Power MOSFET

40 V, 4.2 m Ω , 120 A, Single N-Channel

Features

- Small Footprint (5x6 mm) for Compact Design
- Low R_{DS(on)} to Minimize Conduction Losses
- Low Q_G and Capacitance to Minimize Driver Losses
- NVMFS5832NLWF Wettable Flanks Product
- AEC-Q101 Qualified and PPAP Capable
- These Devices are Pb-Free and are RoHS Compliant

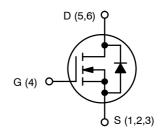
MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

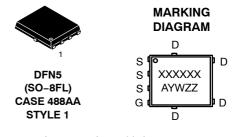
Parameter			Symbol	Value	Unit
Drain-to-Source Voltage			V_{DSS}	40	V
Gate-to-Source Voltage			V_{GS}	± 20	V
Continuous Drain Current R _{Ψ,I-mb} (Notes 1,	Steady	T _{mb} = 25°C	I _D	120	Α
2, 3, 4)		T _{mb} = 100°C		84	
Power Dissipation	State	T _{mb} = 25°C	P_{D}	127	W
R _{ΨJ-mb} (Notes 1, 2, 3)		T _{mb} = 100°C		64	
Continuous Drain Cur-		T _A = 25°C	I _D	21	Α
rent R _{θJA} (Notes 1, 3, 4)	Steady	T _A = 100°C		15	
Power Dissipation	State	T _A = 25°C	P_{D}	3.7	W
R _{0JA} (Notes 1 & 3)		T _A = 100°C		1.9	
Pulsed Drain Current	T _A = 25	°C, t _p = 10 μs	I _{DM}	557	Α
Operating Junction and Storage Temperature			T _J , T _{stg}	–55 to + 175	°C
Source Current (Body Diode)			I _S	120	Α
Single Pulse Drain-to-Source Avalanche Energy (T _J = 25°C, V _{GS} = 10 V, I _{L(pk)} = 52 A, L = 0.1 mH, R _G = 25 Ω)			E _{AS}	134	mJ
Lead Temperature for Soldering Purposes (1/8" from case for 10 s)			TL	260	°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

THERMAL RESISTANCE MAXIMUM RATINGS

Parameter	Symbol	Value	Unit
Junction-to-Mounting Board (top) - Steady State (Notes 2, 3)	$R_{\Psi J-mb}$	1.2	°C/W
Junction-to-Ambient - Steady State (Note 3)	$R_{\theta JA}$	40	


- 1. The entire application environment impacts the thermal resistance values shown, they are not constants and are only valid for the particular conditions noted.
- 2. Psi (Ψ) is used as required per JESD51-12 for packages in which substantially less than 100% of the heat flows to single case surface.
- 3. Surface-mounted on FR4 board using a 650 mm², 2 oz. Cu pad.
- Maximum current for pulses as long as 1 second is higher but is dependent on pulse duration and duty cycle.


ON Semiconductor®

http://onsemi.com

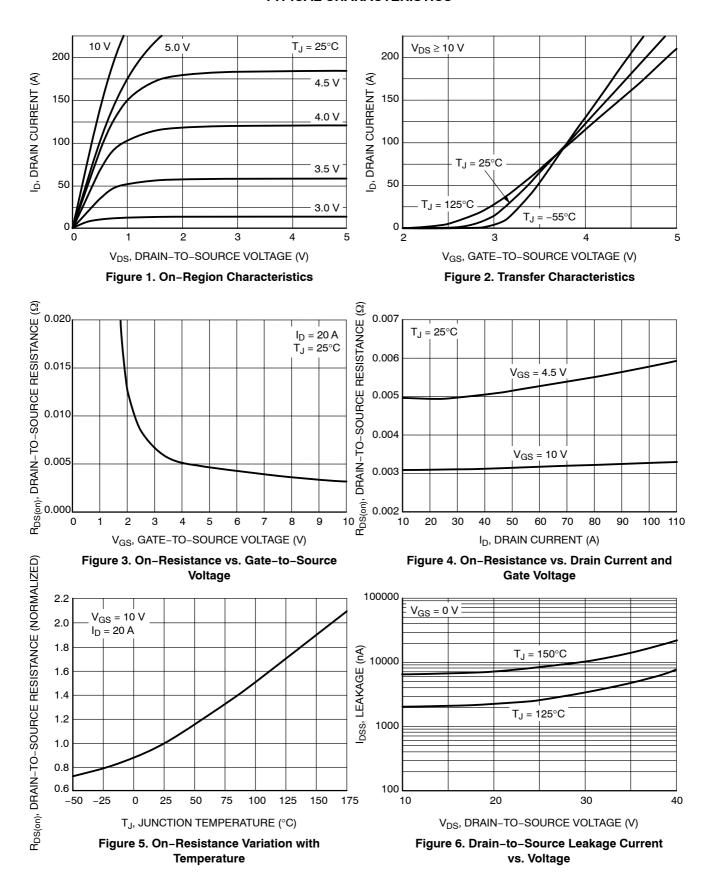
V _{(BR)DSS}	R _{DS(ON)} MAX	I _D MAX	
40 V	4.2 mΩ @ 10 V	100 A	
40 V	6.5 mΩ @ 4.5 V	120 A	

N-CHANNEL MOSFET

A = Assembly Location

Y = Year W = Work Week ZZ = Lot Traceability

ORDERING INFORMATION


See detailed ordering, marking and shipping information in the package dimensions section on page 5 of this data sheet.

