18 Channel Smart Lowside Switch ASSP for Powertrain

Data Sheet

Features

- Short Circuit Protection
- Overtemperature Protection
- Overvoltage Protection
- 16 bit Serial Data Input and Diagnostic Output (2 bit/chan. acc. SPI Protocol)
- Direct Parallel Control of 16 channels for PWM Applications
- Low Quiescent Current
- Compatible with 3.3V Microcontrollers
- Electrostatic discharge (ESD) Protection
- Green Product (RoHS-compliant)
- AEC qualified

General description

18-fold Low-Side Switch (0.35Ω to 1Ω) in Smart Power Technology (SPT) with a Serial Peripheral Interface (SPI) and 18 open drain DMOS output stages. The TLE6244X is protected by embedded protection functions and designed for automotive and industrial applications. The output stages are controlled via SPI Interface. Additionally 16 of the 18 channels can be controlled direct in parallel for PWM applications. Therefore the TLE6244X is particularly suitable for engine management and powertrain systems.

1. Description

1.1 Short Description

This circuit is available in PG-MQFP-64 package or as chip.

1.1.1 Features of the Power Stages

	Nominal Current	$\mathbf{R}_{\text {on,max }}$ at $\mathbf{T}_{\mathbf{J}}=\mathbf{2 5}{ }^{\circ} \mathbf{C}$	static current limita- tion enabled by SPI	Clamping
OUT1, 2, 5, 6	2.2 A	$400 \mathrm{~m} \Omega$	-	70 V
OUT3, OUT4	2.2 A	$380 \mathrm{~m} \Omega$	-	70 V
OUT7, OUT8	1.1 A	$780 \mathrm{~m} \Omega$	-	45 V
OUT9, OUT10	2.2 A	$380 \mathrm{~m} \Omega$	X	45 V
OUT11...OUT14	2.2 A	$380 \mathrm{~m} \Omega$	-	45 V
OUT15, OUT16	3.0 A	$280 \mathrm{~m} \Omega$	X	45 V
OUT17, OUT18 *)	1.1 A	$780 \mathrm{~m} \Omega$	X	45 V

*) only serial control possible (via SPI)
Parallel connection of power stages is possible (see 1.13)
Internal short-circuit protection
Phase relation: non-inverting (exception: IN8->OUT8 is inverting)

1.1.2 Diagnostic Features

The following types of error can be detected:
Short-circuit to UBatt (SCB)
Short-circuit to ground (SCG)
Open load (OL)
Overtemperature (OT)
Individual detection for each output.
Serial transmission of the error code via SPI.

1.1.3 VDD-Monitoring

Low signal at pin $\overline{\mathrm{ABE}}$ and shut-off of the power stages if VDD is out of the permitted range. Exception: If OUT8 is controlled by IN8, OUT8 will only be switched off by the overvoltage detection and not by undervoltage detection.
The state of VDD can be read out via SPI.

1.1.4 $\mu \mathrm{sec}-\mathrm{bus}$

Alternatively to the parallel and SPI control of the power stages, a high speed serial bus interface can be configured as control of the power stages OUT1...OUT7 and OUT9...OUT16.

1.1.5 Power Stage OUT8

OUT8 can be controlled by SPI or by the pin IN8 only. When controlled by IN8 this power stage is functional if the voltage at the pin VDD is above $3,5 \mathrm{~V}$. OUT8 will not be reset by RST. In SPI mode the power stage is fully supervised by the VDD-monitor.

1.2 Block Diagram

1.3 Description of the Power Stages

OUT1... OUT6

6 non-inverting low side power switches for nominal currents up to 2.2 A . Control is possible by input pins, by the μ sec-bus or via SPI. For $\mathrm{T}_{J}=25^{\circ} \mathrm{C}$ the on-resistance of the power switches is below $400 \mathrm{~m} \Omega$.
An integrated zener diode limits the output voltage to 70 V typically.
A protection for inverse current is implemented for OUT1... OUT4 for use as stepper-motor control.

OUT9... OUT14

6 non-inverting low side power switches for nominal currents up to 2.2 A . Control is possible by input pins, by the $\mu \mathrm{sec}$-bus or via SPI. For $\mathrm{T}_{J}=25^{\circ} \mathrm{C}$ the on-resistance of the power switches is below $380 \mathrm{~m} \Omega$.
An integrated zener diode limits the output voltage to 45 V typically.

OUT15, OUT16

2 non-inverting low side power switches for nominal currents up to 3.0A. Control is possible by input pins, by the μ sec-bus or via SPI. For $\mathrm{T}_{J}=25^{\circ} \mathrm{C}$ the on-resistance of the power switches is below $280 \mathrm{~m} \Omega$.
An integrated zener diode limits the output voltage to 45 V typically.

OUT7, OUT8, OUT17, OUT18

4 low side power switches for nominal currents up to 1100 mA . Stage 7 is non-inverting, Stage 8 is inverting (IN8 = ' 1 ' => OUT8 is active). For the output OUT7 control is possible by the input pin, by the μ sec-bus or via SPI, OUT8 is controlled by the input pin IN8 or via SPI, for the outputs OUT17 and OUT18 control is only possible via SPI. For $\mathrm{T}_{J}=25^{\circ} \mathrm{C}$ the on-resistance of the power switches is below $780 \mathrm{~m} \Omega$.
An integrated zener diode limits the output voltage to 45 V typically.
In order to increase the switching current or to reduce the power dissipation parallel connection of power stages is possible (for additional information see 1.13).
The power stages are short-circuit proof:
Power stages OUT1...OUT8, OUT11.14: In case of overload (SCB) they will be turned off after a given delay time. During this delay time the output current is limited by an internal current control loop.
Power stages OUT9, OUT10, OUT15...OUT18:
In case of SCB these power stages can be configured for a shut-down mode or for static current limitation. In the shut down mode while SCB they will behave like OUT1.. 8 or OUT11..14.
In case of static current limitation and SCB the current is limited and the corresponding bit combination is set (early warning) after a given delay time. They will not be turned off. If this condition leads to an overtemperature condition, the output will be set into a low duty cycle PWM (selective thermal shut- down with restart) to prevent critical chip temperature.

