Monolithic CMOS Analog Multiplexers

Abstract

General Description Maxim's DG508A and DG509A are monolithic CMOS analog multiplexers (muxes): the DG508A is a single 8-channel (1-of-8) mux, and the DG509A is a differential 4-channel (2-of-8) mux. Both devices guarantee break-before-make switching. Maxim guarantees these muxes will not latch up if the power supplies are turned off with the input signals still present. Maxim also guarantees continuous operation when these devices are powered by supplies ranging from $\pm 4.5 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$. The DG508A/DG509A are plug-in upgrades for the industry-standard DG508A/DG509A, respectively. Maxim's parts have faster enable switching times and significantly lower leakage currents. The DG508A/ DG509A also consume significantly lower power, making them ideal for portable equipment.

Applications
Control Systems
Data Logging Systems
Aircraft Heads-Up Displays
Data-Acquisition Systems
Signal Routing
Typical Operating Circuits

Features

- Improved Second Source
- Operate from $\pm 4.5 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$ Supplies
- Symmetrical, Bidirectional Operation
- Logic and Enable Inputs, TTL and CMOS Compatible
- Latchup-Proof Construction
- Monolithic, Low-Power CMOS Design

Ordering Information

PART	TEMP RANGE	PIN-PACKAGE
DG508ACJ	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 Plastic DIP
DG508ACWE	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 Wide SO
DG508AC/D	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Dice ${ }^{*}$
DG508ABK	$-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 CERDIP
DG508ADJ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Plastic DIP
DG508ADY	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Narrow SO
DG508AEWE	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Wide SO
DG508AAK	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16 CERDIP
DG508AMY/PR	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16 Narrow SO
DG509ACJ	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 Plastic DIP
DG509ACWE	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 Wide SO
DG509AC/D	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Dice ${ }^{*}$
DG509ABK	$-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 CERDIP
DG509ADJ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Plastic DIP
DG509ADY	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Narrow SO
DG509AEWE	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Wide SO
DG509AAK	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16 CERDIP
DG509AMY/PR	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16 Narrow SO

Devices are available in a lead(Pb)-free/RoHS-compliant package (except CERDIP). Specify lead-free by adding a plus (+) to the part number when ordering.
*Contact factory for dice specifications.

For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim's website at www.maxim-ic.com.

Monolithic CMOS Analog Multiplexers

ABSOLUTE MAXIMUM RATINGS

Operating Temperature Ranges:
DG50_ACJ/CWE .. $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
DG50_ABK.. $20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
DG50_ADJ/DY/EWE.. $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
DG50_AAK/MY .. $55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature Range $65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10s) $300^{\circ} \mathrm{C}$
Soldering Temperature (reflow)
PDIP, Wide SO, Narrow SO, CERDIP containing lead(Pb)... $+240^{\circ} \mathrm{C}$
PDIP, Wide SO, Narrow SO lead(Pb)-free $+260^{\circ} \mathrm{C}$

Note 1: Signals on S_ or D_ exceeding V+ or V- are clamped by internal diodes. Limit forward-diode current to maximum current ratings
Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

$\left(\mathrm{V}+=15 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GND}}=0 \mathrm{~V}, \mathbf{T}_{\mathbf{A}}=\mathbf{+ 2 5}^{\circ} \mathbf{C}\right.$, unless otherwise noted. $)$

