NTE2388 MOSFET N-Channel Enhancement Mode, High Speed Switch ### **Description:** The NTE2388 is an N-Channel Enhancement Mode Power MOS Field Effect Transistor in a TO220 type package designed for low voltage, high speed power switching applications such as switching regulators, converters, solenoid, and relay drivers. #### Features: - Silicon Gate for Fast Switching Speeds - Low r_{DS(on)} to Minimize On–Losses. Specified at Elevated Temperatures. Absolute Maximum Ratings: - Rugged SOA is Power Dissipation Limited - Source-to-Drain Diode Characterized for Use With Inductive Loads | Absolute Maximum natings. | |---| | Drain-Source Voltage, V _{DSS} | | Drain-Gate Voltage (R _{GS} = 20k±), V _{DGR} | | Gate-Source Voltage, V _{GS} ±20V | | Drain Current, I _D | | Continuous | | T_{C} = +25°C | | | | Peak | | $T_C = +25^{\circ}C$ | | Total Power Dissipation ($T_C = +25^{\circ}C$), P_D | | Derate Above 25°C 1W/°C | | Maximum Operating Junction Temperature Range, T _J | | Storage Temperature Range, T _{stq} –55° to +150°C | | Maximum Thermal Resistance, Junction-to-Case, Rth.JC | | Maximum Thermal Resistance, Junction-to-Ambient, R _{th.IA} | | Maximum Lead Temperature (During soldering, 1/8" from case for 5sec), T _L +300°C | | | # **Electrical Characteristics:** $(T_C = +25^{\circ}C \text{ unless otherwise specified})$ | Parameter | Symbol | Test Conditions | Min | Тур | Max | Unit | | |------------------------------------|----------------------|---|-----------------------------|-----|------|------|--| | OFF Characteristics | | | | | | | | | Drain-Source Breakdown Voltage | V _{(BR)DSS} | I _D = 250≥A, V _{GS} = 0 | 200 | _ | _ | V | | | Zero-Gate Voltage Drain Current | I _{DSS} | V _{GS} = 0, V _{DS} = Max Rating | _ | _ | 200 | ≥A | | | | | $V_{GS} = 0$, $V_{DS} = 160V$, $T_C = +125^{\circ}C$ | - | - | 1000 | ≥A | | | Gate-Body Leakage Current, Forward | I _{GSSF} | $V_{DS} = 0$, $V_{GSF} = 20V$ | - | _ | 100 | nA | | | Gate-Body Leakage Current, Reverse | I _{GSSR} | $V_{DS} = 0$, $V_{GSR} = 20V$ | ı | _ | 100 | nA | | | ON Characteristics (Note 1) | | | | | | | | | Gate Threshold Voltage | V _{GS(th)} | V _{DS} = V _{GS} , I _D = 250≥A | 2 | _ | 4 | V | | | Static Drain-Source On Resistance | R _{DS(on)} | V _{GS} = 10V, I _D = 10A | _ | _ | 0.18 | ± | | | On-State Drain Current | I _{D(on)} | $V_{GS} = 10V, V_{DS} \ge 3.2V$ | 18 | _ | _ | Α | | | Forward Transconductance | 9 _{fs} | $V_{DS} \ge 3.2V, I_D = 10A$ | 6 | _ | _ | mhos | | | Dynamic Characteristics | | | | • | • | | | | Input Capactiance | C _{iss} | $V_{DS} = 25V$, $V_{GS} = 0$,
f = 1MHz | _ | _ | 1600 | pf | | | Output Capacitance | C _{oss} | | _ | _ | 750 | pf | | | Reverse Transfer Capactiance | C _{rss} | | - | _ | 300 | pf | | | Switching Characteristics (Note 1) | | | | | | | | | Turn-On Time | t _{d(on)} | $V_{DD} \approx 75V$, $I_D = 10A_{PEAK}$, $R_g = 4.7 \pm$ | _ | _ | 30 | ns | | | Rise Time | t _r | | _ | _ | 60 | ns | | | Turn-Off Delay Time | t _{d(off)} | | _ | _ | 80 | ns | | | Fall Time | t _f | | _ | _ | 60 | ns | | | Total Gate Charge | Q_g | V_{DS} = 160V, V_{GS} = 10V, I_D = Rated I_D | - | 38 | 60 | nC | | | Gate-Source Charge | Q_{gs} | | _ | 16 | _ | nC | | | Gate-Drain Charge | Q_{gd} | | _ | 22 | _ | nC | | | Source Drain Diode Characteristics | | | | • | • | • | | | Forward ON Voltage | V_{SD} | I _S = Rated I _D , V _{GS} = 0 | _ | 1.8 | 2.0 | V | | | Forward Turn-On Time | t _{on} | | Limited by stray inductance | | | | | | Reverse Recovery Time | t _{rr} | | - | 450 | _ | ns | | | Internal Package Inductance | • | | | • | | • | | | Internal Drain Inductance | L _d | Measured from the contact screw on tab to center of die | _ | 3.5 | _ | nΗ | | | | | Measured from the drain lead 0.25" from package to center of die | - | 4.5 | - | nΗ | | | Internal Source Inductance | L _s | Measured from the source lead 0.25" from package to source bond pad | _ | 7.5 | - | nH | | Note 1. Pulse test: Pulse width $\leq 300 \geq s$, Duty cycle $\leq 2\%$. ## **X-ON Electronics** Largest Supplier of Electrical and Electronic Components Click to view similar products for MOSFET category: Click to view products by NTE manufacturer: Other Similar products are found below: 614233C 648584F MCH3443-TL-E MCH6422-TL-E FDPF9N50NZ FW216A-TL-2W FW231A-TL-E APT5010JVR NTNS3A92PZT5G IRF100S201 JANTX2N5237 2SK2464-TL-E 2SK3818-DL-E FCA20N60_F109 FDZ595PZ STD6600NT4G FSS804-TL-E 2SJ277-DL-E 2SK1691-DL-E 2SK2545(Q,T) 405094E 423220D MCH6646-TL-E TPCC8103,L1Q(CM 367-8430-0972-503 VN1206L 424134F 026935X 051075F SBVS138LT1G 614234A 715780A NTNS3166NZT5G 751625C 873612G IRF7380TRHR IPS70R2K0CEAKMA1 RJK60S3DPP-E0#T2 RJK60S5DPK-M0#T0 APT5010JVFR APT12031JFLL APT12040JVR DMN3404LQ-7 NTE6400 JANTX2N6796U JANTX2N6784U JANTXV2N5416U4 SQM110N05-06L-GE3 SIHF35N60E-GE3 2SK2614(TE16L1,Q)