There are 3 possibilities to turn the power stages on again:

- turn the power stage off and on, either via serial control (SPI) or via parallel control (input pin, except outputs OUT17 and OUT18) or by the μ sec-bus (except OUT8, OUT17,OUT18)
- applying a reset signal.
- sending the instruction "del_dia" by the SPI-interface

The VDD-monitoring locks all power stages, except OUT8 for access by the IN8 input. OUT8 is locked by an internal threshold of $3,5 \mathrm{~V}$ maximum when controlled by IN8. Otherwise OUT8 is locked by the VDD-monitor.

All low side switches are equipped with fault diagnostic functions:

- short-circuit to $U_{\text {Batt }}$: (SCB) can be detected if switches are turned on
- short-circuit to ground: (SCG) can be detected if switches are turned off
- open load:
(OL) can be detected if switches are turned off
- overtemperature: (OT) will only be detected if switches are turned on

The fault conditions SCB, SCG, OL and OT will not be stored until an integrated filtering time is expired (please note for PWM application). If, at one output, several errors occur in a sequence, always the last detected error will be stored (with filtering time). All fault conditions are encoded in two bits per switch and are stored in the corresponding SPI registers. Additionally there are two central diagnostic bits: one specially for OT and one for fault occurrence at any output.

The registers can be read out via SPI. After each read out cycle the registers have to be cleared by the DEL_DIA command.

1.3.1 Power Stage OUT8 (Condensed Description)

1.3.1.1 Control of OUT8 and VDD-Monitoring

OUT8 can be controlled by SPI or by the pin IN8 only, control by $\mu \mathrm{s}$-bus is not possible. When controlled by IN8 this power stage is functional if the voltage at the pin VDD is above $3,5 \mathrm{~V}$. In SPI mode the power stage is fully supervised by the VDD-monitor.
If OUT8 is controlled by IN8, OUT8 will only be switched off by the overvoltage detection and not by undervoltage detection.
1.3.1.2 Phase Relation IN8 - OUT8

The phase relation IN8 -> OUT8 is inverting.
OUT8 is active if IN8 is set to logic '1' (high level, see 3.4.2) in case of parallel access.
On executing the read instruction on RD_INP1/2 the inverted status of IN8 is read back.
1.3.1.3 Reset / Power Stage Diagnostics

If OUT8 is controlled by IN8, OUT8 will not be reseted by RST.
After reset parallel control (by IN8) is active for OUT8.
If UVDD $<4.5 \mathrm{~V}$ errors are not stored because of the active RST of the external Regulator. Nevertheless
OUT8 is protected against overload.
1.3.1.4 Input Current

The control input IN8 has an internal pull-down current source. Thus the input currents I IN8 are positive (flow into the pin).
1.3.1.5 On Resistance

For OUT8 and 3.5V < UVDD < 4.5V R on increases (see 3.8.5).
1.3.1.6 Parallel Connection of Power Stages

Parallel connection of power stages with OUT8 and parallel control is prohibited (inverting input IN8). Control via SPI is possible. See 1.13.

1.4 Pinout

Function	Pin	Pin N
Input 1	IN1	7
Input 2	IN2	46
Input 3	IN3	10
Input 4	IN4	43
Input 5	IN5	6
Input 6 or FDA	IN6	63
Input 7 or SSY	IN7	61
Input 8	IN8	22
Input 9	IN9	20
Input 10	IN10	33
Input 11	IN11	5
Input 12	IN12	48
Input 13	IN13	13
Input 14	IN14	40
Input 15	IN15	1
Input 16 or FCL	IN16	

Output 1 OUT1 8
Output 2 OUT2 45

Output 3
Output 4
Output 5_1
OUT3 9
OUT4 44
Output 5_2
Output 6_1
Output 6_2
Output 7
Output 8
OUT5_1 16
OUT5_2 17
OUT6_1 37
OUT6_2 36
OUT7 60
Output 9_1
OUT8 57
Output 9_2
OUT9_1 18

Output 10_1
OUT9_2 19
Output 10_2
Output 11
Output 12
Output 13_1
Output 13_2
Output 14_1
Output 14_2
Output 15_1
Output 15_2
Output 16_1
Output 16_2
Output 17
Output 18
OUT10_1 35
OUT10_2 34
OUT11 4
OUT12 49
OUT13_1 14
OUT13_2 15
OUT14_1 39
OUT14_2 38
OUT15_1 2
OUT15_2 3
OUT16_1 51
OUT16_2 50
OUT17 25
OUT18 28
(Note: OUTxy_1 and OUTxy_2 have to be connected externally!)

Slave Select	$\overline{\text { SS }}$	56
Serial Output	SO	53
Serial Input	SI	55
SPI Clock	SCK	54

Supply Voltage VDD	VDD	47
Supply Voltage UBatt	Ubatt	23
GND1	GND1	26
GND2	GND2	27
GND3	GND3	58
GND4	GND4	59
GND5	GND5	11
GND6	GND6	12
GND7	GND7	42
GND8	GND8	41
Sense Ground VDD-Monitoring	$\underline{\text { GND_ABE }}$	
In-/Output VDD-Monitoring	$\underline{\text { ABE }}$	29
Reset (low active)	RST	30

not connected
nc
21, 24, 32, 52, 64

1.5 Function of Pins

IN1 to IN16	Control inputs of the power stages
	Internal pull-up current sources (exception: IN8 with pull-down current source)
FCL	Clock for the μ sec-bus (pin shared with IN16)
FDA	Data for the μ sec-bus (pin shared with IN6)
SSY	Strobe and Synchronisation for the $\mu \mathrm{sec}$-bus (pin shared with IN7)
OUT1 to OUT18	Outputs of the power switches
	Short-circuit proof Low side switches Limitation of the output voltage by zener diodes
VDD	Supply voltage 5V
UBatt	Supply voltage $\mathrm{U}_{\text {Batt }}$
	Pin must not be left open but has to be connected either to $U_{\text {Batt }}$ or to $V_{D D}$ (e.g. in commercial vehicles)
GND1 to GND8	Ground pins
	Ground pins for the power stages (see 2.4) Ground reference of all logic signals is GND1/2
$\overline{\mathrm{RST}}$	Reset
	Active low Locks all power switches regardless of their input signals (except OUT8) Clears the fault registers Resets the μ sec-bus interface registers
$\overline{\text { ABE }}$	In-/Output VDD-Monitoring
	Active low
	Output pin for the VDD-Monitoring
	Input pin for the shut-off signal coming from the supervisor
GND_ $\overline{A B E}$	Sense ground VDD-Monitoring
SI, SO, SCK, $\overline{\text { SS }}$	SPI Interface

