

High Power Aluminum Nitride, Wraparound Surface Mount, Precision Thin Film Chip Resistor (up to 6 W)

PCAN series chip resistors are designed on aluminum nitride ceramic substrates with enlarged backside terminations to reduce the thermal resistance between the topside resistor layer and the solder joint on the end users circuit assembly.

Actual power handling capability is limited by the end user mounting process. As with any high power chip resistor the ability to remove the heat is critical to the overall performance of the device.

FEATURES

- High thermal conductivity aluminum nitride substrate
- Power rating up to 6.0 W
- Resistance range 30 Ω to 175 Ω
- Resistor tolerance to ± 0.1 %
- TCR to ± 25 ppm/°C
- Flame resistant UL 94 V-0

APPLICATIONS

- Power supplies
- · Power switching
- Braking system

TYPICAL PERFORMANCE

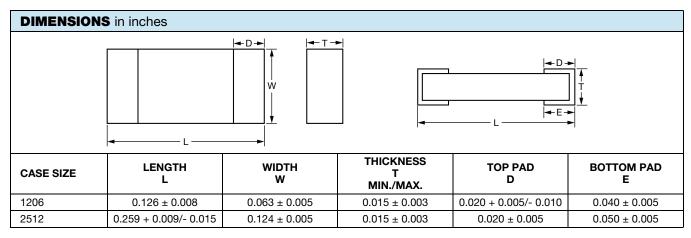
	ABSOLUTE
TCR	25
TOL.	0.1

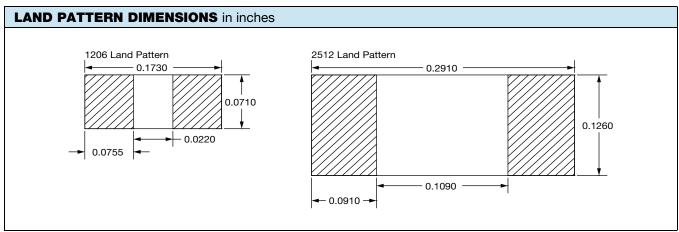
STANDARD ELECTRICAL SPECIFICATIONS			
TEST	SPECIFICATIONS	CONDITIONS	
Material	Nichrome	-	
Resistance Range	30 Ω to 175 Ω	-	
TCR: Absolute	25 ppm/°C (standard) and 100 ppm/°C	-	
Tolerance: Absolute	0.1 %, 0.25 %, 0.5 %, 1.0 % and 5.0 %	-55 °C to +150 °C	
Power Rating: Resistor	2.0 W to 6.0 W ⁽¹⁾	Maximum at +70 °C	
Stability: Absolute	ΔR 1.0 %	1000 h at +70 °C	
Voltage Coefficient	< 0.1 ppm/V	-	
Working Voltage	75 V to 200 V	-	
Operating Temperature Range	-55 °C to +155 °C	-	
Storage Temperature Range	-55 °C to +155 °C	-	
Noise	< -30 dB	-	
Shelf Life Stability: Absolute	± 0.01 %	1 year at +25 °C	

Note

⁽¹⁾ Dependant on component mounting by user.

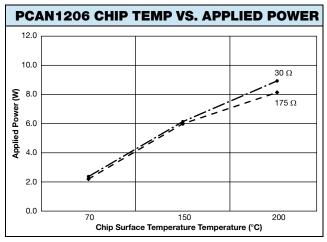
COMPONENT RATINGS			
CASE SIZE	POWER RATING (mW)	WORKING VOLTAGE (V)	RESISTANCE RANGE (Ω)
1206	2000 (2)	200	30 to 175
2512	6000 ⁽²⁾	200	30 to 175


Notes

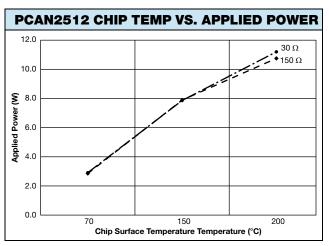

- 0603 and 0805 case size under engineering qualification.
- (2) Dependant on component mounting by user.

Vishay Dale Thin Film

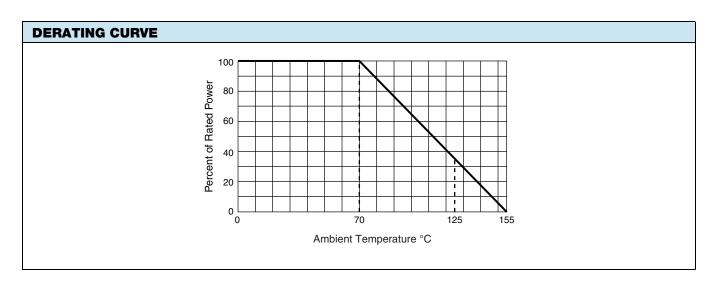
ENVIRONMENTAL TESTS			
ENVIRONMENTAL TEST	LIMITS MIL-PRF-55342 CHARACTERISTIC "H"	TYPICAL VISHAY PERFORMANCE	
Resistance temperature characteristic	± 50 ppm/°C	± 25 ppm/°C	
Maximum ambient temperature at rated wattage	+70 °C	+70 °C	
Maximum ambient temperature at power derating	+150 °C	+150 °C	
Thermal shock	± 0.25 %	± 0.10 %	
Low temperature operation	± 0.25 %	± 0.10 %	
Short time overload	± 0.1 %	± 0.10 %	
High temperature exposure	± 0.2 %	± 0.10 %	
Resistance to soldering heat	± 0.25 %	± 0.10 %	
Moisture resistance	± 0.4 %	± 0.50 %	
Life at +70 °C for 1000 h	± 0.5 %	± 1.00 %	



