

NTE5411 thru NTE5416 Silicon Controlled Rectifier (SCR) 4 Amp, Sensitive Gate, TO126

Description:

The NTE5411 through NTE5416 are PNPN silicon controlled rectifier (SCR) devices designed for high volume consumer applications such as temperature, light, and speed control: process and remote control, and warning systems where reliability of operation is important.

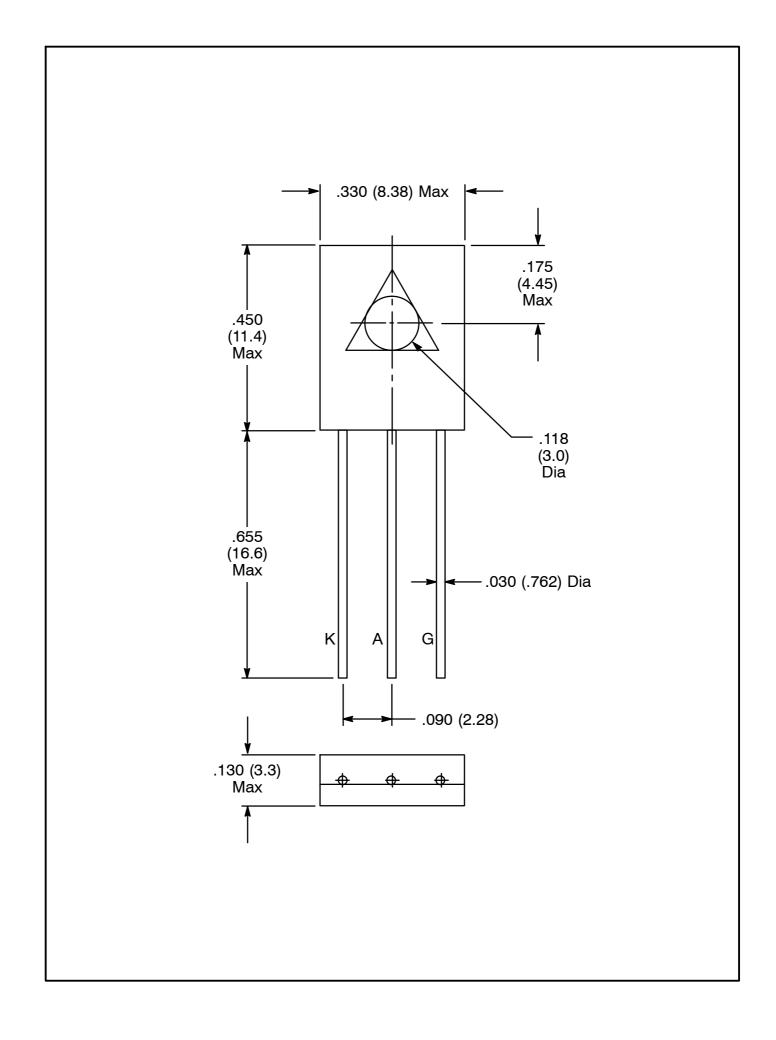
Features:

- Passivated Surface for Reliability and Uniformity
- Power Rated at Economical Prices
- Practical Level Triggering and Holding Characteristics

Absolute Maximum Ratings: (T _C = +110°C unles otherwise specified) Repetitive Peak Forward and Reverse Blocking Voltage, V _{DRM} , V _{RRM}	
(1/2 Sine Wave, $R_{GK} = 1000\Omega$, $T_{C} = -40^{\circ}$ to $+110^{\circ}$ C, Note 1)	30\/
NTE5412	
NTE5413	
NTE5414	
NTE5415	
NTE5416)0V
Non-Repetitive Peak Reverse Blocking Voltage , V _{RSM}	
(1/2 Sine Wave, $R_{GK} = 1000\Omega$, $T_C = -40^{\circ}$ to $+110^{\circ}$ C)	201
NTE5411	
NTE5412	
NTE5414	
NTE5415	
NTE5416	
Average On-State Current, I _{T(AV)}	
$T_C = -40^{\circ} \text{ to } +110^{\circ} \text{C} . ` . ` $.6A
$T_{C} = +100^{\circ}C$.6A
Surge On–State Current (T _C = +90°C), I _{TSM}	
1/2 Sine wave, 60Hz	
1/2 Sine wave, 1.5ms	
Circuit Fusing (t = 8.3ms), I^2t	
Peak Gate Power (Pulse Width = $10\mu s$, $T_C = +90^{\circ}C$), P_{GM}	5W
NI ABR III R I D B I I I I I I I I I I I I I I I I I	

Note 1. Ratings apply for zero or negative gate voltage. Devices shall not have a positive bias applied to the gate concurrently with a negative potential on the anode. Devices should not be tested with a constant current source for forward or reverse blocking capability such that the voltage applied exceeds the rated blocking voltage.