1.6 SPI Interface

The serial SPI interface establishes a communication link between TLE6244X and the systems microcontroller. TLE6244X always operates in slave mode whereas the controller provides the master function. The maximum baud rate is 5 MBaud .
The TLE6244X is selected by the SPI master by an active slave select signal at $\overline{\mathrm{SS}}$ and by the first two bits of the SPI instruction.SI is the data input (Slave In), SO the data output (Slave Out). Via SCK (Serial Clock Input) the SPI clock is provided by the master.
In case of inactive slave select signal (High) the data output SO goes into tristate.

Block Diagram:

A SPI communication always starts with a SPI instruction sent from the controller to TLE6244X. During a write cycle the controller sends the data after the SPI instruction, beginning with the MSB. During a reading cycle, after having received the SPI instruction, TLE6244X sends the corresponding data to the controller, also starting with the MSB.

SPI Command/Format:

MSB							
7	6	5	4	3	2	1	0
0	0	INSTR4	INSTR3	INSTR2	INSTR1	INSTR0	INSW

Bit	Name	Description
7,6	CPAD1,0	Chip Address (has to be '0', '0')
$5-1$	INSTR (4-0)	SPI instruction (encoding)
0	INSW	Parity of the instruction

Characteristics of the SPI Interface:

1) If the slave select signal at $\overline{\mathrm{SS}}$ is High, the SPI-logic is set on default condition, i.e. it expects an instruction.
2) If the 5 V -reset $(\overline{\mathrm{RST}})$ is active, the SPI output SO is switched into tristate. The VDD monitoring ($\overline{\mathrm{ABE}})$ has no influence on the SPI interface.
3) Verification byte:

Simultaneously to the receipt of an SPI instruction TLE6244X transmits a verification byte via the output SO to the controller. This byte indicates regular or irregular operation of the SPI. It contains an initial bit pattern and a flag indicating an invalid instruction of the previous access.
4) On a read access the databits at the SPI input SI are rejected. On a writing access or after the DEL_DIA instruction the TLE6244XTLE6244X sets the SPI output SO to low after sending the verification byte. If more than 16 bits are received the rest of the frame is rejected.
5) Invalid instruction/access:

An instruction is invalid, if one of the following conditions is fulfilled:

- an unused instruction code is detected (see tables with SPI instructions)
- in case the previous transmission is not completed in terms of internal data processing
- number of SPI clock pulses counted during active $\overline{\mathrm{SS}}$ differs from exactly 16 clock pulses.

A write access and the instruction DEL_DIA is internally suppressed (i.e internal registers will not be affected) in all cases where at the rising (inactive) edge of $\overline{S S}$ the number of falling edges applied to the SPI input SCK during the access is not equal to 16. A write access is also internally suppressed (i.e internal registers will not be affected) if at the rising (inactive) edge of $\overline{S S}$ a 17 th bit is submitted (SCK='1').

After the bits CPAD1,0 and INSTR (4-0) have been sent from the microcontroller TLE6244X is able to check if the instruction code is valid. If an invalid instruction is detected, any modification on a register of TLE6244X is not allowed and the data byte 'FFh' is transmitted after having sent the verification byte. If a valid read instruction is detected the content of the corresponding register is transmitted to the controller after having sent the verification byte (even if bit INSW afterwards is wrong). If a valid write instruction is
detected the data byte '00h' is transmitted to the controller after having sent the verification byte (even if bit INSW afterwards is wrong) but modifications on any register of TLE6244 are not allowed until bit INSW is valid, too.

If an invalid instruction is detected bit TRANS_F in the following verification byte is set to 'High'. This bit must not be cleared before it has been sent to the microcontroller.
6) If TLE6244X and additional IC's are connected to one common slave select, they are distinguished by the chip address (CPAD1, CPAD0). If an IC with 32bit-transmission-format is selected, TLE6232 must not be activated, even if slave select is set to 'low' and the first two bits of the third byte of the 32bit-transmission are identical to the chip address of TLE6244X.
During the transmission of CPAD1 and CPAD0 the data output SO remains in tristate (see timing diagram of the SPI in chapter 3.9.).

SPI access format:

Verification byte:

MSB							
7	6	5	4	3	2	1	0
Z	Z	1	0	1	0	1	TRANS_F

Bit	Name	Description
0	TRANS_F	Bit = 1: error detected during previous transfer Bit = 0: previous transfer was recognised as valid State after reset: 0
1		Fixed to High
2		Fixed to Low
3		Fixed to High
4		Fixed to Low
5		Fixed to High
6		send as high impedance
7		send as high impedance

SPI Instructions

SPI Instruction	Encoding			Description
	bit 7,6 CPAD1,0	$\begin{array}{\|l} \hline \text { bit 5,4,3,2,1 } \\ \text { INSTR(4...0) } \end{array}$	Parity	
RD_IDENT1	00	00000	0	read identifier 1
RD_IDENT2	00	00001	1	read identifier2
WR_STATCON	00	10001	0	write into STATCON_REG
WR_MUX1	00	10010	0	write into MUX_REG1
WR_MUX2	00	10011	1	write into MUX_REG2
WR_SCON1	00	10100	0	write into SCON_REG1
WR_SCON2	00	10101	1	write into SCON_REG2
WR_SCON3	00	10110	1	write into SCON_REG3
WR_CONFIG	00	10111	0	write into CONFIG
RD_MUX1	00	00010	1	read MUX_REG1
RD_MUX2	00	00011	0	read MUX_REG2
RD_SCON1	00	00100	1	read SCON_REG1
RD_SCON2	00	00101	0	read SCON_REG2
RD_SCON3	00	00110	0	read SCON_REG3
RD_STATCON	00	00111	1	read STATCON_REG
DEL_DIA	00	11000	0	resets the 5 diagnostic registers DIA_REG
RD_DIA1	00	01000	1	read DIA_REG1
RD_DIA2	00	01001	0	read DIA_REG2
RD_DIA3	00	01010	0	read DIA_REG3
RD_DIA4	00	01011	1	read DIA_REG4
RD_DIA5	00	01100	0	read DIA_REG5
RD_CONFIG	00	01101	1	read CONFIG
RD_INP1	00	01110	1	read INP_REG1
RD_INP2	00	01111	0	read INP_REG2
		all others		no function

