DESCRIPTION

Demonstration circuit 1822A is a dual output synchronous buck converter featuring the LTC ${ }^{\circledR} 3861$ EUHE. The board provides two outputs of $1.5 \mathrm{~V} / 25 \mathrm{~A}$ and $1.2 \mathrm{~V} / 25 \mathrm{~A}$ from an input voltage of 7 V to 14 V at a switching frequency of 500 kHz . The power stage consists of a $6 \mathrm{~mm} \times 6 \mathrm{~mm}$ DrMOS and a $13 \mathrm{~mm} \times 13 \mathrm{~mm}$ iron powder type inductor. An on-board 5V LT ${ }^{\circledR} 3470$ buck regulator provides the 5 V bias for the LTC3861 and the DrMOS.

The demo board uses a high density, two sided drop-in layout. The power components, excluding the bulk output and input capacitors, fit within a $1.5^{\prime \prime} \times 1.2^{\prime \prime}$ area on the top layer. The control circuit fits in a $1.1^{\prime \prime} \times 1.0^{\prime \prime}$ area on the bottom layer. The package style for the LTC3861EUHE is a 36 -lead $5 \mathrm{~mm} \times 6 \mathrm{~mm}$ QFN.

[^0]The main features of the board are:

- Remote sensing for each output, where the divider is placed before a high input impedance differential amplifier.
- CLKIN and CLKOUT pins.
- Optional resistors to tie the two outputs together.
- Connector and headerto tie two or more boards together for up to 12-phase operation.
- Optional footprint for an LTC4449 gate driver and discrete MOSFETs.
- Optional footprint for a dual phase Delta power block.

Design files for this circuit board are available at http://www.linear.com/demo

PERFORMAOCE SUMMARY ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$) no a airllow

PARAMETER	CONDITION	VALUE
Minimum Input Voltage		7 V
Maximum Input Voltage		14 V
Output Voltage $\mathrm{V}_{\text {OUT1 }}$	$\mathrm{I}_{\text {OUT1 }}=0 \mathrm{~A}$ to $25 \mathrm{~A}, \mathrm{~V}_{\text {IN }}=7 \mathrm{~V}$ to 14 V	$1.5 \mathrm{~V} \pm 2 \%$
Output Voltage $\mathrm{V}_{\text {OUT2 }}$	$\mathrm{I}_{\text {OUT2 }}=0 \mathrm{~A}$ to $25 \mathrm{~A}, \mathrm{~V}_{\text {IN }}=7 \mathrm{~V}$ to 14 V	$1.2 \mathrm{~V} \pm 2 \%$
$\mathrm{~V}_{\text {OUT1 }}$ Maximum Output Current, $\mathrm{I}_{\text {OUT1 }}$	$\mathrm{V}_{\text {IN }}=7 \mathrm{~V}$ to $14 \mathrm{~V}, \mathrm{~V}_{\text {OUT1 }}=1.5 \mathrm{~V}$	25 A
$\mathrm{~V}_{\text {OUT2 }}$ Maximum Output Current, I $\mathrm{I}_{\text {OUT2 }}$	$\mathrm{V}_{\text {IN }}=7 \mathrm{~V}$ to $14 \mathrm{~V}, \mathrm{~V}_{\text {OUT2 }}=1.2 \mathrm{~V}$	25 A
Nominal Switching Frequency		500 kHz
Efficiency	$\mathrm{V}_{\text {OUT1 }}=1.5 \mathrm{~V}, \mathrm{I}_{\text {OUT1 }}=25 \mathrm{~A}, \mathrm{~V}_{\text {IN }}=12 \mathrm{~V}$	91.6% Typical
(See Figures 2 and 3)	$\mathrm{V}_{\text {OUT2 }}=1.2 \mathrm{~V}, \mathrm{I}_{\text {OUT2 }}=25 \mathrm{~A}, \mathrm{~V}_{\text {IN }}=12 \mathrm{~V}$	90.7% Typical

DEMO MANUAL DC1822A

PUICK START PROCEDURE

Demonstration circuit 1822A is easy to set up to evaluate the performance of the LTC3861EUHE. Please refer to Figure 1 for proper measurement equipment setup and follow the procedure below.