PARAMETER		SYMBOL	CONDITIONS			DG508AA/M DG509AA/M			DG508AD/E/B/C DG509AD/E/B/C			UNITS	
		MIN				TYP	MAX	MIN	TYP	MAX			
SWITCH													
Analog Signal			VANALOG				-15		+15	-15		+15	V
Drain-Source On- Resistance		RDS(ON)	Sequence each switch on, $\begin{aligned} & V_{A_{A} L}=0.8 \mathrm{~V}, \\ & V_{A_{-} H}=2.4 \mathrm{~V}(\text { Note } 4) \end{aligned}$		$\begin{array}{\|l\|} \hline V_{D}=10 \mathrm{~V}, \\ I_{S}=-200 \mu \mathrm{~A} \\ \hline \end{array}$		170	400		170	450	Ω	
		$\begin{aligned} & V_{D}=-10 V \\ & I S=200 \mu A \end{aligned}$				130	400		130	450			
Greatest Change in Drain-Source On-Resistance Between Channels			$\Delta \mathrm{R}_{\text {DS }}(\mathrm{ON})$	$\begin{aligned} & \Delta \operatorname{RDS}(\mathrm{ON})=\left(\frac{\mathrm{RDS}(\mathrm{ON}) \max -\mathrm{RDS}(\mathrm{ON}) \min }{\operatorname{RDS}(\mathrm{ON})}\right) \\ & -10 \mathrm{~V} \geq \mathrm{V}_{\mathrm{S}} \geq 10 \mathrm{~V} \end{aligned}$			6			6			\%
Source Off- Leakage Current		IS(OFF)	$V_{E N}=0 V$	V_{S}	$10 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=-10 \mathrm{~V}$		0.002	0.5		0.002	1	nA	
		$\mathrm{V}_{S}=$		-10V, $V_{D}=10 \mathrm{~V}$	-0.5	-0.005		-1	-0.005				
Drain OffLeakage Current	DG508A		ID(OFF)	$V_{E N}=0 V$	$\mathrm{V}_{\mathrm{D}}=$	10V, $\mathrm{V}_{S}=-10 \mathrm{~V}$		0.01	2		0.01	5	nA
		$V_{D}=$			-10V, VS $=10 \mathrm{~V}$	-2	-0.015		-5	-0.015			
	DG509A	$\mathrm{V}_{\mathrm{D}}=$			10V, $\mathrm{V}_{\mathrm{S}}=-10 \mathrm{~V}$		0.005	2		0.005	5		
		$V_{D}=$			-10V, VS $=10 \mathrm{~V}$	-2	-0.008		-5	-0.008			
Drain OnLeakage Current	DG508A	l (ON)	Sequence each switch on, $V_{\text {A_L }}=0.8 \mathrm{~V}$ $\mathrm{V}_{\mathrm{A}} \mathrm{H}=2.4 \mathrm{~V}$ (Note 2)	$\mathrm{V}_{\mathrm{S}(\mathrm{a})}$	(l) $=V_{D}=10 \mathrm{~V}$		0.015	2		0.015	5	nA	
				$\mathrm{V}_{\text {S(a) }}$	(al) $=V_{D}=-10 \mathrm{~V}$	-2	-0.03		-5	-0.03			
	DG509A			$\mathrm{V}_{\text {S }}(\mathrm{al}$	I) $=V_{D}=10 \mathrm{~V}$		0.007	2		0.007	5		
				$\mathrm{V}_{\mathrm{S}}(\mathrm{a})$	(al) $=V_{D}=-10 \mathrm{~V}$	-2	-0.015		-5	-0.015			

Monolithic CMOS Analog Multiplexers

ELECTRICAL CHARACTERISTICS (continued)

$\left(\mathrm{V}+=15 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GND}}=0 \mathrm{~V}, \mathbf{T}_{\mathbf{A}}=\mathbf{+ 2 5}{ }^{\circ} \mathbf{C}\right.$, unless otherwise noted. $)$

