

NTE154 Silicon NPN Transistor High Voltage Video Output

Description:

The NTE154 is a silicon NPN transistor in a TO39 type package designed for use as a video output to drive a color CRT.

Features:

High Voltage: V_{CEO} = 300V Min @ I_C = 5mA

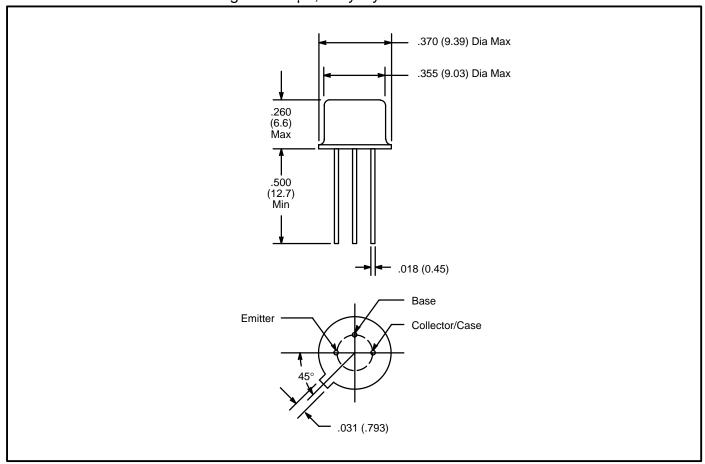
Low Capacitance: C_{ob} = 3pF Max @ V_{CB} = 20V

High Frequency: f_t = 50MHz Min @ I_C = 15mA

• High Power Dissipation: P_D = 7W @ T_C = +25°C

Absolute Maximum Ratings: (Note 1)

Collector to Base Voltage, V _{CBO}	ΟV
Collector to Emitter Voltage (Note 2), V _{CEO}	VC
Emitter to Base Voltage, V _{EBO}	7V
Total Power Dissipation (Note 3, Note 4), P_D $T_C = +25^{\circ}C \qquad \qquad$	
Operating Junction Temperature, T _{opr} +200°	°C
Storage Temperature Range, T _{stg} –65° to +200°	
Lead Temperature (During Soldering, 60sec), T _L +300°	°C


- Note 1. These ratings are limiting values above which the serviceability of this device may be impaired.
- Note 2. This rating refers to a high current point where collector to emitter voltage is lowest.
- Note 3. These ratings are steady state limits.
- Note 4. These ratings give a maximum junction temperature of +200°C and junction to case thermal resistance of +25°C/W (derating factor of 40mW/°C); junction to ambient thermal resistance of +175°C/W (derating factor of 5.71mW/°C).

Electrical Characteristics: $(T_A = +25^{\circ}C \text{ unless otherwise specified})$

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Collector Base Breakdown Voltage	V _{(BR)CBO}	$I_C = 100 \mu A, I_E = 0$	300	_	_	V
Emitter Base Breakdown Voltage	V _{(BR)EBO}	$I_E = 100 \mu A, I_C = 0$	7	_	_	V
Collector Cutoff Current	I _{CBO}	I _E = 0, V _{CB} = 200V	_	1.0	100	nA
		$I_E = 0$, $V_{CB} = 200V$, $T_A = +125$ °C	_	0.2	5.0	μΑ
Emitter Cutoff Current	I _{EBO}	$I_C = 0, V_{EB} = 6V$	_	1.0	100	nA
DC Current Gain	h _{FE}	$I_C = 1$ mA, $V_{CE} = 20$ V	20	50	_	
		I _C = 10mA, V _{CE} = 20V, Note 5	40	100	_	
		$I_C = 30$ mA, $V_{CE} = 20$ V, Note 5	40	100	_	
Collector Emitter Sustaining Voltage	V _{CEO(sus)}	$I_C = 5mA$, $I_B = 0$, Note 2, Note 5	300	_	_	V
Base Emitter Saturating Voltage	V _{BE(sat)}	$I_C = 20$ mA, $I_B = 2$ mA, Note 5	_	0.74	0.85	V
Collector Emitter Saturating Voltage	V _{CE(sat)}	$I_C = 20$ mA, $I_B = 2$ mA, Note 5	-	0.35	1.0	V
High Frequency Current Gain	h _{fe}	I _C = 15mA, V _{CE} = 150V, f = 20MHz	2.5	4.0	_	
		$I_C = 3mA, V_{CE} = 270V, f = 20MHz$	2.0	2.5	_	
		$I_C = 30\text{mA}$, $V_{CE} = 30\text{V}$, $f = 20\text{MHz}$, $R_L = 9\text{k}\Omega$	2.0	4.0	_	
Collector Base Capacitance	C _{cb}	I _E = 0, V _{CB} = 20V	_	2.5	3.0	pF
Emitter Base Capacitance	C _{eb}	$I_C = 0, V_{EB} = 500 \text{mV}$	_	45	70	pF

Note 2. This rating refers to a high current point where collector to emitter voltage is lowest.

Note 5. Pulse Conditions: Length = 300μs, Duty Cycle = 1%.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Bipolar Transistors - BJT category:

Click to view products by NTE manufacturer:

Other Similar products are found below:

619691C MCH4017-TL-H MJ15024/WS MJ15025/WS BC546/116 BC556/FSC BC557/116 BSW67A HN7G01FU-A(T5L,F,T NJVMJD148T4G NSVMMBT6520LT1G NTE187A NTE195A NTE2302 NTE2302 NTE2330 NTE2353 NTE316 IMX9T110 NTE63 NTE65 C4460 SBC846BLT3G 2SA1419T-TD-H 2SA1721-O(TE85L,F) 2SA1727TLP 2SA2126-E 2SB1202T-TL-E 2SB1204S-TL-E 2SC5488A-TL-H 2SD2150T100R SP000011176 FMC5AT148 2N2369ADCSM 2SB1202S-TL-E 2SC2412KT146S 2SC4618TLN 2SC5490A-TL-H 2SD1816S-TL-E 2SD1816T-TL-E CMXT2207 TR CPH6501-TL-E MCH4021-TL-E BC557B TTC012(Q) BULD128DT4 JANTX2N3810 Jantx2N5416 US6T6TR KSF350 068071B