1. With power off, connect the input supply, load and meters, as shown in Figure 1. Preset the load to OA and $\mathrm{V}_{\text {IN }}$ supply to be OV . Place jumpers in the following positions:

JP1	RUN1	ON
JP2	RUN2	ON
JP3	INT BIAS	ON

2. Adjust the input voltage to be between 7 V to 14 V . VOUT1 should be $1.5 \mathrm{~V} \pm 2 \%$.VOUT2 should be $1.2 \mathrm{~V} \pm 2 \%$.
3. Next, apply 25A load to each output and re-measure VOUT.
4. Once the DC regulation is confirmed, observe the output voltage ripple, load step response, efficiency and other parameters.

NOTE 1. Use the BNC connectors labeled VOUT1 or VOUT2 to measure the output voltage ripple.

NOTE 2. Do not apply the load from the VOS1+ turret to the VOS1- turret or from the VOS2+ turret to the VOS2turret. These are connected to the sense traces for the output voltage. Heavy load currents applied across these turrets may damage these traces.

Figure 1. Proper Measurement Equipment Setup

DEMO MANUAL DC1822A

PUICK START PROCEDURE

DYNAMIC LOAD CIRCUIT (OPTIONAL)

1. Preset the amplitude of a pulse generator to 0.0 V and the duty cycle to 5% or less.
2. Connect the scope to the VOUT BNC connectors for the rail under test with a coax cable. To monitor the load step current, connect the scope probe across the ISTEP \pm turrets for that rail.
3. Connect the output of the pulse generator to the PULSE GEN turret for the rail under test and connect the return to one of the GND turrets.
4. With the converter running, slowly increase the amplitude of the pulse generator output to provide the desired load step pulse height. The scaling for the load step signal is $10 \mathrm{mV} /$ Amp. See Figures 4 and 5 for transient response curves with a 50% load change.

Figure 2. Efficiency Curves for the 1.5V Rail of the DC1822A. $\mathrm{f}_{\text {Sw }}=500 \mathrm{kHz}$ with the FDMF6820A DrMOS

Figure 3. Efficiency Curves for the 1.2V Rail of the DC1822A. $f_{S w}=500 \mathrm{kHz}$ with the FDMF6820A DrMOS

DEMO MANUAL DC1822A

DUICK START PROCEDURG

Figure 4. Load Step Response of the DC1822A 1.5V Rail at $V_{I N}=12 \mathrm{~V}$. $C_{\text {OUT }}=3 \times$ Sanyo 2R5TPE330M9 || $2 \times 100 \mu \mathrm{~F}$ XR 6.3V 1210, L $=0.47 \mu \mathrm{H}$, $\mathrm{f}_{\text {SW }}=500 \mathrm{kHz}$

Figure 5. Load Step Response of the DC1822A 1.2V Rail at $\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}$. $C_{\text {OUT }}=3 \times$ Sanyo 2R5TPE330M9 || $2 \times 100 \mu \mathrm{~F}$ XR 6.3V 1210, L $=0.47 \mu \mathrm{H}$, $\mathrm{f}_{\text {SW }}=500 \mathrm{kHz}$

SINGLE OUTPUT/DUAL PHASE OPERATION

A single output/dual phase converter may be preferred for higher output current applications. The optional components required to tie the phases together are found on the bottom of the schematic shown in Figure 8. To tie the two outputs together, make the following modifications:

1. Stuff 0Ω at R36 and R47 to tie the two outputs together.
2. Select one rail to be the master.

- If VOUT1 is the master, then stuff 0Ω at R51 to disable the error amplifier for phase 2 . Also stuff 0Ω at R52.
- If VOUT2 is the master, then stuff 0Ω at R49 to disable the error amplifier for phase 1 . Also stuff 0Ω at R50.

