm{PHZ}}$	GND

FIGURE 2. Waveform for Inverting and Non-Inverting Functions

FIGURE 3. 3-STATE Output High Enable and Disable Times for Low Voltage Logic

FIGURE 4. 3-STATE Output Low Enable and Disable Times for Low Voltage Logic

Symbol	V_{CC}		
	$\mathbf{3 . 3 V} \pm \mathbf{0 . 3 V}$	$\mathbf{2 . 5 V} \pm \mathbf{0 . 2 V}$	$\mathbf{1 . 8 V} \pm \mathbf{0 . 1 5 V}$
V_{mi}	1.5 V	$\mathrm{~V}_{\mathrm{CC}} / 2$	$\mathrm{~V}_{\mathrm{CC}} / 2$
$\mathrm{~V}_{\mathrm{mo}}$	1.5 V	$\mathrm{~V}_{\mathrm{CC}} / 2$	$\mathrm{~V}_{\mathrm{CC}} / 2$
$\mathrm{~V}_{\mathrm{X}}$	$\mathrm{V}_{\mathrm{OL}}+0.3 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{OL}}+0.15 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{OL}}+0.15 \mathrm{~V}$
$\mathrm{~V}_{\mathrm{Y}}$	$\mathrm{V}_{\mathrm{OH}}-0.3 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{OH}}-0.15 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{OH}}-0.15 \mathrm{~V}$

AC Loading and Waveforms ($\mathrm{V}_{\mathrm{CC}} 1.5 \pm 0.1 \mathrm{~V}$)

TEST	SWITCH
$\mathrm{t}_{\text {PLH }}, \mathrm{t}_{\text {PHL }}$	Open
$\mathrm{t}_{\text {PZL }}, \mathrm{t}_{\text {PLZ }}$	$\mathrm{V}_{\mathrm{CC}} \times 2$ at $\mathrm{V}_{\mathrm{CC}}=1.5 \mathrm{~V} \pm 0.1 \mathrm{~V}$
$\mathrm{t}_{\text {PZH }}, \mathrm{t}_{\text {PHZ }}$	GND

FIGURE 6. Waveform for Inverting and Non-Inverting Functions

FIGURE 7. 3-STATE Output High Enable and Disable Times for Low Voltage Logic

FIGURE 8. 3-STATE Output Low Enable and Disable Times for Low Voltage Logic

Symbol	$\mathbf{V}_{\mathbf{C C}}$
	$\mathbf{1 . 5 V} \pm \mathbf{0 . 1} \mathrm{V}$
V_{mi}	$\mathrm{V}_{\mathrm{CC}} / 2$
$\mathrm{~V}_{\mathrm{mo}}$	$\mathrm{V}_{\mathrm{CC}} / 2$
$\mathrm{~V}_{\mathrm{X}}$	$\mathrm{V}_{\mathrm{OL}}+0.1 \mathrm{~V}$
$\mathrm{~V}_{\mathrm{Y}}$	$\mathrm{V}_{\mathrm{OH}}-0.1 \mathrm{~V}$

TAPE DIMENSIONS inches (millimeters)

NOTES: unless otherwise specified

1. Cummulative pitch for feeding holes and cavities (chip pockets) not to exceed $0.008[0.20]$ over 10 pitch span.
2. Smallest allowable bending radius.
3. Thru hole inside cavity is centered within cavity.
4. Tolerance is $\pm 0.002[0.05]$ for these dimensions on all 12 mm tapes

5 . Ao and Bo measured on a plane $0.120[0.30$] above the bottom of the pocket.
6. Ko measured from a plane on the inside bottom of the pocket to the top surface of the carrier.
7. Pocket position relative to sprocket hole measured as true position of pocket. Not pocket hole.
7. Cocket position relative to sprocket hole measured as true position
8 . Controlling dimension is millimeter. Diemension in inches rounded.

REEL DIMENSIONS inches (millimeters)

Tape Size	A	\mathbf{B}	\mathbf{C}	\mathbf{D}	\mathbf{N}	W1	W2
12 mm	13.0	0.059	0.512	0.795	2.165	0.488	0.724
	(330.0)	(1.50)	(13.00)	(20.20)	(55.00)	(12.4)	(18.4)

Physical Dimensions inches (millimeters) unless otherwise noted

20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300" Wide Package Number M20B

Pb-Free 20-Terminal Depopulated Quad Very-Thin Flat Pack No Leads (DQFN), JEDEC MO-241, $2.5 \times 4.5 \mathrm{~mm}$ Package Number MLP020B

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

20-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide Package Number MTC20

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.
LIFE SUPPORT POLICY
FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Bus Transceivers category:
Click to view products by ON Semiconductor manufacturer:
Other Similar products are found below :
74LS645N DS8838 FXL4TD245UMX IDT74CBTLV3257PGG 74LVT245BBT20-13 5962-8683401DA PCA9617ADMR2G 5962-
8953501KA 5962-86834012A 5962-7802301Q2A 5962-7802002MFA 5962-7802001MFA 74VHCV245FT(BJ) NCV7349D13R2G
TC74VCX164245(EL,F MC74LCX245MNTWG TC7WPB8306L8X,LF(S TC7WPB9307FC(TE85L 74FCT16245CTPVG8
74FCT16543CTPVG 74FCT245CTPYG8 MM74HC245AMTCX 74LVCH16245APVG 74LVX245MTC 5962-9221405M2A NTS0102DP-
Q100H 74ALVC16245MTDX 74ALVCH32245BF 74FCT163245APVG 74FCT245ATPYG8 74FCT245CTQG 74FCT3245AQG
74LCXR162245MTX 74VHC245M 74VHC245MX TC7WPB9306FC(TE85L TC7WPB9306FK(T5L,F JM38510/65553BRA ST3384EBDR
74LVC1T45GF,132 74AVC4TD245BQ,115 PQJ7980AHN/C0JL,51 MC100EP16VBDG FXL2TD245L10X 74LVC1T45GM,115
TC74AC245P(F) PSB21150F S LLHR SNJ54LS245FK SNJ54AHC245J SNJ54ABT245AFK

[^0]:

 is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

