

Phase Control SCR 150 Amperes Average 1600 Volts

C180 (Outline Drawing)

Ordering Information:

Select the complete five or six digit part number you desire from the table, i.e. C180PM is a 1600 Volt, 150 Ampere Phase Control SCR.

	Volta	Current		
Туре	V _{DRM} V _{RRM}	Code	I _{T(av)}	
C180	200	В	150	
	400	D		
	600	М		
	800	N		
	1000	Р		
	1200	PB		
	1400	PD		
	1600	PM		

Description:

Powerex Silicon Controlled Rectifiers (SCR) are designed for phase control applications. These are all-diffused, compression bonded encapsulated (CBE) devices employing the field-proven amplifying (di/namic) gate.

Features:

- Low On-State Voltage
- High di/dt
- High dv/dt
- Hermetic Packaging
- Excellent Surge and I²t Ratings

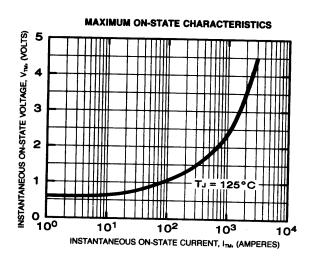
Applications:

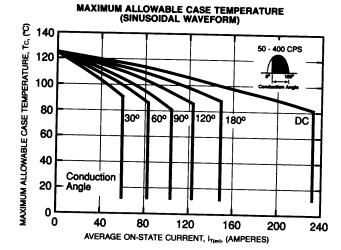
- Power Supplies
- Battery Chargers
- Motor Control

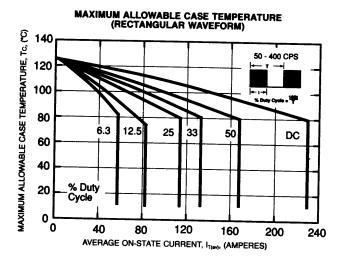
C180 Phase Control SCR 150 Amperes Average, 1600 Volts

Absolute Maximum Ratings

	Symbol	C180	Units
	I _{T(RMS)}	235	Amperes
RMS On-State Current @ T _C = 90°C		150	Amperes
Average On-State Current @ T _C = 90°C	T(av)	3500	Amperes
Peak One-Cycle Surge (Non Repetitive) On-State Current (60Hz)	ITSM		Amperes
Peak One-Cycle Surge (Non-Repetitive) On-State Current (50Hz)	ITSM	3200	
Critical Rate-of-Rise of On-State Current (Non-Repetitive)	di/dt	800	Amperes/µs
	di/dt	150	Amperes/µs
Critical Rate-of-Rise of On-State Current (Repetitive)		50,800	A ² sec
I ² t (for Fusing), 8.3 milliseconds	² t	and the second	Watts
Peak Gate Power Dissipation	P _{GM}	10	
Average Gate Power Dissipation	P _{G(av)}	22	Watts
	T _{STG}	-40 to 150	°C
Storage Temperature	T,	-40 to 125	•C
Operating Temperature	• 3	250 to 300	inlb.
Mounting Torque			N-M
Mounting Torque		28 to 34	14-141

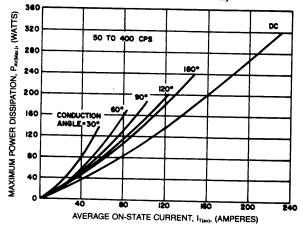

Electrical and Thermal Characteristics

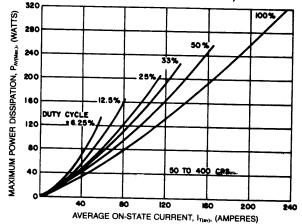

Cheracteristics	Symbol	Test Conditions	C180	Units
Voltage—Blocking State Maximums		T _J = 125°C; V _{DRM} = Rated	20	mA
Forward Leakage, Peak	DRM	$T_{J} = 125^{\circ}C; V_{RRM} = Rated$	20	mA
Reverse Leakage, Peak	IRRM	$I_{\rm J} = 125$ C; $V_{\rm RRM} = HaleO$		
Current—Conducting State Maximums Peak On-State Voltage	V _{TM}	$T_J = 25^{\circ}C, I_{TM} = 1500A$	2.85	Volts
Switching Typical Turn-Off Time	t _a	$I_T = 150A$, $T_J = 125^{\circ}C$, $di_R/dt = 12.5A/\mu sec$ Reapplied dv/dt = 20V/ μsec , Linear to 0.8V _{DRM} , V _R = 50V	100	μsec
Typical Delay Time	t _a	$I_T = 100A$, $V_{DRM} = Rated$ Gate Supply = 10V Open Ckt, 25 Ω , 0.1 μ sec Rise Time	1.0	μsec
Min. Critical dv/dt exponential to VDRM	dv/dt	$T_{J} = 125^{\circ}C$, Gate Open	200	V/µsec
Thermal Maximum Thermal Resistance Junction to Case	Reac		0.14	•C/Watt
Case to Sink, Lubricated	R _{ecs}		0.075	C/ Wall
Gate Maximum Parameters Gate Current to Trigger	I _{GT}	$T_c = 25^{\circ}C: V_D = 6Vdc, R_L = 3\Omega$	150	mA
Gate Voltage to Trigger	V _{GT}	$T_c = -40^{\circ}C$ to 125°C, $V_D = 6Vdc$, $R_L = 3\Omega$	3.0	Volts
Non-Triggering Gate Voltage		$T_J = 125^{\circ}C$, Rated V_{DRM} , $R_L = 1000\Omega$	0.15	Volts
Peak Forward Gate Current	IGTM		10	Amperes
Peak Reverse Gate Voltage	V _{GRM}		5	Volts