3. Remove the 0Ω jumper at R13 and stuff a 100 pF capacitor at C14 for the IAVG signal.
4. Stuff 0Ω at R53, R48 and R54 to tie the COMP, TRK/SS and RUN pins together.
5. Remove the redundant compensation components.

PARALLELING BOARDS

The DC1822A demo boards can be tied together to form a converter with up to 12 phases. To tie the boards together, place the boards side-by-side and then connect the boards by connecting J8 of one board to J9 of the other. This will connect the IAVG, COMP, TRK/SS and signal ground signals together. Next, use copper strips to tie the VOUT planes, the VIN planes and GND planes of the two adjacent boards together. The board has exposed copper along the edges of the board for this purpose. Figure 6 shows how to set up a 4-phase converter and Figure 7 shows how to set up a 3-phase plus single phase converter.

PUICK START PROCEDURE

Figure 6. Setup of a 4-Phase Converter; Phase 1 of Board 1 is the Master

Figure 7. Setup of a 3-Phase Plus Single Phase Converter; Phase 1 of Board 1 Is the Master of the 3-Phase Rail

DEMO MANUAL DC1822A

PARTS LIST

ITEM	QTY	REFERENCE	PART DESCRIPTION	MANUFACTURER/PART NUMBER
DC1822A Required Circuit Components				
1	4	C1, C7, C8, C9	CAP, 0.22 1 F, 10\%, 25V, X7R, 0603	AVX 06033C224KAT2A
2	2	C1-1, C1-2	CAP, 1500pF, 10\%, 50V, GOG, 0603	MURATA,GRM1885C1H152JA01D
3	2	C2-1, C2-2	CAP, 100pF, 5\%, 25V, NPO, 0603	AVX 06033A101JAT2A
4	2	C28, C29	CAP, 10 ${ }^{\text {F }, 20 \%, ~ 6.3 V, ~ X 5 R, ~} 0805$	AVX 08056D106MAT2A
5	4	C3, C11, C34, C35	CAP, 2.2 FF, 10\%, 16V, X7R, 0603	MURATA GRM188R61C225KE15D
6	2	C3-1, C3-2	CAP, 3300pF, 10\%, 50V X7R, 0603	AVX 06035C332KAT2A
7	1	C6	CAP, 14F, 20\%, 25V, X5R, 0603	AVX 06033D105MAT2A
8	1	CIN2	CAP, 180 $1 \mathrm{~F}, 20 \%$, 16V, OSCON	SANYO 16SVP180MX
9	4	CIN3, CIN4, CIN5, CIN6	CAP, 22 $\mu \mathrm{F}, 20 \%, 16 \mathrm{~V}, \mathrm{X} 5 \mathrm{R}, 1210$	AVX 1210YD226MAT2A
10	6	COUT1-COUT3, COUT6-COUT8	CAP, 330 ${ }^{\text {F, } 20 \% \text {, 2.5V POSCAP } 7343}$	SANYO 2R5TPE330M9
11	4	COUT4, COUT5, COUT9, COUT10	CAP, 100 FF, 20\%, 6.3V, X5R, 1210	AVX 12106D107MAT2A
12	2	L1,L2	IND, $0.47 \mu \mathrm{H}, 20 \%$	WURTH 744355147
13	2	R1, R45	RES, 18.2k, 1\%, 1/10W, 0603	VISHAY CRCW060318K2FKEA
14	4	R11, R18, R39, R43	RES, 10 ${ }^{\text {, }} 1 \%$, 1/10W, 0603	VISHAY CRCW060310ROFKEA
15	2	R17, R24	RES, 53.6k, 1\%, 1/10W, 0603	VISHAY CRCW060353K6FKEA
16	2	R2, R25	RES, $2.2 \Omega, 1 \%, 1 / 16 \mathrm{~W}, 0603$	VISHAY CRCW06032R20FKEA
17	2	R20, R38	RES, 2.87k, 1\%, 1/10W, 0603	VISHAY CRCW06032K87FKEA
18	1	R2-1	RES, 9.76k, 1\%, 1/16W, 0603	VISHAY CRCW06039K76FKEA
19	1	R2-2	RES, 9.31k, 1\%, 1/16W, 0603	VISHAY CRCW06039K31FKEA
20	3	R3, R16, R26	RES, $1 \Omega, 1 \%, 1 / 10 \mathrm{~W}, 0603$	YAGEO RC0603FR-071RL
21	2	R3-1, R3-2	RES, 280 2 , 1\%, 1/10W, 0603	VISHAY CRCW0603280RFKEA
22	1	R37	RES, 34k, 1\%, 1/10W, 0603	VISHAY CRCW060334KOFKEA
23	2	R8, R44	RES, 100k, 1\%, 1/10W, 0603	VISHAY CRCW0603100KFKEA
24	9	$\begin{aligned} & \text { R9, R12, R13, R19, R21-R23, } \\ & \text { R32, R73 } \end{aligned}$	RES, 0Ω, JUMPER, 0603	VISHAY CRCW06030000Z0EA
25	11	$\begin{aligned} & \text { RB-1, RB-2, RT-2, R1-1, R1-2, R4-R6, } \\ & \text { R29, R30, R46 } \end{aligned}$	RES, 10k, 1\%, 1/10W, 0603	VISHAY CRCW060310KOFKEA
26	1	RT-1	RES, 15k, 1\%, 1/10W, 0603	YAGEO RC0603FR-0715KL
27	1	U1	I.C., LTC3861EUHE	LINEAR TECH. LTC3861EUHE\#PBF
28	2	U2, U3	MOSFET, DrMOS, DC-DC, 3.3V, PWM	FAIRCHILD FDMF6820A