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise specified)

Parameter	Symbol	Test Condition		Min	Тур	Max	Unit
OFF CHARACTERISTICS						1	•
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	$V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$		40			V
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} /				34.2		mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	I_{DSS} $V_{GS} = 0 \text{ V},$ $T_{J} = 25$				1	
		V _{DS} = 40 V	T _J = 125°C			100	μΑ
Gate-to-Source Leakage Current	I _{GSS}	$V_{DS} = 0 \text{ V}, V_{GS} = \pm 20 \text{ V}$				±100	nA
ON CHARACTERISTICS (Note 5)					•	•	•
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}, I_D = 250 \mu A$		1.4		2.4	V
Negative Threshold Temperature Coefficient	V _{GS(TH)} /T _J				6.4		mV/°C
Drain-to-Source On Resistance	R _{DS(on)}	V _{GS} = 10 V	I _D = 20 A		3.1	4.2	_
		V _{GS} = 4.5 V	I _D = 20 A		5.0	6.5	$m\Omega$
Forward Transconductance	9FS	V _{DS} = 15 V, I _D	= 20 A		21		S
CHARGES, CAPACITANCES & GATE RESIS	TANCE				•	•	•
Input Capacitance	C _{ISS}				2700		
Output Capacitance	C _{OSS}	V _{GS} = 0 V, f = 1 MHz, V _{DS} = 25 V			360		pF
Reverse Transfer Capacitance	C _{RSS}				250		
Total Gate Charge	Q _{G(TOT)}	V _{GS} = 4.5 V, V _{DS} = 20 V; I _D = 20 A			25		
Total Gate Charge	Q _{G(TOT)}	V _{GS} = 10 V, V _{DS} = 20 V; I _D = 20 A			51		1
Threshold Gate Charge	Q _{G(TH)}	V _{GS} = 4.5 V, V _{DS} = 20 V; I _D = 20 A			2.0		nC
Gate-to-Source Charge	Q _{GS}				8.0		
Gate-to-Drain Charge	Q _{GD}				12.7		
Plateau Voltage	V _{GP}				3.2		V
SWITCHING CHARACTERISTICS (Note 6)					•		•
Turn-On Delay Time	t _{d(ON)}				13		
Rise Time	t _r	$V_{GS} = 4.5 \text{ V}, V_{DS}$	s = 20 V.		24		1
Turn-Off Delay Time	t _{d(OFF)}	$I_D = 10 \text{ A}, R_G = 1.0 \Omega$			27		ns ns
Fall Time	t _f				8.0		
DRAIN-SOURCE DIODE CHARACTERISTIC	s					1	
Forward Diode Voltage	YG:	V _{GS} = 0 V,	T _J = 25°C		0.73	1.2	
		$I_S = 5 A$	T _J = 125°C		0.57		V
Reverse Recovery Time	t _{RR}	V _{GS} = 0 V, dIS/dt = 100 A/μs, I _S = 10 A			28.6		
Charge Time	ta				14		ns
Discharge Time	t _b				14.5		
Reverse Recovery Charge	Q _{RR}				23.4		nC

^{5.} Pulse Test: pulse width $\leq 300~\mu s$, duty cycle $\leq 2\%$.
6. Switching characteristics are independent of operating junction temperatures.