1.6.1 Serial/Parallel Control

Serial/Parallel Control of the Power Stages 1... 16 and Serial Control (SPI) of the Power Stages 17 and 18:
The registers MUX_REG1/2 and the bmux-bit prescribe parallel control or serial control (SPI or μ secbus) of the power stages.
(SPI-Instructions: WR_MUX1...2, RD_MUX1...2, WR_SCON1...3, RD_SCON1...3)
The following table shows the truth table for the control of the power stages $1 \ldots 18$. The registers MUX_REG1, 2 prescribe parallel-control or serial control of the power stages. The registers SCON_REG1... 3 prescribe the state of the power stage in case of SPI-serial control. BMUX determines parallel control or control by $\mu \mathrm{sec}-\mathrm{bus}$.
For the power stages 17 and 18 control is exclusively possible via SCON17/18. IN17/18 and MUX17/18 do not exist. BMUX has no function for OUT17/18.

$\overline{\text { ABE }}$	$\overline{\text { RST }}$	INx	BMUX	MUXx	SCONx	$\boldsymbol{\mu s e c}-$ REGx	Output OUTx of Power Stage \mathbf{x}, $\mathbf{x = 1 . . 1 8}$
0	0	X	X	X	X	X	OUTx off
0	1	X	X	X	X	X	OUTx off
1	0	X	X	X	X	X	OUTx off
1	1	X	X	0	0	X	SPI Control: OUTx on
1	1	X	X	0	1	X	SPI Control: OUTx off
1	1	0	1	1	X	X	Parallel Control: OUTx on
1	1	1	1	1	X	X	Parallel Control: OUTx off
1	1	X	0	1	X	0	μ sec-bus Control: OUTx on
1	1	X	0	1	X	1	μ sec-bus Control: OUTx off

Exception: OUT8 is on (active) if IN8 is set to logic ' 1 ' (and off if IN8 is set to logic ' 0 ') in case of parallel access.

Note: OUT8 cannot be controlled by the μ sec-Bus. Refer to section 1.7.

Description of the SPI Registers

Register:							
7	6	5	4	3	2	1	0
MUX7	MUX6	MUX5	MUX4	MUX3	MUX2	MUX1	MUX0

State of Reset: 80H		
Access by Controller: \quad Read/Write		
Bit	Name	Description
0	MUX0	Serial or parallel control of power stage 1
1	MUX1	Serial or parallel control of power stage 2
2	MUX2	Serial or parallel control of power stage 3
3	MUX3	Serial or parallel control of power stage 4
4	MUX4	Serial or parallel control of power stage 5
5	MUX5	Serial or parallel control of power stage 6
6	MUX6	Serial or parallel control of power stage 7
7	MUX7	Serial or parallel control of power stage 8

Register:							
MUX_REG2							
7	6	5	4	3	2	1	0
MUX15	MUX14	MUX13	MUX12	MUX11	MUX10	MUX9	MUX8

State of Reset: $\mathbf{0 0 H}$		
Access by Controller: \quad Read/Write		
Bit	Name	Description
0	MUX8	Serial or parallel control of power stage 9
1	MUX9	Serial or parallel control of power stage 10
2	MUX10	Serial or parallel control of power stage 11
3	MUX11	Serial or parallel control of power stage 12
4	MUX12	Serial or parallel control of power stage 13
5	MUX13	Serial or parallel control of power stage 14
6	MUX14	Serial or parallel control of power stage 15
7	MUX15	Serial or parallel control of power stage 16

Register:		SCON_REG1					
7	6	5	4	3	2	1	0
SCON7	SCON6	SCON5	SCON4	SCON3	SCON2	SCON1	SCON0

State of Reset: FFH		
Access by Controller: \quad Read/Write		
Bit	Name	Description
0	SCON0	State of serial control of power stage 1
1	SCON1	State of serial control of power stage 2
2	SCON2	State of serial control of power stage 3
3	SCON3	State of serial control of power stage 4
4	SCON4	State of serial control of power stage 5
5	SCON5	State of serial control of power stage 6
6	SCON6	State of serial control of power stage 7
7	SCON7	State of serial control of power stage 8

Register: SCON_REG2							
7	6	5	4	3	2	1	0
SCON15	SCON14	SCON13	SCON12	SCON11	SCON10	SCON9	SCON8

State of Reset: FFH		
Access by Controller: \quad Read/Write		
Bit	Name	Description
0	SCON8	State of serial control of power stage 9
1	SCON9	State of serial control of power stage 10
2	SCON10	State of serial control of power stage 11
3	SCON11	State of serial control of power stage 12
4	SCON12	State of serial control of power stage 13
5	SCON13	State of serial control of power stage 14
6	SCON14	State of serial control of power stage 15
7	SCON15	State of serial control of power stage 16

Register: SCON_REG3							
7	6	5	4	3	2	1	0
1	1	1	1	1	1	SCON17	SCON16

State of Reset: FFH		
Access by Controller:		Read/Write
Bit	Name	Description
0	SCON16	State of serial control of power stage 17
1	SCON17	State of serial control of power stage 18
$7-2$		No function: HIGH on reading

1.6.2 Diagnostics/Encoding of Failures

Description of the SPI Registers
(SPI Instructions: RD_DIA1...5)

Register:			DIA_REG1				
7	6	5	4	3	2	1	0
DIA7	DIA6	DIA5	DIA4	DIA3	DIA2	DIA1	DIA0

State of Reset: FFH		
Access by Controller: \quad Read only		
Bit	Name	Description
$1-0$	DIA (1-0)	Diagnostic Bits of power stage 1
$3-2$	DIA (3-2)	Diagnostic Bits of power stage 2
$5-4$	DIA (5-4)	Diagnostic Bits of power stage 3
$7-6$	DIA (7-6)	Diagnostic Bits of power stage 4

