DEMO MANUAL DC2043A

## LTC3305EFE Lead Acid Battery Balancer

## DESCRIPTION

Demonstration circuit2043A is a lead Acid Battery Balancer featuring the LTC®3305. The LTC3305 balances up to 4 lead acid batteries connected in series and incorporates all voltage monitoring, gate drive and fault detection circuitry. The LTC3305 employs an auxiliary battery or an alternative storage cell to transfer charge to or from each individual battery within the stack. There are two operating modes, TIMER mode and CONTINUOUS mode, selected by the MODE pin. In TIMER mode, once the balancing operation is complete, the LTC3305 goes to a low power state for a programmed time and then periodically rebalances the
batteries. In CONTINUOUS mode, the balancing operation continues even after the batteries are balanced to their programmed termination voltage.
The LTC3305EFE is available in a $7 \mathrm{~mm} \times 7 \mathrm{~mm} 38$-lead TSSOP surface mount package with exposed pad.

Design files for this circuit board are available at http://www.linear.com/demo/DC2043A
$\boldsymbol{\triangle \top}$, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks of Linear Technology Corporation. All other trademarks are the property of their respective owners.

## BOARD PHOTO



Figure 1. DC2043A Demo Board


Figure 2. Thermal Image of DC2043A

## DEMO MANUAL DC2043A

PGRFORMANCE SUMMARY
Specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

| SYMBOL | PARAMETER | CONDITIONS | MIN | MAX | UNITS |  |
| :--- | :--- | :--- | :---: | :---: | :---: | :---: |
| $V_{\text {BAT }}$ | Battery Voltage Range |  | 4.0 | to | 16.0 | V |
| $V_{\text {TERMINATE }}$ | Termination Voltage Range | TERM2 $=0$, TERM1 $=0$ | $\pm 5$ | to | $\pm 20$ | mV |
| $V_{\text {TERMINATE }}$ | Termination Voltage Range | TERM2 $=0$, TERM1 $=1$ | $\pm 17.5$ | to | $\pm 32.5$ | mV |
| V $_{\text {TERMINATE }}$ | Termination Voltage Range | TERM2 $=1$, TERM1 $=0$ | $\pm 42.5$ | to | $\pm 57.5$ | mV |
| $V_{\text {TERMINATE }}$ | Termination Voltage Range | TERM2 $=1$, TERM1 $=1$ | $\pm 90$ | to | $\pm 110$ | mV |
| $V_{\text {REG }}$ | Regulator Output Voltage Range | IVREG $=200 \mu \mathrm{~A}$ | 2.4 | to | 2.6 | V |

## OPGRATING PRINCIPLE

Refer to the block diagram within the LTC3305 data sheet for its operating principle.

The LTC3305 balances batteries using an auxiliary cell or an alternate storage cell as a charge reservoir. The LTC3305 controls external N Channel MOSFET switches in a preprogrammed sequence to connect a battery in the stack to an auxiliary cell. Charge is transferred to or from the auxiliary cell when it is connected to a battery.

The LTC3305 can operate in one of two modes, TIMER mode or CONTINUOUS mode, programmable via the MODE pin. Balancing operation begins once the CBOOST capacitor is charged to at least 6.95 V . The EN1 and EN2 pins select the number of batteries in the stack.

| EN1 | EN2 | Application |
| :--- | :--- | :--- |
| 0 | 0 | SHUTDOWN |
| 0 | 1 | 2 Battery Stack |
| 1 | 0 | 3 Battery Stack |
| 1 | 1 | 4 Battery Stack |

With the MODE pin set to 0 the LTC3305 will operate in the TIMER Mode. The $\overline{B A L}$ pin will be pulled low, indicating that the part is enabled and balancing the battery stack. The balancing operation begins with the terminal of the auxiliary cell connected to the negative terminal of BAT1, the lowest battery in the stack. The bottom switches that connect the negative terminals of BAT1 to the Auxiliary cell's negative terminal are turned on. After a 50ms delay,
the voltages across the auxiliary cell and BAT1 are compared by the termination sense comparator. If the voltage difference between the auxiliary cell and BAT1 is less than the selected termination voltage, the battery is deemed to be in a balance state with respect to the auxiliary cell. The bottom switches will be turned off and the next battery within the stack will be connected.