PARAMETER		SYMBOL	CONDITIONS		DG508AA/M DG509AA/M			$\begin{aligned} & \text { DG508AD/E/B/C } \\ & \text { DG509AD/E/B/C } \end{aligned}$			UNITS	
		MIN			TYP	MAX	MIN	TYP	MAX			
LOGIC INPUT												
Logic Input Current, Input Voltage High			$\mathrm{I}_{\text {AH }}$	$\mathrm{V}_{\mathrm{A}_{-}}=2.4 \mathrm{~V}$		-10	-		10	-0.002		$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{A}_{-}}=15 \mathrm{~V}$			0.006	10		0.006	10			
Logic Input Current, Input Voltage Low		${ }_{\text {IAL }}$		All $\mathrm{V}_{\mathrm{A}_{-}}=0 \mathrm{~V}$	$\mathrm{V}_{\mathrm{EN}}=2.4 \mathrm{~V}$	-10	-		10	-0.002		$\mu \mathrm{A}$
		$\mathrm{V}_{\text {EN }}=0 \mathrm{~V}$	-10		-		-10	-0.002				
DYNAMIC												
Multiplexer Switching			ttransition	Figure 1			0.6	1.0		0.6	1.0	$\mu \mathrm{s}$
Break-Before-Make Interval		topen	Figure 3		0.2			0.2			$\mu \mathrm{s}$	
Enable Turn-On Time		ton(EN)	Figure 2			0.4	1.0		0.4	1.5	$\mu \mathrm{s}$	
Enable Turn-Off Time		toff(EN)	Figure 2			0.2	0.7		0.2	1.0	$\mu \mathrm{s}$	
Off-Isolation		OIRR	$\begin{aligned} & V_{E N}=0 V, R_{L}=1 \mathrm{k} \Omega, C L=15 \mathrm{pF}, \\ & V_{S}=7 V_{R M S} f=500 \mathrm{kHz}(\text { Note } 3) \end{aligned}$		68			68			dB	
Source Off-Capacitance		Cs(OFF)	$V_{S}=0 V, V_{\text {EN }}=0 V, f=140 \mathrm{kHz}$		5			5			pF	
Drain OffCapacitanc	IDG508A	CD(OFF)	$V_{S}=0 V, V_{E N}=0 V, f=140 \mathrm{kHz}$		25			25			pF	
	DGS09A					12			12			
SUPPLY												
Positive Supply Current		I+	$\mathrm{V}_{\mathrm{EN}}=2.4 \mathrm{~V}$, all $\mathrm{V}_{\mathrm{A}_{-}}=0 \mathrm{~V}$ or 2.4 V			0.02	0.2		0.02	0.2	mA	
Negative Supply Current		I-	$\mathrm{V}_{\mathrm{EN}}=2.4 \mathrm{~V}$, all $\mathrm{V}_{\mathrm{A}_{-}}=0 \mathrm{~V}$ or 2.4 V		-0.1	-0.01		-0.1	-0.01		mA	
Positive Supply Current in Standby		I+	$\mathrm{V}_{\mathrm{EN}}=0 \mathrm{~V}$, all $\mathrm{V}_{\mathrm{A}_{-}}=0 \mathrm{~V}$ or 2.4 V			0.02	0.2		0.02	0.2	mA	
Negative Supply Current in Standby		I-	$\mathrm{V}_{\mathrm{EN}}=0 \mathrm{~V}$, all $\mathrm{V}_{\mathrm{A}_{-}}=0 \mathrm{~V}$ or 2.4 V		-0.1	-0.01		-0.1	-0.01		mA	
Power-Supply Range for Continuous Operation		V-, V+	(Notes 4, 5)		± 4.5		± 18.0	± 4.5		± 18.0	V	

Monolithic CMOS Analog Multiplexers

ELECTRICAL CHARACTERISTICS

($\mathrm{V}+=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GND}}=0 \mathrm{~V}, \mathbf{T}_{\mathbf{A}}=\mathbf{T}_{\text {MIN }}$ to $\mathbf{T}_{\mathbf{M A X}}$, unless otherwise noted.)

Note 2: $\operatorname{ID}(O N)$ is leakage from driver into on switch.

Note 3: Off-isolation $=20 \log \frac{\left|\mathrm{~V}_{\mathrm{S}}\right|}{\left|\mathrm{V}_{\mathrm{D}}\right|}$
$V_{S}=$ input to off switch,
$V_{D}=$ output due to V_{S}.
Note 4: Electrical characteristics (such as on-resistance) change when power supplies other than $\pm 15 \mathrm{~V}$ are used.
Note 5: For designs requiring single 5 V or dual $\pm 5 \mathrm{~V}$ operation, refer to Maxim's improved MAX338 and MAX339. Minimum operating voltage for DG508ADY/MY and DG509ADY/MY is $\pm 9 \mathrm{~V}$.