Additional Circuit Components

1	1	C17	CAP, $0.22 \mu \mathrm{~F}, 10 \%, 25 \mathrm{~V}, \mathrm{X7R}, 0603$	AVX 06033C224KAT2A
2	1	C18	CAP, $1 \mu \mathrm{~F}, 20 \%, 25 \mathrm{~V}, \mathrm{X} 5 \mathrm{R}, 0603$	AVX 06033D105MAT2A
3	1	C19	CAP, $22 \mu \mathrm{~F}, 20 \%, 16 \mathrm{~V}, \mathrm{X} 5 \mathrm{R}, 1210$	AVX 1210YD226MAT2A
4	2	C2, C4, C5, C10, C12-C16, C20, C22-C25, C27, C30-C33	CAP, 0603	OPT
5	1	C21	CAP, 22pF, 10\%, 25V, NPO, 0603	AVX 06033A220KAT2A
6	1	C26	CAP, 1 $\mu \mathrm{F}, 20 \%, 25 \mathrm{~V}, \mathrm{X} 5 R, 0603$	AVX 06033D105MAT2A
7	0	CIN1	CAP, SVP, F8	OPT
8	0	CIN7-CIN14, COUT11-COUT17	CAP, 1210	OPT
9	0	COUT15-COUT17, COUT22-COUT24	CAP, 7343	OPT
10	0	D1	DIODE, BAV170, SOT23	OPT