Register:		DIA_REG2					
7	6	5	4	3	2	1	0
DIA15	DIA14	DIA13	DIA12	DIA11	DIA10	DIA9	DIA8

State of Reset: FFH		
Access by Controller: Read only		
Bit	Name	Description
$1-0$	DIA (9-8)	Diagnostic Bits of power stage 5
$3-2$	DIA (11-10)	Diagnostic Bits of power stage 6
$5-4$	DIA (13-12)	Diagnostic Bits of power stage 7
$7-6$	DIA (15-14)	Diagnostic Bits of power stage 8

Register:		DIA_REG3					
7	6	5	4	3	2	1	0
DIA23	DIA22	DIA21	DIA20	DIA19	DIA18	DIA17	DIA16

State of Reset: FFH		
Access by Controller: \quad Read only		
Bit	Name	Description
$1-0$	DIA (17-16)	Diagnostic Bits of power stage 9
$3-2$	DIA (19-18)	Diagnostic Bits of power stage 10
$5-4$	DIA (21-20)	Diagnostic Bits of power stage 11
$7-6$	DIA (23-22)	Diagnostic Bits of power stage 12

Register: DIA_REG4							
7	6	5	4	3	2	1	0
DIA31	DIA30	DIA29	DIA28	DIA27	DIA26	DIA25	DIA24

State of Reset: FFH		
Access by Controller:		Read only
Bit	Name	Description
$1-0$	DIA (25-24)	Diagnostic Bits of power stage 13
$3-2$	DIA (27-26)	Diagnostic Bits of power stage 14
$5-4$	DIA (29-28)	Diagnostic Bits of power stage 15
$7-6$	DIA (31-30)	Diagnostic Bits of power stage 16

Register: DIA_REG5							
7	6	5	4	3	2	1	0
1	1	1	UBatt	DIA35	DIA34	DIA33	DIA32

State of Reset: FFH		
Access by Controller:		Read only
Bit	Name	Description
$1-0$	DIA (33-32)	Diagnostic Bits of power stage 17
$3-2$	DIA (35-34)	Diagnostic Bits of power stage 18
4	UBatt	0: Voltage Level at Pin UBatt is below 2V (typically) 1: Voltage Level at Pin UBatt is above 2V (typically) Diagnosis of UBatt is only possible if UVDD $>4.5 \mathrm{~V}$ Status of UBatt is not latched.
$7-5$		No function: High on reading

Encoding of the Diagnostic Bits of the Power Stages

DIA(2*x-1)	DIA(2*x-2)	State of power stage $x \quad x=1 . .18$
1	1	Power stage o.k.
1	0	Short-circuit to $U_{\text {Batt }}$ (SCB) / OT
0	1	Open load (OL)
0	0	Short-circuit to ground (SCG)

1.6.3 Configuration

The μ sec-bus is enabled by this register. In addition the shut off at SCB can be configured for the power-stages OUT9, OUT10 and OUT15... OUT18.

CONFIG (Read and write)							
7	6	5	4	3	2	1	0
O16-SCB	O15-SCB	O10-SCB	O9-SCB	O18-SCB	O17-SCB	BMUX	1

State of Reset: FFh		
Bit	Name	Description
0		No function: HIGH on reading
1	BMUX	1: parallel inputs INx enabled 0 : μ sec-Bus Interface enabled
2	O17-SCB	1: The output OUT17 is switched off in case of SCB 0 : The output is not switched off in case of SCB
3	O18-SCB	1: The output OUT18 is switched off in case of SCB 0 : The output is not switched off in case of SCB
4	O9-SCB	1: The output OUT9 is switched off in case of SCB 0 : The output is not switched off in case of SCB
5	O10-SCB	1: The output OUT10 is switched off in case of SCB 0 : The output is not switched off in case of SCB
6	O15-SCB	1: The output OUT15 is switched off in case of SCB 0 : The output is not switched off in case of SCB
7	O16-SCB	1: The output OUT16 s switched off in case of SCB 0 : The output is not switched off in case of SCB

Description of the $\mu \mathrm{sec}$-bus see chapter 1.7

1.6.4 Other

Reading the IC Identifier (SPI Instruction: RD_IDENT1):

IC Identifier1 (Device ID)							
7	6	5	4	3	2	1	0
ID7	ID6	ID5	ID4	ID3	ID2	ID1	ID0

Bit	Name	Description
$7 \ldots 0$	$\operatorname{ID}(7 \ldots 0)$	ID-No.: 10101000

Reading the IC revision number (SPI Instruction: RD_IDENT2):

IC revision number								
7	6	5	4	3	2	1	0	
SWR3	SWR2	SWR1	SWR0	MSR3	MSR2	MSR1	MSR0	

Bit	Name	Description
$7 \ldots 4$	$\operatorname{SWR}(3 \ldots 0)$	Revision corresponding to Software release: OHex
$3 \ldots 0$	$\operatorname{MSR}(3 \ldots 0)$	Revision corresponding to Maskset: OHex

Reset of the Diagnostic Information (SPI Instruction: DEL_DIA):

Resets the 5 diagnostic registers DIA_REG1... 5 to FFH and the common overtemperature flag in register STATCON_REG (Bit4) to High. These bits are only cleared by the DEL_DIA instruction when there is no failure entry at the input of the registers.
Access is performed like a writing access with any data byte.
In the case a power stage is shut off because of SCB, the output is activated again by the DEL_DIA instruction and the filtering-time is enabled. Therefore in case of SCB the output is activated and shut off after the shutoff delay.
For a power stage in the current limitation mode, the current limitation mode is left, if a DEL_DIA instruction has been received. If there is still the condition for SCB the current limitation mode is entered again.