Monolithic CMOS Analog Multiplexers

Pin Configurations

PIN		NAME	FUNCTION
DG508A	DG509A		
DIP/SO	DIP/SO		
1, 15, 16	-	$\begin{gathered} \mathrm{A} 0, \mathrm{~A} 2, \\ \mathrm{~A} 1 \end{gathered}$	Address Input
-	1,16	A0, A1	Address Input
2	2	EN	Enable
3	3	V-	Negative-Supply Voltage Input
4-7	-	S1-S4	Analog Inputs, Bidirectional
-	4-7	S1A-S4A	Analog Inputs, Bidirectional
8	-	D	Analog Outputs, Bidirectional
-	8, 9	DA, DB	Analog Outputs, Bidirectional
9-12	-	S8-S5	Analog Inputs, Bidirectional
-	10-13	S4B-S1B	Analog Inputs, Bidirectional
13	14	V+	Positive-Supply Voltage Input
14	15	GND	Ground

Monolithic CMOS Analog Multiplexers

Figure 1a. Switching-Time Test Circuit

Figure 2a. DG508A Enable-Time Test Circuit

Figure 1b. Switching-Time Test Circuit

Figure 2b. DG509A Enable-Time Test Circuit

Monolithic CMOS Analog Multiplexers

Figure 3. Break-Before-Make Test Circuit

Figure 4. Timing Diagram for Figures 1, 2, and 3

Table 1b. DG509A Truth Table

A1	A0	EN	ON SWITCH
X	X	0	NONE
0	0	1	1
0	1	1	2
1	0	1	3
1	1	1	4

$X=$ Don't care.

Monolithic CMOS Analog Multiplexers

Package Information

For the latest package outline information and land patterns, go to www.maxim-ic.com/packages. Note that a "+", "\#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

PACKAGE TYPE	PACKAGE CODE	DOCUMENT NO.
16 Plastic DIP	P16-1	$\underline{\mathbf{2 1 - 0 0 4 3}}$
16 Wide SO	W16-2	$\underline{\mathbf{2 1 - 0 0 4 2}}$
16 Narrow SO	S16-5	$\underline{\mathbf{2 1 - 0 0 4 1}}$
16 CERDIP	J16-3	$\underline{\mathbf{2 1 - 0 0 4 5}}$

Monolithic CMOS Analog Multiplexers

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
4	4	Updated the "Drain-Source On-Resistance" parameter for both the $T_{A}=+25^{\circ} \mathrm{C}$ and $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $T_{\text {MAX conditions. }}$	2,4
		Deleted the QFN package from the Ordering Information, Absolute Maximum Ratings, Pin Configurations, Pin Descriptions, and Package Information sections.	$1,2,5,8$
		Added the DG508AMY/PR and DG509AMY/PR parts to the Ordering Information table.	1

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Supervisory Circuits category:

Click to view products by Maxim manufacturer:

Other Similar products are found below :

```
NCP304LSQ38T1G NCP304LSQ40T1G NCP304LSQ42T1G NCP304LSQ43T1G NCP304LSQ46T1G NCP305LSQ11T1G
NCP305LSQ16T1G NCP305LSQ17T1G NCP305LSQ18T1G NCP305LSQ24T1G NCP305LSQ25T1G NCP305LSQ29T1G
NCP305LSQ31T1G NCP305LSQ32T1G NCP308MT250TBG NCP308SN300T1G NCP391FCALT2G NCV303LSN42T1G
NCV308SN330T1G CAT1161LI-25-G CAT853STBI-T3 MAX1232CPA MAX705CPA CAT1026LI-30-G CAT1320LI-25-G CAT872-
30ULGT3 LA-ispPAC-POWR1014-01TN48E NCP304HSQ18T1G NCP304HSQ29T1G NCP304LSQ27T1G NCP304LSQ29T1G
NCP304LSQ45T1G NCP305LSQ26T1G NCP305LSQ35T1G NCP305LSQ37T1G NCP308MT300TBG NCV300LSN36T1G
NCV302LSN30T1G NCV303LSN16T1G NCV303LSN22T1G NCV303LSN27T1G NCV33161DMR2G TC54VN2402EMB713
MCP1316T-44NE/OT MCP1316MT-45GE/OT MCP1316MT-23LI/OT MCP1316T-26LE/OT MAX8997EWW+ MAX821RUS+T
MAX6725AKASYD3-LF-T
```