DEMO MANUAL DC1822A

PARTS LIST

ITEM	QTY	REFERENCE	PART DESCRIPTION	MANUFACTURER/PART NUMBER
11	0	D2, D3	CMDSH-3	OPT
12	1	L3	IND, 33 ${ }^{\text {H, }}$, 53DLC	TOKO A914BYW-330M=P3
13	0	L4	INDUCTOR, -53LDC	OPT
14	0	PB1	DC/DC Converters, D12S1R845A	OPT
15	2	Q1, Q2	MOSFET, 30V N-CHANNEL, DPAK	VISHAY SUD50N03-12P-E3
16	0	Q3, Q4, Q7, Q8	BSC050NE2LS	OPT
17	0	Q5, Q6, Q9, Q10	BSC010NE2LS	OPT
18	0	R10, R14, R15, R27, R28, R31, R33-R35, R41, R42, R47-R55, R62, R64-R67, R69, R71, R72, R74-R81	RES, 0603	OPT
19	2	R56, R58	RES, 10k, 1\%, 1/10W, 0603	VISHAY CRCW060310K0FKEA
20	2	R57, R60	RES, $0.010 \Omega, 1 \%, 1 \mathrm{~W}, 2010$	IRC LRC-LRF2010LF-01-R010-F
21	1	R59	RES, 0Ω, JUMPER, 1206	VISHAY CRCW12060000Z0EA
22	1	R61	RES, 604k, 1\%, 1/16W, 0603	VISHAY CRCW0603604KFKEA
23	1	R63	RES, 200k, 1\%, 1/16W, 0603	VISHAY CRCW0603200KFKEA
24	1	U4	BUCK REGULATOR, LT3470ETS8	LINEAR TECHNOLOGY LT3470ETS8
25	0	U5	BUCK REGULATOR, LT3470ETS8	OPT
26	0	U8, U9	N-CHANNEL MOSFET DRIVER, LTC4449	OPT
Hardware				
1	27	E1-E27	TESTPOINT, TURRET, 0.095"	MILL-MAX 2501-2-00-80-00-00-07-0
2	6	J1-J6	STUD, TEST PIN	PEM KFH-032-10
3	12	J1-J6	NUT, BRASS PL \#10-32	ANY \#10-32M/S
4	6	J1-J6	RING, LUG \#10	KEYSTONE 8205
5	6	J1-J6	WASHER, TIN, PLATED BRASS	ANY
6	2	J7, J10	CON, BNC, 5 PINS	CONNEX 112404
7	1	J8	HEADER, DOBL ROW, RT ANGLE, 2×4, 8 PIN	MILL-MAX 802-10-008-20-001000
8	1	J9	SOCKET, DBL ROW, RT ANGLE, 2×4, 8 PIN	MILL-MAX 803-43-008-20-001000
9	4	JP1, JP2, JP3, JP4	HEADER, 3 PIN, 0.079" SINGLE ROW	SAMTEC TMM-103-02-L-S
10	4	MTGS AT 4 CORNERS	STAND-OFF, NYLON 0.5"	KEYSTONE 8833 (SNAP-ON)
11	4	XJP1, XJP2, XJP3, XJP4	SHUNT, 0.079" CENTER	SAMTEC 2SN-BK-G

SCHEMATIC DIAGRAM

Figure 8. DC1822A Demo Circuit Schematic

DEMO MANUAL DC1822A

SCHEmATIC DIAGRAM

Figure 9. DC1822A Demo Circuit Schematic

SCHEMATIC DIAGRAM

CUSTOMER NOTICE UNEAR TECHNOLOGY HAS MADE A BEST EFFORT TO DESIGN A GIRCUIT THAT MEETS CUSTOHER-SUPPLED SPEGIRCAIONS; HOWE VER, TT REMANS THE CUSTOMER'S RESPONSIBLITY TO VERFY PROPER AND PELIABLE OPERATION R THE ACTUAL APPLCATION. CORPORENT SUBSTITUTION AND PRNTED CIRCUIT BOARD LAYOUT MAY SIGNFIGANILY AFFECT CRCUIT PERFOPWANCE OR RE UABALITY. CONTACT LNEAR TEGHNOLOGY APPLICATIONS ENGIEEFANG FOR ASSIST ANCE.	APPROVALS					1630 Me Carthy Blyd. Milpitas, CA 95035 Phone: (408)432-1900 www.linear.com Fax: (408)434-0507 LTC ConfidentialFor Customer Use Only							
	PCB des.	A.K.											
	APP ENG.	MIKE S.	TITLE: SCHEMATIC		HIGH CURRENT DUAL OUTPUT SYNCHRONOUS BUCK CONVERTER								
				ICNO.	LTC3861EUHEDEMO CIRCUIT 1822A								
			N/A						2				
THIS CIRCUIT IS PROP FAET ARY TO UREAR TECHHOL SUPPLEDFOR USE WITHLREARTECHWOLOGY PARTS.	SCALE $=$ NONE		DATE:	Wednesday, Decem ber 14,2011		SHEET	3	OF	3				