If the voltage difference between the auxiliary cell and BAT1 is greater than the selected termination voltage, the top switches that connect the positive terminal of BAT1 to the auxiliary cell's positive terminals through the PTC thermistor are turned on. Current is limited by the PTC thermistor. Figure 3 shows the startup battery current where the PTC is limiting as it heats up. Figure 4 is the steady state battery current after the PTC has reached its thermal equilibrium. After a 50ms delay, the termination sense comparator starts to monitor the voltage across the auxiliary cell and the battery. The battery will remain connected to the auxiliary cell until the voltage difference decreases to the selected termination voltage or a $\mathrm{t}_{\text {BAT }}$ timeout occurs.

At this point all switches are turned off and the second battery in the stack will be connected to the auxiliary cell after a 50 ms delay. This 50 ms delay provides a break before make function before the next battery is connect-ed. The cycle will be repeated for each battery in the stack.

## OPGRATING PRINCIPLE



Figure 3. Start-Up Battery Balancing Current


Figure 4. Steady State Battery Balancing Current

Once all batteries in the stack are balanced the DONE pin is pulled low, the $\overline{B A L}$ pin is in its high state and the LTC3305 is put into a low power off state. The stack is deemed balanced when for a four battery stack, the termination sense comparator detects $V_{\text {TERMINATE }}$ on five consecutive cycles that connects each of the batteries to the auxiliary cell using the bottom switches only.

In TIMER mode, the balancing operation continues for a maximum of the programmed $\mathrm{t}_{\mathrm{ON}}$ time. After the $\mathrm{t}_{\mathrm{ON}}$ time, LTC3305 is put into a low power off state for a programmed $t_{\text {OFF }}$ time, even though the batteries may not be balanced. Once the $\mathrm{t}_{\text {off }}$ time expires, the LTC3305 is put into the ON state and normal operation resumes. The $\overline{B A L}$ pin is in its high impedance state if the part is in the OFF state or when the part is in shutdown.
With the MODE pin set to 1 , the LTC3305 will operate in the CONTINUOUS Mode. The part functions in much the same way as in the TIMER mode with the following differences.

1. There are no ON or OFF states. The balancing operation continues even if the stack is in balance. The balancing operation is terminated only if the part is put into shutdown. The $\overline{B A L}$ pin is always pulled low.
2. In CONTINUOUS mode, the top switches are turned on and balancing operation on a battery is terminated by the $\mathrm{t}_{\mathrm{BAT}}$ time out. Since the auxiliary cell remains connected to the battery until a $t_{\text {BAT }}$ time out, its voltage can change before it connects to the next battery in the stack. As a result, when the stack is balanced and the DONE pin is pulled low, the voltages across individual batteries in the stack may differ by more than the programmed $\mathrm{V}_{\text {TERMINate. }}$ In the worst case, when the capacity of the auxiliary cell is much smaller than the battery, the individual battery voltages will differ by twice the programmed $V_{\text {TERMINATE }}$ when balanced.
The LTC3305 provides undervoltage and overvoltage threshold detection that can be programmed using resistors that are connected between the $\mathrm{I}_{\mathrm{SET}}, \mathrm{VL}$ and VH pins and ground. The voltages set on VL and VH are scaled by a factor of 10 , setting the battery undervoltage and overvoltage thresholds, respectively.

When an undervoltage or overvoltage fault condition is detected, the corresponding UVFLT or OVFLT pin is pulled low. The balancing operation is not interrupted during this time. If the fault condition goes away during balancing, the corresponding fault pin is put into its high impedance state.

## DEMO MANUAL DC2043A

## PUICK START PROCEDURE

Using short twisted pair leads for any power connections, with all loads and power supplies off, refer to Figure 5 for the proper measurement and equipment setup.
Follow the procedure below:

1. Before connecting PS1-PS5 to the DC2043A, the power supplies must have its current limit set to 5 A . For most power supplies with a current limit adjustment feature the procedure to set the current limit is as follows. Turn the voltage and current adjustment to minimum. Short the outputs terminals and turn the voltage adjustment to maximum. Adjust the current limit to 5A for PS1. Turn the voltage adjustment to minimum and remove the short between the output terminals. Repeat for PS2-PS5 The power supplies are now current limited to 5A.
a. Initial Jumper and PS settings:

$$
\begin{aligned}
& \text { JP1(MODE) }=\text { CONT JP2 (EN) }=\text { SD } \\
& \text { JP3(TERM1) }=1 \text { JP4 (TERM2) }=1 \\
& \text { PS1 }=0 \mathrm{ff} \text { PS2 }=0 \mathrm{Of} \text { PS3 }=0 \mathrm{FF} \\
& \text { PS4 }=0 \text { FF PS5 }=0 \text { ff PS6 }=0 \mathrm{ff}
\end{aligned}
$$

2. Connect power supplies, load resistors and meters as shown in Figure 5. Turn on PS1 and slowly increase voltage to 2.0 V while monitoring the input current. If the current remains less than 200mA, increase PS1 to 12.0V. Repeat for PS2-PS4.
3. Turn on PS5 and slowly increase voltage to 2.0 V while monitoring the input current. Ifthe current remains less than 200 mA , increase PS5 to 11.8 V . Turn on PS6 and slowly increase voltage to 2.0 V while monitoring the input current. If the current remains less than 20 mA , increase PS6 to 5.0V.
4. Measure the voltage from the VREG Turret to ground. The voltage should read approximately 2.6 V . Measure the voltage from the BOOST Test Point to V4. The voltage should read approximately OV. No LED should be on.
5. Set JP2 to EN. Measure the voltage from the BOOST TestPoint to V4. The voltage should read approximately 8.5V.
6. Measurethe voltage from the $I_{\text {SET }}$ TestPoint to ground. The voltage should read approximately 1.2 V .
7. Measure the voltage from the VH Test Point to ground. The voltage should read approximately 1.52 V .
8. Measure the voltage from the VL Test Point to ground. The voltage should read approximately 0.95 V .
9. With JP1 set to CONT, JP2 set to EN, JP3 set to 1 and JP4 set to 1, observe that the BATX and BATY LEDs are cycling through their four states.

| BATX <br> LED | BATY <br> LED | Active <br> Battery |
| :--- | :--- | :--- |
| OFF | OFF | BAT1 |
| OFF | ON | BAT2 |
| ON | ON | BAT3 |
| ON | OFF | BAT4 |

10. Decrease PS1 and PS5 to 9.4 V and observe that while the BATX and BATY are off, the UVFLT LED is on.
11. Increase PS1 and PS5 to 15.9V and observe that while the BATX and BATY are off, the OVFLT LED is on. Decrease PS1and PS2 to 12.0 V .
12. Decrease PS2 to 11.5 V . Set JP1 to TIMER. Observe that the BATX LED is off and BATY LED is on the majority of the time .Increase PS2 to 12V and observe that the balancing action stops. The BAL LED will be off and the DONE LED will be on.
13. Set JP1 to CONT and JP2 to SD. Set PS5 to 11.8V. Observe that balancing action has stopped and no LEDs are on. Set JP2 to EN and observe that balancing action starts.
14. Turn off all power supplies