On the following pages the conditions for set and reset of the SCB report in DIA_REGx is shown in several schematics. The signal „power stage control" is generated as follows:

TLE 6244X
\qquad
Schematic of SCB report of power stages OUT1...7,9... 18 (power stage programmed for
shut-off in case of SCB), SCB entry deleted by DEL_DIA after SCB condition disappeared and power stage control was toggled

SCB

Schematic of SCB report of power stages OUT1...7,9... 18 (power stage programmed for
shut-off in case of SCB), SCB entry deleted by Reset after SCB condition disappeared
and power stage control was toggled

Schematic of SCB report of power stages OUT1...7,9... 18 (power stage programmed for
shut-off in case of SCB), SCB entry deleted by DEL_DIA after SCB condition disappeared
but power stage control was not toggled

Schematic of SCB report of power stages OUT1...7,9... 18 (power stage programmed for shut-off in case of SCB), SCB entry deleted by Reset after SCB condition disappeared but power stage control was not toggled

Schematic of SCB report of power stages OUT9,10,15... 18 (power stage programmed for current limitation in case of SCB), SCB resp. OT flag entry deleted exemplary by DEL_DIA after SCB resp. OT condition disappeared and power stage control was toggled
SCB condition SCB
no SCB

Reading Input1 (SPI Instruction: RD_INP1)

:

Register INP_REG1								
7	6	5	4	3	2	1	0	
IN8	Test	0	IN5	IN4	IN3	IN2	IN1	

Bit	Name	Description
$0 . .4$	IN(1...5)	Status of the input pins IN1... IN5
5		No function: LOW on reading
6	Test	μ sec-test-bit, the bit D8 of the μ sec-bus is read
7	IN8	Inverted status of the input pin IN8: Low level at pin IN8: Bit $7=1$ High level at pin IN8: Bit $7=0$

Reading Input2 (SPI Instruction: RD_INP2):

Register INP_REG2								
7	6	5	4	3	2	1	0	
0	IN15	IN14	IN13	IN12	IN11	IN10	IN9	

Bit	Name	Description
$0 . .6$	IN9...IN15	Status of the input pins IN9...IN15
7		No function: LOW on reading

The input pins IN1..IN5 and IN8...IN15 can be used as input port expander by reading the status of the input pins using the SPI-commands RD_INP1/2. If the μ sec-bus-interface is enabled (BMUX=0) the pull-up current sources at the input IN1..5 and IN9.. 15 are disabled. If BMUX=1 the pullup current sources at these pins are enabled. The pull-up/pull-down current sources of the other input pins are not effected by the bit BMUX.

On executing the read instruction on RD_INP1/2, the present status (not latched) of the input pins INx is read back (exception: bit IN8 represents the inverted status of input pin IN8).

Reading the State resp. the Configuration:
(SPI Instructions: WR_STATCON, RD_STATCON)

Register:		STATCON_REG					
7	6	5	4	3	2	1	0
CONFIG2	CONFIG1	CONFIG0	STATUS4	STATUS3	STATUS2	STATUS1	STATUS0

Bit	Name	Description
0	STATUS0	Bit = 1: No overvoltage at VDD Bit $=0$: Overvoltage at VDD resp. state of overvoltage still stored (reset by CONFIG0 $=0$) Access by Controller: Read only Overvoltage information (bit STATUS0 $=0$) will not be reset by an external reset signal (pin RST=low). Overvoltage will be detected and stored (CONFIGO $=1$) during RST=low. The information will be deleted when an internal (undervoltage) reset occurs or when CONFIGO is set to 0 .
1	STATUS1	Bit = 1: No undervoltage at VDD Bit = 0: Undervoltage at VDD Access by Controller: Read only
2	STATUS2	Reading the voltage level at $\overline{\mathrm{ABE}}$ Access by Controller: Read only
3	STATUS3	Common error flag Bit =1: At present no error is entered in one of the 5 diagnostic registers DIA_REG1..5. Bit $=0$: For at least at one power stage an error has been detected and entered in the corresponding diagnostic register. Access by Controller: Read only
4	STATUS4	Common overtemperature flag Bit = 1: No overtemperature detected since the last reset of diagnostic information (by del_dia instruction, $\overline{\mathrm{RST}}=$ Low or undervoltage at VDD (see 3.2.)) Bit = 0: Overtemperature for at least one power stage has been detected since the last reset of the diagnostic information (by del_dia instruction, $\overline{\mathrm{RST}}=$ Low or undervoltage at VDD (see 3.2.)) State of Reset: 1 Access by Controller: Read only
5	CONFIG0	Bit = 1: Latch function for overvoltage at VDD is switched on Bit = 0: Latch function for overvoltage at VDD is switched off State of Reset: 1 Access by Controller: Read/Write

TLE 6244X

6	CONFIG1	Bit = 1: Lower threshold of VDD-monitoring is lifted if bit CONFIG2 $=0$ (test of switch-off path) Bit = 0: Upper threshold of VDD-monitoring is reduced if bit CONFIG2 $=0$ (test of switch-off path) State of Reset: 1 Access by Controller: Read/Write
7	CONFIG2	Bit =1: Test of VDD threshold is switched off Bit = 0: Test of VDD threshold is switched on State of Reset: 1 Access by Controller: Read/Write

1.7 usec - Bus Interface

The $\mu \mathrm{sec}$-bus-interface is one of three possibilities to control the power stages. OUT1...OUT7 and OUT9...OUT16 are influenced by the reset input RST. If RST is set to Low, these power stages are switched off. After reset they are controlled by the SPI (default initialization of TLE6244X). Power stage 8 however is not influenced by the reset input if it's controlled by IN8 and $U_{V D D} \geq 3,5 \mathrm{~V}$. Alternatively these outputs can be controlled either by the pins IN1...IN16 or by the $\mu \mathrm{sec}$-bus interface. Exception: OUT8 can be controlled by IN8 or by the SPI-interface only. The bit 'Bus-Multiplex' (BMUX) in the SPI register CONFIG prescribes parallel access (IN1...IN7, IN9...IN16) or μ sec-bus control (see figure below). Exception: If BMUX is set to ' 0 ' only the powerstages OUT1...OUT7 and OUT9...OUT16 are controlled by the $\mu \mathrm{sec}$-bus.