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

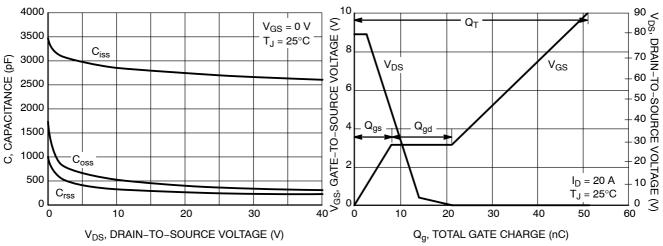


Figure 7. Capacitance Variation

Figure 8. Gate-to-Source Voltage vs. Total Charge

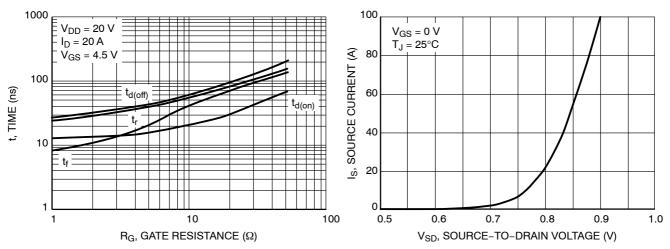


Figure 9. Resistive Switching Time Variation vs. Gate Resistance

Figure 10. Diode Forward Voltage vs. Current

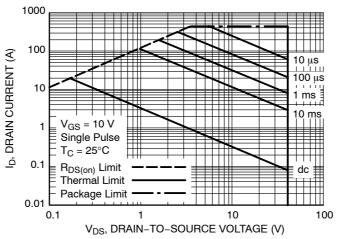


Figure 11. Maximum Rated Forward Biased Safe Operating Area

TYPICAL CHARACTERISTICS

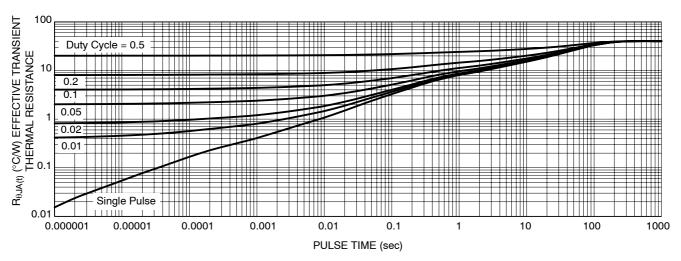
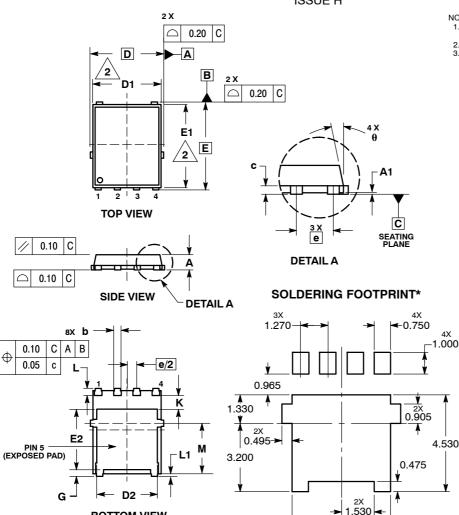


Figure 12. Thermal Response


DEVICE ORDERING INFORMATION

Device	Marking	Package	Shipping [†]
NVMFS5832NLT1G	V5832L	DFN5 (Pb-Free)	1500 / Tape & Reel
NVMFS5832NLWFT1G	5832LW	DFN5 (Pb-Free)	1500 / Tape & Reel
NVMFS5832NLT3G	V5832L	DFN5 (Pb-Free)	5000 / Tape & Reel
NVMFS5832NLWFT3G	5832LW	DFN5 (Pb-Free)	5000 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

PACKAGE DIMENSIONS

NOTES:

- DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
- CONTROLLING DIMENSION: MILLIMETER. DIMENSION D1 AND E1 DO NOT INCLUDE MOLD FLASH PROTRUSIONS OR GATE BURRS.

	MILLIMETERS			
DIM	MIN	NOM	MAX	
Α	0.90	1.00	1.10	
A1	0.00		0.05	
b	0.33	0.41	0.51	
С	0.23	0.28	0.33	
D	5.15 BSC			
D1	4.70	4.90	5.10	
D2	3.80	4.00	4.20	
E		6.15 BSC	;	
E1	5.70	5.90	6.10	
E2	3.45	3.65	3.85	
е	1.27 BSC			
G	0.51	0.61	0.71	
K	1.20	1.35	1.50	
L	0.51	0.61	0.71	
L1	0.05	0.17	0.20	
М	3.00	3.40	3.80	
Ι Δ	n 0		120	

- STYLE 1: PIN 1. SOURCE
 - 2. SOURCE 3. SOURCE

 - 4. GATE 5. DRAIN

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

4.560

ON Semiconductor and under registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking, ited. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

BOTTOM VIEW

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for MOSFET category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below:

614233C 648584F MCH3443-TL-E MCH6422-TL-E FDPF9N50NZ FW216A-TL-2W FW231A-TL-E APT5010JVR NTNS3A92PZT5G IRF100S201 JANTX2N5237 2SK2464-TL-E 2SK3818-DL-E FCA20N60_F109 FDZ595PZ STD6600NT4G FSS804-TL-E 2SJ277-DL-E 2SK1691-DL-E 2SK2545(Q,T) 405094E 423220D MCH6646-TL-E TPCC8103,L1Q(CM 367-8430-0972-503 VN1206L 424134F 026935X 051075F SBVS138LT1G 614234A 715780A NTNS3166NZT5G 751625C 873612G IRF7380TRHR IPS70R2K0CEAKMA1 RJK60S3DPP-E0#T2 RJK60S5DPK-M0#T0 APT5010JVFR APT12031JFLL APT12040JVR DMN3404LQ-7 NTE6400 JANTX2N6796U JANTX2N6784U JANTXV2N5416U4 SQM110N05-06L-GE3 SIHF35N60E-GE3 2SK2614(TE16L1,Q)