

NTE2388 MOSFET N-Channel Enhancement Mode, High Speed Switch

Description:

The NTE2388 is an N-Channel Enhancement Mode Power MOS Field Effect Transistor in a TO220 type package designed for low voltage, high speed power switching applications such as switching regulators, converters, solenoid, and relay drivers.

Features:

- Silicon Gate for Fast Switching Speeds
- Low r_{DS(on)} to Minimize On–Losses.
 Specified at Elevated Temperatures.

Absolute Maximum Ratings:

- Rugged SOA is Power Dissipation Limited
- Source-to-Drain Diode Characterized for Use With Inductive Loads

Absolute Maximum natings.
Drain-Source Voltage, V _{DSS}
Drain-Gate Voltage (R _{GS} = 20k±), V _{DGR}
Gate-Source Voltage, V _{GS} ±20V
Drain Current, I _D
Continuous
T_{C} = +25°C
Peak
$T_C = +25^{\circ}C$
Total Power Dissipation ($T_C = +25^{\circ}C$), P_D
Derate Above 25°C 1W/°C
Maximum Operating Junction Temperature Range, T _J
Storage Temperature Range, T _{stq} –55° to +150°C
Maximum Thermal Resistance, Junction-to-Case, Rth.JC
Maximum Thermal Resistance, Junction-to-Ambient, R _{th.IA}
Maximum Lead Temperature (During soldering, 1/8" from case for 5sec), T _L +300°C

Electrical Characteristics: $(T_C = +25^{\circ}C \text{ unless otherwise specified})$

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit	
OFF Characteristics							
Drain-Source Breakdown Voltage	V _{(BR)DSS}	I _D = 250≥A, V _{GS} = 0	200	_	_	V	
Zero-Gate Voltage Drain Current	I _{DSS}	V _{GS} = 0, V _{DS} = Max Rating	_	_	200	≥A	
		$V_{GS} = 0$, $V_{DS} = 160V$, $T_C = +125^{\circ}C$	-	-	1000	≥A	
Gate-Body Leakage Current, Forward	I _{GSSF}	$V_{DS} = 0$, $V_{GSF} = 20V$	-	_	100	nA	
Gate-Body Leakage Current, Reverse	I _{GSSR}	$V_{DS} = 0$, $V_{GSR} = 20V$	ı	_	100	nA	
ON Characteristics (Note 1)							
Gate Threshold Voltage	V _{GS(th)}	V _{DS} = V _{GS} , I _D = 250≥A	2	_	4	V	
Static Drain-Source On Resistance	R _{DS(on)}	V _{GS} = 10V, I _D = 10A	_	_	0.18	±	
On-State Drain Current	I _{D(on)}	$V_{GS} = 10V, V_{DS} \ge 3.2V$	18	_	_	Α	
Forward Transconductance	9 _{fs}	$V_{DS} \ge 3.2V, I_D = 10A$	6	_	_	mhos	
Dynamic Characteristics				•	•		
Input Capactiance	C _{iss}	$V_{DS} = 25V$, $V_{GS} = 0$, f = 1MHz	_	_	1600	pf	
Output Capacitance	C _{oss}		_	_	750	pf	
Reverse Transfer Capactiance	C _{rss}		-	_	300	pf	
Switching Characteristics (Note 1)							
Turn-On Time	t _{d(on)}	$V_{DD} \approx 75V$, $I_D = 10A_{PEAK}$, $R_g = 4.7 \pm$	_	_	30	ns	
Rise Time	t _r		_	_	60	ns	
Turn-Off Delay Time	t _{d(off)}		_	_	80	ns	
Fall Time	t _f		_	_	60	ns	
Total Gate Charge	Q_g	V_{DS} = 160V, V_{GS} = 10V, I_D = Rated I_D	-	38	60	nC	
Gate-Source Charge	Q_{gs}		_	16	_	nC	
Gate-Drain Charge	Q_{gd}		_	22	_	nC	
Source Drain Diode Characteristics				•	•	•	
Forward ON Voltage	V_{SD}	I _S = Rated I _D , V _{GS} = 0	_	1.8	2.0	V	
Forward Turn-On Time	t _{on}		Limited by stray inductance				
Reverse Recovery Time	t _{rr}		-	450	_	ns	
Internal Package Inductance	•			•		•	
Internal Drain Inductance	L _d	Measured from the contact screw on tab to center of die	_	3.5	_	nΗ	
		Measured from the drain lead 0.25" from package to center of die	-	4.5	-	nΗ	
Internal Source Inductance	L _s	Measured from the source lead 0.25" from package to source bond pad	_	7.5	-	nH	

Note 1. Pulse test: Pulse width $\leq 300 \geq s$, Duty cycle $\leq 2\%$.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for MOSFET category:

Click to view products by NTE manufacturer:

Other Similar products are found below:

614233C 648584F MCH3443-TL-E MCH6422-TL-E FDPF9N50NZ FW216A-TL-2W FW231A-TL-E APT5010JVR NTNS3A92PZT5G IRF100S201 JANTX2N5237 2SK2464-TL-E 2SK3818-DL-E FCA20N60_F109 FDZ595PZ STD6600NT4G FSS804-TL-E 2SJ277-DL-E 2SK1691-DL-E 2SK2545(Q,T) 405094E 423220D MCH6646-TL-E TPCC8103,L1Q(CM 367-8430-0972-503 VN1206L 424134F 026935X 051075F SBVS138LT1G 614234A 715780A NTNS3166NZT5G 751625C 873612G IRF7380TRHR IPS70R2K0CEAKMA1 RJK60S3DPP-E0#T2 RJK60S5DPK-M0#T0 APT5010JVFR APT12031JFLL APT12040JVR DMN3404LQ-7 NTE6400 JANTX2N6796U JANTX2N6784U JANTXV2N5416U4 SQM110N05-06L-GE3 SIHF35N60E-GE3 2SK2614(TE16L1,Q)