## PUICK START PROCEDURE



Figure 5. Proper Measurement Equipment Set-Up

## DEMO MANUAL DC2043A

## PARTS LIST

| ITEM | QTY | REFERENCE | PART DESCRIPTION | MANUFACTURER/PART NUMBER |
| :---: | :---: | :---: | :---: | :---: |
| Required Circuit Components |  |  |  |  |
| 1 | 4 | C1-C4 | CAP.,X7R, 4.7 $7 \mathrm{~F}, 25 \mathrm{~V}, 20 \%$, 0805 | TDK, C2012X7R1E475M |
| 2 | 7 | C5, C6, C12-C16 | CAP.,X7R, 10¢F, 25V, 20\%, 1206 | MURATA, GRM31CR71E106KA12 |
| 3 | 1 | C7 | CAP.,COG, 0.033 F, 50V, 5\%, 0805 | TDK, CGA4J2C0G1H333J125AA |
| 4 | 2 | C8, C9 | CAP.,COG, $0.01 \mu \mathrm{~F}, 50 \mathrm{~V}, 5 \%, 0805$ | TDK, CGA4C2COG1H103J060AA |
| 5 | 1 | C10 | CAP., X7R, 1.04F, 16V, 10\%, 0603 | MURATA, GRM188R71C105KA12D |
| 6 | 2 | D1-D2 | SMD, SCHOTTKY DIODE, 1A, 100V, SOD123 | CENTRAL SEMI, CMMSH1-100G |
| 7 | 10 | Q1-Q3_1, Q3_2, Q4-Q9 | MOSFET, 100V, 0.009 , 60A,POWERPAK-S0-8 | VISHAY, SiR882DP |
| 8 | 8 | R1, R2, R4-R9 | RES, CHIP, 6.04k, 1/16W, 1\%, 0402 | VISHAY, CRCW04026K04FKED |
| 9 | 1 | R3 | RES, CHIP, 3.01k, 1/16W, 1\%, 0402 | VISHAY, CRCW04023K01FKED |
| 10 | 2 | R10, R11 | RES, CHIP,12.1k, 1/8W, 1\%, 0805 | VISHAY, CRCW080512K1FKED |
| 11 | 7 | R12-R18 | RES, CHIP, 10.0, 1/16W, 1\%, 0402 | VISHAY, CRCW040210ROFKED |
| 12 | 2 | R19, R34 | RES, CHIP, 665, 1/2W, 1\%, 1210 | VISHAY, CRCW1210665RFKED |
| 13 | 1 | R20 | RES, CHIP, 12.1k, 1/16W, 1\%, 0402 | VISHAY, CRCW040212K1FKED |
| 14 | 1 | R21 | RES, CHIP, 46.4k, 1/16W, 1\%, 0402 | VISHAY, CRCW040246K4FKED |
| 15 | 1 | R22 | RES, CHIP, 28.7k, 1/16W, 1\%, 0402 | VISHAY, CRCW040228K7FKED |
| 16 | 4 | R30-R33 | RES, CHIP, 1.82M, 1/16W, 1\%, 0402 | VISHAY, CRCW04021M82FKED |
| 17 | 1 | R35 | RES, CHIP, 249, 1/4W, 1\%, 1206 | VISHAY, CRCW1206249RFKED |
| 18 | 1 | RT1 | DISC, TH, PTC, $0.15 \Omega, 16 \mathrm{~V}, 10.1 \mathrm{~mm}$ DIA, | MURATA, PTGLESARR15M1B51B0 |
| 19 | 1 | U1 | IC,SMT, LEAD ACID BATTERY BALANCER/EFE | LINEAR, LTC3305EFE\#PBF |

Additional Demo Board Circuit Components

| 1 | 1 | C11 | CAP., X7R, 4.7 4 F, 25V, 20\%, 0805 | TDK, C2012X7R1E475M |
| :---: | :--- | :--- | :--- | :--- |
| 2 | 3 | D3, D6, D7 | SMD, RED LED, 0603 | LITE ON, LTST-C193KRKT-5A |
| 3 | 4 | D4, D5, D8, D9 | SMD, GREEN LED, 0603 | LITE ON, LTST-C193KGKT-5A |
| 4 | 4 | F1-F4 | SMD, FUSE, 7A, FAST ACTING, 1206 32VDC | BUSSMANN, 3216FF7-R |
| 5 | 6 | F5-F10 | SMD, FUSE, 1/4A, FAST ACTING, 1206 32VDC | BUSSMANN, 3216FF250-R |
| 6 | 1 | Q10 | MOSFET, P-CHANNEL, 20V, $0.085 \Omega, 0.95 A S O T-23$ | CENTRAL SEMI, CMPDM8120 |
| 7 | 7 | R23-R29 | RES, CHIP, $1.00 \mathrm{k}, 1 / 16 \mathrm{~W}, 1 \%, 0402$ | VISHAY, CRCW04021K00FKED |
| 8 | 1 | R36 | RES, CHIP, $100 \mathrm{k}, 1 / 16 \mathrm{~W}, 1 \%, 0402$ | VISHAY, CRCW0402100KFKED |
| 9 | 7 | R37-R43 | RES, CHIP, $2.00 \mathrm{k}, 1 / 16 \mathrm{~W}, 1 \%, 0402$ | VISHAY, CRCW04022K00FKED |