Main features:

- 16 data bits for each data-frame (at the pin FDA)
- 16 clock-pulses for each data-frame (at the pin FCL)
- clock frequency TLE6244: 0... 16 MHz
- one sync -input (pin SSY) to latch the input data stream
- input level interface same as for IN6, IN7, IN16
- no error correction

When the bit BMUX in CONFIG is set to Low, the power stages $1 \ldots .7$ and $9 \ldots 16$ are controlled by the μ sec-bus-interface on condition that registers MUX_REG1/2 are configured for serial access. The received μ sec-bus bit stream (D0... D15) is latched into a 16 -bit register by the rising edge at SSY. Power stages $1 \ldots .7$ and 9... 16 are switched according to bits D0...D7 and D9...D15:

μ sec-bus	control of power stage	μ sec-bus	control of power stage
D0	OUT14	D8	μ sec-bus Test Bit
D1	OUT1	D9	OUT11
D2	OUT2	D10	OUT10
D3	OUT3	D11	OUT9
D4	OUT4	D12	OUT12
D5	OUT5	D13	OUT13
D6	OUT6	D14	OUT16
D7	OUT7	D15	OUT15

Bit $D x=0: \quad$ Power stage OUTx is switched on
Bit $D x=1: \quad$ Power stage OUTx is switched off
State of reset: $\quad \mathrm{FFFF}_{\mathrm{H}}$
Because the power stage 8 is not controlled by the μ sec-bus-interface, the corresponding bit D8 can be used as test bit, that can be read back by the SPI-interface (see register RD_INP1). If the $\mu \mathrm{sec}$-bus-interface is used to control the power stages, the input pins IN1..IN5 and IN8...IN15 can be used as input port expander by reading the status of the input pins by the SPIcommands RD_INP1/2.

1.8 Unused Power Stages

To avoid an „open load" fault indication an unused power switch has to be connected to an external pull up resistor connected to $U_{U B}$ or has to be switched on by the input pin or via SPI or the μ sec-bus-interface.

$$
R_{\text {Pull-up,max }}=\left(U_{\text {min }}-U_{\text {drop,max }}-U_{\text {thresOL,max }}\right) / I_{\text {diag, } \max }
$$

$U_{B R} \min$ is the required minimum battery voltage for diagnostic function of the ECU. The drop voltage is composed of the drop voltage of the regulator and the drop voltage of the reverse protection circuit of the regulator resp. the forward voltage of a reverse protection diode.

Attention:

This equation also applies to power switches that are used as signal drivers (pull up resistor inside ECU or outside ECU): the permissible pull up resistance without a wrong diagnostic information is calculated by the same equation. On dimensioning the pull up resistance in combination with the diagnostic current, in applications as signal drivers attention must be paid especially to the required high level (also for low battery voltage).

1.9 Timing Diagram of the Power Outputs

1.9.1 Power Stages

If the output is controlled via SPI the timing starts with the positive slope at SS
If the output is controlled by the $\mu \mathrm{sec}$-bus, the timing starts with the pos. slope of SSY
*) With ohmic load, UCLi = UBatt

1.10 VDD-Monitoring

Overview:

The VDD-monitoring generates a "low" signal at the bidirectional pin $\overline{\mathrm{ABE}}$ if the 5 V supply voltage at pin VDD is out of the permissible range of 4.5 V ...5.5V. On $\overline{\mathrm{ABE}}=$ low the power stages of TLE6244X are switched off. Exception: OUT8 is not switched off in case of parallel control via IN8 by the VDD monitoring undervoltage threshold, but by a threshold of 3.5 V at VDD.
On shorting pin $\overline{\mathrm{ABE}}$ to V_{DD} or UBATT ($\leq 36 \mathrm{~V}$), the power stages will be switched off in case of undervoltage or overvoltage at pin VDD in spite of $\overline{\mathrm{ABE}}=$ high.
The behavior of the $\overline{\mathrm{ABE}}$ level on the return of VDD out of the undervoltage range into the correct range is not configurable. At the transition from undervoltage to normal voltage the signal at pin $\overline{\mathrm{ABE}}$ goes high after a filtering time is expired. The behavior of the $\overline{\mathrm{ABE}}$ level on the return of VDD out of the overvoltage range into the correct range is configurable in STATCON_REG, Bit5. At the transition from overvoltage to normal voltage the signal at pin $\overline{\mathrm{ABE}}$ goes high either after a filtering time (OV not latched) or after a SPI writing instruction (OV latched, state after reset).
On undervoltage condition the signal at pin $\overline{\mathrm{ABE}}$ goes high after a filtering time is expired. On overvoltage condition pin $\overline{\mathrm{ABE}}$ goes high either after a filtering time or after a SPI writing instruction. Before this SPI instruction is sent to TLE6244X appropriate tests can be carried out by the controller.
If the voltage at pin VDD is below the lower limit or is resp. was above the upper limit, this can be read out by the SPI instruction RD_STATCON.
VDD-monitoring has no influence on SCON_REGx, MUX_REGx, DIA_REGx, CONFIG and INP_REGx.
If output stages are switched off by the internal over-/undervoltage detection or by externally applying a low signal at the $\overline{\mathrm{ABE}}$ pin, no failure storage (DIAREG1...5) may occur.

Description in Detail:

Description of the Register: STATCON_REG

Bit 7 1: Normal operation
0 : Test of VDD threshold
Access by controller: read/write
State of reset: 1
Bit 6 1: Testing the lower threshold (if bit $7=0$)
0 : Testing the upper threshold (if bit $7=0$)
Access by controller: read/write
State of reset: 1
Bit 5 1: $\overline{\mathrm{ABE}}$ latched after overvoltage
0 : $\overline{\mathrm{ABE}}$ deactivated immediately after the disappearance of the overvoltage
Access by controller: read/write
State of reset: 1
Bit 2 Reading out the level at pin $\overline{\mathrm{ABE}}$
Access by controller: read only
Bit 1 1: no undervoltage at pin VDD
0 : undervoltage at pin VDD
Access by controller: read only

Bit 0 1: no overvoltage at pin VDD
0 : overvoltage at pin VDD resp. state of overvoltage still stored Access by controller: read only

Testing the VDD-Monitoring:

Upper threshold:
By writing 000xxxxx ${ }_{b}$ in the register STATCON_REG the overvoltage threshold is reduced by 0.8 V . In STATCON_REG Bit 0 has to be LOW then.

After writing 110xxxxx b in the register STATCON_REG Bit 0 in STATCON_REG must be HIGH again.

Lower threshold:
By writing 010xxxxx in the register STATCON_REG the overvoltage threshold is increased by 0.8 V . In STATCON_REG Bit 1 has to be LOW then.