Figure 10. DC1822A Demo Circuit Schematic

DEMO MANUAL DC1822A

DEMONSTRATION BOARD IMPORTANT NOTICE

Linear Technology Corporation (LTC) provides the enclosed product(s) under the following AS IS conditions:
This demonstration board (DEMO BOARD) kit being sold or provided by Linear Technology is intended for use for ENGINEERING DEVELOPMENT OR EVALUATION PURPOSES ONLY and is not provided by LTC for commercial use. As such, the DEMO BOARD herein may not be complete in terms of required design-, marketing-, and/or manufacturing-related protective considerations, including but not limited to product safety measures typically found in finished commercial goods. As a prototype, this product does not fall within the scope of the European Union directive on electromagnetic compatibility and therefore may or may not meet the technical requirements of the directive, or other regulations.
If this evaluation kit does not meet the specifications recited in the DEMO BOARD manual the kit may be returned within 30 days from the date of delivery for a full refund. THE FOREGOING WARRANTY IS THE EXCLUSIVE WARRANTY MADE BY THE SELLER TO BUYER AND IS IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED, IMPLIED, OR STATUTORY, INCLUDING ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE. EXCEPT TO THE EXTENT OF THIS INDEMNITY, NEITHER PARTY SHALL BE LIABLE TO THE OTHER FOR ANY INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES.

The user assumes all responsibility and liability for proper and safe handling of the goods. Further, the user releases LTC from all claims arising from the handling or use of the goods. Due to the open construction of the product, it is the user's responsibility to take any and all appropriate precautions with regard to electrostatic discharge. Also be aware that the products herein may not be regulatory compliant or agency certified (FCC, UL, CE, etc.).
No License is granted under any patent right or other intellectual property whatsoever. LTC assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or any other intellectual property rights of any kind.
LTC currently services a variety of customers for products around the world, and therefore this transaction is not exclusive.
Please read the DEMO BOARD manual prior to handling the product. Persons handling this product must have electronics training and observe good laboratory practice standards. Common sense is encouraged.
This notice contains important safety information about temperatures and voltages. For further safety concerns, please contact a LTC application engineer.

Mailing Address:

Linear Technology
1630 McCarthy Blvd.
Milpitas, CA 95035

Copyright © 2004, Linear Technology Corporation

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for linear technology manufacturer:
Other Similar products are found below :
LTC1503CS8-1.8 LTC1622CMS8 LTC1740CG LT1073CN8-5\#PBF LT1342CG LT1376HVIS LT1491A LT1576CS8 LTC1338CG
LTC1592BCG LTC1595BCN8 LTC1698ES LTC2442CGPBF LT1021DCN8-5\#PBF LT1079CN\#PBF LT1674CN LT3023EDD
LT1076HVCT7\#PBF LT1101CN8\#PBF LT1168CS8\#PBF LT1171CQ\#PBF LT1210CT7\#PBF LT1308BCS8\#PBF LT1913EDD\#PBF LT1172CT\#PBF LT3473EDD\#PBF LT1376IS8-5\#PBF LT1720CS8\#PBF LT1785AIS8\#PBF LT1944EMS\#PBF LT3435EFE\#PBF DC993A DC987B-E DC985A-A/B DC956A DC951A DC936A DC918C-E DC917A DC906A DC903A-B DC895A-C DC817A DC809A DC790A DC773A DC770C DC768A DC761A-A DC745A

[^0]: $\boldsymbol{\boxed { }}$, LT, LTC, LTM, μ Module, Linear Technology and the Linear logo are registered trademarks of Linear Technology Corporation. All other trademarks are the property of their respective owners.