Hardware: For Demo Board Only

| 1 | 7 | E1-E7 | Turret, 0.061" | MILL-MAX, 2308-2-00-80-00-00-07-0 |
| :---: | :---: | :--- | :--- | :--- |
| 2 | 17 | E8-E24 | Turret, 0.09" | MILL-MAX, 2501-2-00-80-00-00-07-0 |
| 3 | 4 | JP1-JP4 | HEADER, 3PINS, 2mm | SAMTEC, TMM-103-02-L-S |
| 4 | 4 | JP1-JP4 | SHUNT 2mm | SAMTEC, 2SN-BK-G |
| 5 | 6 |  | STAND-OFF, NYLON 0.375" tall | KEYSTONE, 8832 (SNAP ON) |

## SCHEMATIC DIAGRAM



Information furnished by Linear Technology Corporation is believed to be accurate and reliable However, no responsibility is assumed for its use. Linear Technology Corporation makes no representation that the interconnection of its circuits as described herein will not infringe on existing patent rights.

## DEMO MANUAL DC2043A

## DEMONSTRATION BOARD IMPORTANT NOTICE

Linear Technology Corporation (LTC) provides the enclosed product(s) under the following AS IS conditions:
This demonstration board (DEMO BOARD) kit being sold or provided by Linear Technology is intended for use for ENGINEERING DEVELOPMENT OR EVALUATION PURPOSES ONLY and is not provided by LTC for commercial use. As such, the DEMO BOARD herein may not be complete in terms of required design-, marketing-, and/or manufacturing-related protective considerations, including but not limited to product safety measures typically found in finished commercial goods. As a prototype, this product does not fall within the scope of the European Union directive on electromagnetic compatibility and therefore may or may not meet the technical requirements of the directive, or other regulations.
If this evaluation kit does not meet the specifications recited in the DEMO BOARD manual the kit may be returned within 30 days from the date of delivery for a full refund. THE FOREGOING WARRANTY IS THE EXCLUSIVE WARRANTY MADE BY THE SELLER TO BUYER AND IS IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED, IMPLIED, OR STATUTORY, INCLUDING ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE. EXCEPT TO THE EXTENT OF THIS INDEMNITY, NEITHER PARTY SHALL BE LIABLE TO THE OTHER FOR ANY INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES.

The user assumes all responsibility and liability for proper and safe handling of the goods. Further, the user releases LTC from all claims arising from the handling or use of the goods. Due to the open construction of the product, it is the user's responsibility to take any and all appropriate precautions with regard to electrostatic discharge. Also be aware that the products herein may not be regulatory compliant or agency certified (FCC, UL, CE, etc.).
No License is granted under any patent right or other intellectual property whatsoever. LTC assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or any other intellectual property rights of any kind.
LTC currently services a variety of customers for products around the world, and therefore this transaction is not exclusive.
Please read the DEMO BOARD manual prior to handling the product. Persons handling this product must have electronics training and observe good laboratory practice standards. Common sense is encouraged.
This notice contains important safety information about temperatures and voltages. For further safety concerns, please contact a LTC application engineer.

Mailing Address:

Linear Technology
1630 McCarthy Blvd.
Milpitas, CA 95035

Copyright © 2004, Linear Technology Corporation

## X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for linear technology manufacturer:
Other Similar products are found below :
LTC1503CS8-1.8 LTC1622CMS8 LTC1740CG LT1073CN8-5\#PBF LT1342CG LT1376HVIS LT1491A LT1576CS8 LTC1338CG
LTC1592BCG LTC1595BCN8 LTC1698ES LTC2442CGPBF LT1021DCN8-5\#PBF LT1079CN\#PBF LT1674CN LT3023EDD
LT1076HVCT7\#PBF LT1101CN8\#PBF LT1168CS8\#PBF LT1171CQ\#PBF LT1210CT7\#PBF LT1308BCS8\#PBF LT1913EDD\#PBF LT1172CT\#PBF LT3473EDD\#PBF LT1376IS8-5\#PBF LT1720CS8\#PBF LT1785AIS8\#PBF LT1944EMS\#PBF LT3435EFE\#PBF DC993A DC987B-E DC985A-A/B DC956A DC951A DC936A DC918C-E DC917A DC906A DC903A-B DC895A-C DC817A DC809A DC790A DC773A DC770C DC768A DC761A-A DC745A