STANDARD MATERIAL SPECIFICATIONS		
Resistive element	Nichrome	
Substrate material	Aluminum nitride	
Terminations (Tin/lead)	Tin/lead solder over nickel barrier	
Terminations (Lead (Pb)-free)	Tin/silver/copper (Sn96.5/Ag3.0/Cu0.5) solder over nickel barrier	

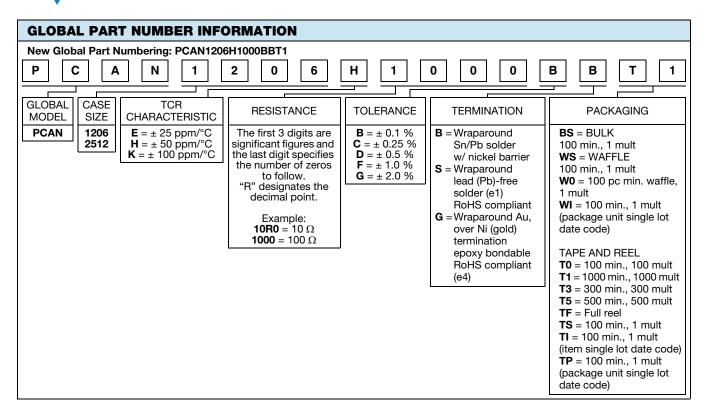

www.vishay.com

Vishay Dale Thin Film


Note

- Chip surface temperature measured using FLIR SC645 thermal imaging system with an approximate test card surface temperature of 85 °C.
- Thermal imaging was conducted under ambient conditions resulting in a steady state test card surface temperature of 85 °C over the full range of power levels.
- Thermal imaging and load life testing was conducted mounting one device to a 1.6" x 3.7" test card with 3.5 mil copper plating on both surfaces. Thermal vias on 50 mil centers were utilized for heat transfer between surfaces of the test card.

Note


 Chip surface temperature measured using FLIR SC645 thermal imaging system with an approximate test card surface temperature of 85 °C.

Vishay Dale Thin Film

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Material Category Policy

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as RoHS-Compliant fulfill the definitions and restrictions defined under Directive 2011/65/EU of The European Parliament and of the Council of June 8, 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment (EEE) - recast, unless otherwise specified as non-compliant.

Please note that some Vishay documentation may still make reference to RoHS Directive 2002/95/EC. We confirm that all the products identified as being compliant to Directive 2002/95/EC conform to Directive 2011/65/EU.

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as Halogen-Free follow Halogen-Free requirements as per JEDEC JS709A standards. Please note that some Vishay documentation may still make reference to the IEC 61249-2-21 definition. We confirm that all the products identified as being compliant to IEC 61249-2-21 conform to JEDEC JS709A standards.

Revision: 02-Oct-12 Document Number: 91000

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for vishay manufacturer:

Other Similar products are found below:

M39006/22-0577H Y00892K49000BR13L M8340109M6801GGD03 ITU1341SM3 VS-MBRB1545CTPBF 1KAB100E IH10EB600K12
CP0005150R0JE1490 562R5GAD47RR S472M69Z5UR84K0R MKP1848C65090JY5L CRCW1210360RFKEA VSMF4720-GS08
TSOP34438SS1V CRCW04024021FRT7 001789X LTO050FR0500JTE3 CRCW0805348RFKEA LVR10R0200FE03
CRCW12063K30FKEAHP 009923A CRCW2010331JR02 CRCW25128K06FKEG CS6600552K000B8768 CSC07A0110K0GPA
M39003/01-2289 M39003/01-2784 M39006/25-0133 M39006/25-0228 M64W101KB40 M64Z501KB40 CW001R5000JS73
CW0055R000JE12 CW0056K800JB12 CW0106K000JE73 672D826H075EK5C CWR06JC105KC CWR06NC475JC MAL219699001E3
MCRL007035R00JHB00 GBU4K-E3/51 GBU8M-E3/51 GF1A-E3/67A PTF56100K00QYEK PTN0805H1502BBTR1K
RCWL1210R130JNEA RH005220R0FE02 RH005330R0FC02 RH010R0500FC02 132B20103