Absolute Maximum Ratings (Cont'd): $(T_C = +110^{\circ}C)$ unles otherwise specified)	
Average Gate Power (t = 8.2ms, $T_C = +90^{\circ}C$), $P_{G(AV)}$	0.1W
Peak Forward Gate Current, I _{GM}	0.2A
Peak Reverse Gate Voltage, V _{RGM}	6V
Operating Junction Temperature Range, T _J	-40° to $+110^{\circ}$ C
Storage Temperature Range, T _{stg}	-40° to $+150^{\circ}C$
Thermal Resistance, Junction-to-Case, R _{thJC}	3°C/W
Thermal Resistance, Junction-to-Ambient, R _{thJA}	75°C/W
Mounting Torque (Note 2)	6 in. lb.


Note 2. Torque rating applies with the use of a compression washer. Mounting torque in excess of 6 in. lb. does not appreciably lower case–to–sink thermal resistance. Anode lead and heat-sink contact pad are common.

<u>Electrical Characteristics:</u> $(T_C = +25^{\circ}C, R_{GK} = 1000\Omega \text{ unles otherwise specified})$

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Peak Forward or Reverse Blocking Current	I _{DRM} , I _{RRM}	Rated V_{DRM} or V_{RRM} , $T_{C} = +25^{\circ}C$	_	_	10	μΑ
		Rated V_{DRM} or V_{RRM} , $T_{C} = +110^{\circ}C$	_	_	200	μΑ
Peak Forward "ON" Voltage	V _{TM}	I _{TM} = 8.2A Peak, Note 3	_	_	2.2	V
Gate Trigger Current (Continuous DC, Note 4)	I _{GT}	V_{AK} = 12V, R_L = 24 Ω	_	_	200	μΑ
		$V_{AK} = 12V, R_L = 24\Omega, T_C = -40^{\circ}C$	_	_	500	μΑ
Gate Trigger Voltage (Continuous DC)	V _{GT}	Source Voltage = 12V, R_S = 50 Ω , V_{AK} = 12V, R_L = 24 Ω , T_C = -40°C	-	-	1	V
Gate Non-Trigger Voltage	V_{GD}	V_{AK} = Rated V_{DRM} , R_L = 100 Ω , T_C = +110°C	0.2	-	-	V
Holding Current	I _H	V_{AK} = 12V, I_{GT} = 2mA, T_{C} = +25°C	_	_	5	mA
		Initiating On–State Current = 200mA, T _C = -40°C	-	-	10	mA
Total Turn-On Time	t _{gt}	Source Voltage = 12V, R_S = 6k Ω , I_{TM} = 8.2A, I_{GT} = 2mA, Rated V_{DRM} , Rise Time = 20ns, Pulse Width = 10 μ s	-	2	-	μs
Forward Voltage Application Rate	dv/dt	V _D = Rated V _{DRM} , T _C = +110°C	_	10	_	V/μs

Note 3. Pulse Width = 1ms to 2ms, Duty Cycle = 2%.

Note 4. Measurement does not include R_{GK} current.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for SCRs category:

Click to view products by NTE manufacturer:

Other Similar products are found below:

NTE5428 NTE5448 NTE5457 NTE5511 T1500N16TOF VT T720N18TOF T880N14TOF T880N16TOF TN1205H-6G TN1215-800B-TR
TS110-7UF TT104N12KOF-A TT104N12KOF-K TT162N16KOF-A TT162N16KOF-K TT330N16AOF VS-111RKI120PBF VS-16RIA100
VS-22RIA20 VS-2N5206 VS-2N685 VS-40TPS08A-M3 VS-50RIA10 057219R T1190N16TOF VT T1220N22TOF VT T201N70TOH
T830N14TOF T830N18TOF TD92N16KOF-A TT250N12KOF-K VS-ST180S12P0V VS-25RIA40 VS-16RIA120 VS-30TPS08PBF
TN1215-800G-TR NTE5427 NTE5442 X0405NF 1AA2 VS-ST300S20P0PBF T2160N28TOF VT TT251N16KOF-K VS-22RIA100 VS16RIA40 CR02AM-8#F00 VS-ST110S12P0VPBF TD250N16KOF-A GA301A VS-ST110S16P0 VS-10RIA10