C180

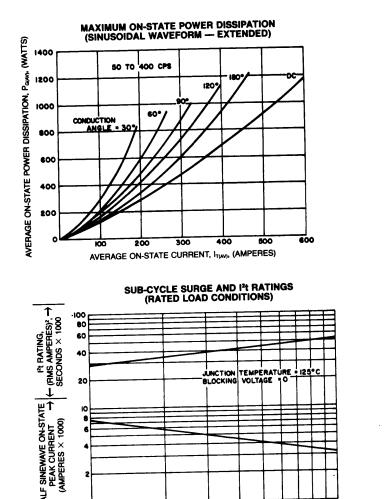
Phase Control SCR 150 Amperes Average, 1600 Volts

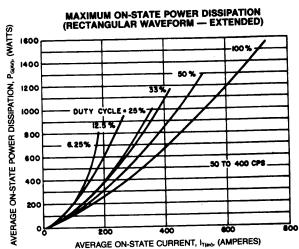


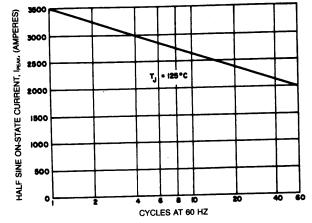


TRANSIENT THERMAL IMPEDANCE CHARACTERISTICS (JUNCTION TO CASE) Zaucti, ("C/WATT) Ш $\pm m$ ПШ Ш IMPEDANCE, 0.6 0.4 Π ITT 0. Ш THERMAL 00. 00. TRANSIENT .04 ┼┼┼╢ .01 .001 .01 0.1 1.0 ю 100 TIME, t, (SECONDS)

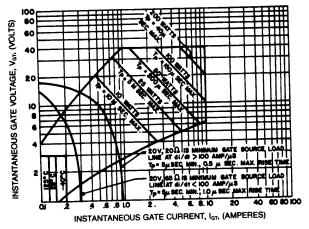
MAXIMUM ON-STATE POWER DISSIPATION (SINUSOIDAL WAVEFORM)






C180

Phase Control SCR 150 Amperes Average, 1600 Volts



MAXIMUM ALLOWABLE SURGE ON-STATE CURRENT (NON-REPETITIVE)

GATE CHARACTERISTICS

PULSE WIDTH, tp. (msec)

NOTES:

- Maximum allowable average gate dissipation = 5 watts.
 The locus of possible dc trigger points lie outside the boundaries shown at various case temperatures.
- 3. Tp = Rectangular gate current pulse width (5 μ s min. duration; 1.0 μ s max. rise time for 20V, 65Ω source).
- 4. $20V 20\Omega$ is the minimum gate source load line when rate of circuit current rise >100 Amp/µs or anode rate of current rise >200 Amps/µs ($t_p = 5\mu s min., 0.5\mu s max$. rise time)

Maximum long-term repetitive anode di/dt = 500 Amps/ μ s with 20V - 20 Ω gate source.

HALF 1 →

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for powerex manufacturer:

Other Similar products are found below :

 R7013003XXUA
 R9G01212XX
 VLA541-01R
 QRD0630T30
 CM400DY-24NF
 CM100TX-24S1
 CM600HA-24A
 NLD422PB

 PSM03S93E5-A
 BP2B-V
 ND431625
 R5031213LSWS
 BG2B
 BG2C-5015
 ND431825
 T9G0121203DH
 CD611616C
 BG1A-PX

 TCS4402802DH
 CD421690C
 PM600DVA060
 CD411899C
 CD631615B
 C601PB
 R5021213LSWS
 BG2A-NFH
 C180PB
 CD431690B

 NLR425CM
 HARDWARE KIT 50
 CD410899C
 CM400HA-24A
 CD411699C
 LEAD KIT #NK
 HARDWARE KIT 49
 VLA500-01

 HARDWARE KIT 87
 VLA502-01
 VLA106-24154
 VLA106-15242