

NTE3090 **Optoisolator Schmitt Trigger Output**

Description:

The NTE3090 is an optoisolator in a 6-Lead DIP type package and contains a gallium arsenide IRED optically coupled to a high-speed integrated detector with a Schmitt Trigger output. This device is designed for applications requiring electrical isolation, fast response time, noise immunity, and digital logic compatibility.

Features:

- Guaranteed Switching Times: t_{on}, t_{off} < 4μs
- Built-In ON/OFF Threshold Hysteresis
- High Data Rate: 1MHz Typical (NRZ)
- Wide Supply Voltage Capability
- Microprocessor Compatible Drive

Applications:

- Interfacing Computor Terminals to Peripheral Equipment
- Digital Control of Power Supplies
- Line Receiver Eliminates Noise
- Digital Controls of Motors and Other Servo Machine Applications
- Logic to Logic Isolator
- Logic Level Shifter Couples TTL to CMOS

Absolute Maximum Rating: $(T_A = +25^{\circ}\text{C unless otherwise specified})$

. 6V
80mA
1.2A
0mW
W/°C
(

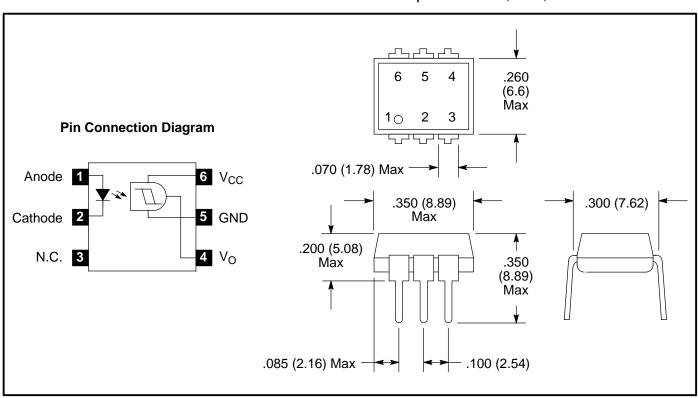
Output Detector

Output Voltage Range, V _o	16V
Supply Voltage Range, V _{CC} 3 to 1	16V
Output Current, I _O	mΑ
Detector Power Dissipation (T _A = +25°C),P _D	nW

Total Device

oltage, 60Hz, 1sec Duration, Note 2), V_{ISO}	Isolation Surge Voltage (Peak AC V
= +25°C),P _D	Total Device Power Dissipation (T _A
2.94mW/°C	Derate Above 25°C
Range, T_{Δ}	Maximum Operating Temperature F

Lead Temperature (During Soldering, 10sec), T_I+260°C


Note 1. Pulse Width = 300μs, Duty Cycle = 2%

Note 2. Isolation surge voltage is an internal dielectric breakdown rating. For this test, Pin1 and Pin2 are common, and Pin4, Pin5, and Pin6 are common.

Electrical Characteristics: $(T_A = 0 \text{ to } +70^{\circ}\text{C unless otherwise specified})$

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit			
Input LED									
Reverse Leakage Current	I _R	$V_R = 3V$, $R_L = 1M\Omega$	_	0.05	10	μΑ			
Forward Voltage	V _F	I _F = 10mA	_	1.2	1.5	V			
		I _F = 0.3mA	0.75	0.95	_	V			
Output Detector									
Operating Voltage	V _{CC}		3	_	15	V			
Supply Current	I _{CC(off)}	$I_F = 0, V_{CC} = 5V$	_	1	5	mA			
Output Current, High	I _{OH}	$I_F = 0, V_{CC} = V_0 = 15V$	_	_	100	μΑ			
Coupled									
Supply Current	I _{CC(on)}	$I_F = I_{F(on)}, V_{CC} = 5V$	_	1.6	5.0	mA			
Output Voltage, Low	V _{OL}	$R_L = 270\Omega, V_{CC} = 5V, I_F = I_{F(on)}$	_	0.2	0.4	V			
Threshold Current, ON	I _{F(on)}	$R_L = 270\Omega$, $V_{CC} = 5V$	_	1.0	1.6	mA			
Threshold Current, OFF	I _{F(off)}	$R_L = 270\Omega, V_{CC} = 5V$	0.3	0.75	_	mA			
Hysteresis Ratio	I _{F(on)} I _{F(off)}	$R_L = 270\Omega$, $V_{CC} = 5V$	0.5	0.75	0.9				
Isolation Voltage	V _{ISO}	60Hz, AC Peak, 1sec, $T_A = +25$ °C, Note 3	7500	_	_	V _{AC(pk)}			
Turn-On Time	t _{on}	$R_L = 270\Omega$,	_	1.2	4	μs			
Fall Time	t _f	$V_{CC} = 5V$, $I_{E} = I_{E(op)}$.	_	0.1	_	μs			
Turn-Off Time	t _{off}	$ \begin{aligned} I_F &= I_{F(on)}, \\ T_A &= +25^{\circ}C \end{aligned} $	_	1.2	4	μs			
Rise Time	t _r		_	0.1	_	μs			

Note 3. For this test IRED Pin1 and Pin2 are common and Output Gate Pin4, Pin5, and Pin6 are common.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for nte manufacturer:

Other Similar products are found below:

747 797 868 1724 NEH680M50FE NEHH1.0M450CB NTE48 NTE526A 228A 231 954 2023 510 R04-11A30-120 04-SLPE3750A
5615 591 7056 NTE5710 7448 NEH.10M50AA NEH2.2M63AA NEH330M35DD NEH33M10AA NEV.22M100AA TP0006-100
NTE182 NTE528 NTE542 NTE74154 WH20-02-25 04-SCBW25L-BK 04-SCBW32L-BK 04-SCW10C-BK 04-SCBW19L-GR 04SCW19L-WH 04-SCW19L-OR 04-SCW38L-WH 04-SCBW50L-OR 04-SCBW50L-GR 04-SCW10C-GR 04-SCW10C-OR 04-SCBW32LGR 04-SCBW32L-WH 04-SCBW32L-OR 04-SCBW6C-WH 04-SCBW6C-GR 04-SCBW6C-OR 04-SCBW25L-GR 04-SCBW25L-WH