After writing 110xxxxx b in the register STATCON_REG Bit 1 in STATCON_REG must be HIGH again.

Example of configuration:

Requirement: After overvoltage $\overline{\mathrm{ABE}}$ is to be LOW;
After overvoltage a self-test is carried out by the ECU, afterwards $\overline{\mathrm{ABE}}$ is deactivated.
Register STATCON_REG is set to 111xxxxx ${ }_{b}$ during driving cycle.
When $\overline{\mathrm{ABE}}$ becomes active, overvoltage can be detected by reading out STATCON_REG. After the ECU's self-test a reset condition is achieved by writing $110 x_{x x x x_{b}}$ into the register STATCON_REG. This reset is only possible after disappearance of the overvoltage condition because the set input is dominant. The reset signal is withdrawn by writing 111 xxxxx .

1.11 Notes for the Application in Commercial Vehicles

For electric systems with 24 V battery voltage, that can even increase to $\geq 37 \mathrm{~V}$ in case of load dump, some peculiarities have to be observed!

The static voltage at pin UBatt without destruction is limited to 37 V , therefore this pin must either be connected to the 5 V supply voltage VDD or else the voltage at pin UBatt has to be limited by adequate external circuitry. By connecting pin UBatt to VDD the values of $R_{d s}$, on of the power switches will increase up to 20%.

The power stages $7 \ldots 18$ are equipped with a 40 V active clamping. Therefore this power stages must only drive loads with an accordingly high resistance that can be switched on in case of overvoltage (e.g. a maximum load dump voltage of 60 V and a load resistor of $1 \mathrm{k} \Omega$ result in a power dissipation of 0.8 W for each power stage. For all of the 12 power stages together there is a power dissipation of 9.6 W for the typical duration of a load dump of 500 ms .).

The restrictions listed above are no longer relevant in case of a „overvoltage-protected battery voltage"within the 24 V electric system that limits the voltage to e.g. a maximum of 37V.

The thresholds of the currents, on which the power stages are switched off in case of overload, are increased by approximately 25% if there is a voltage at pin UBatt higher than 19 V (reason: jump start requirements in 12V electric systems). Exception: OUT9 and OUT10 and OUT15... OUT18. See characteristics in chapters 3.5.3, 3.6.3, 3.7.3 and 3.8.3.
The restrictions concerning overload of power stages (see 3.5.2, 3.6.2, 3.7.2 and 3.8.2) and permissible clamping energy (see 3.5.8, 3.6.8, 3.7.8 and 3.8.8) are relevant further on.

1.11.1 Notes for short circuit limitation

The power stages are short circuit protected for the following conditions:
The max. voltage at the output pins are limited to 36 V and the TLE6244 is not operating in the booster mode.
The power stages will be switched on/off with a max. frequency of 1 kHz .
Only a 40 msec burst with the 1 kHz on/off-frequency is allowed, with a minimum burst repetition time of 1 sec . The maximum number of burst repetition cycles is 25 . The number of driving cycles under these conditions is limited to 100 in lifetime. The temperature of the slug of the PG-MQFP64
package must not exceed $130^{\circ} \mathrm{C}$.
These limitations are valid for UBatt $>24 \mathrm{~V}$.
For Ubatt $\leq 24 \mathrm{~V}$ the number of driving cycles under these conditions is extended to 1000 in lifetime.

1.12 Notes for the Diagnostics

- SCB entry in DIA_REGx see diagrams in chapter 1.6.4.
- In case of overvoltage at pin VDD (VDD $>5,5 \mathrm{~V}$) the diagnostic information can be wrong. In that case, the diagnostic information has to be cleared with the DEL_DIA instruction.
- The filtering time restarts when the output voltage passes the diagnostic threshold for short to ground (SCG).
- Diagram of the typical diagnostic current:

A: Diagnostic current (see 3.11.3)
B: Bias Voltage Open Load (see3.11.2)
C: Short to GND Threshold (see 3.11.1.2)
D: Open load Threshold (see 3.11.1.1)

State Diagram of the Power Stages Diagnostics

$$
\begin{aligned}
& \text { Exemplary for a power stage controlled by input pin INx. Diagram is accordingly valid for serial con- } \\
& \text { trol via SPI or } \mu \mathrm{sec} \text {-bus. The SPI instruction } \mathrm{DEL} \mathrm{DIA} \text { deletes all fault registers in any state. } \\
& \text { On active reset resp. active } \overline{\mathrm{ABE}} \text { (VDD is out of range) output OUTx is switched off. After reset the } \\
& \text { power stage is in state } \mathrm{A} \text { (except } \mathrm{OUT8} \text {). } \\
& \text { Toggling INx } \mathrm{HIGH} \rightarrow \mathrm{LOW}
\end{aligned}
$$

1.13 Parallel Connection of Power Stages

The power stages (PS) which are connected in parallel have to be switched on and off simultaneously. The corresponding SPI-Bits SCONx have to be in the same register (see page 15), when the PS are serial controlled via SPI.
In case of overload the ground current and the power dissipation are increasing. The application has to take into account that all maximum ratings are observed (e.g. operating temperature T_{J} and total ground current $\mathrm{I}_{\mathrm{GND}}$, see page 36,37).
Max. number of parallel connections: 3

The following statements apply to PS within the same TLE6244X

The max. short circuit shutdown threshold of the parallel connected PS is the summation of the corresponding max. values of the PS $\left(I_{\text {SC,OUTx }}+I_{\text {SC,OUTy }}+\ldots.\right)$.

	Max. Nominal Current	Max. Clamping Energy	On Resistance
2 symmetrical PS (see note 1)	0.9 x (I max, OUTx ${ }^{\text {I }}$ max,OUTy ${ }^{\text {a }}$	$0.75 \times\left(\mathrm{E}_{\mathrm{Cl}, \text { OUTx }}+\mathrm{E}_{\mathrm{Cl}, \text { OUTy }}\right)$	$0.5 \times$ Ron, OUTx, y
2 PS of the same type (see note 2)	$0.85 \times\left(I_{\text {max }}\right.$,OUTx $+I_{\text {max }}$,OUTy $)$	$0.75 \times\left(\mathrm{E}_{\mathrm{Cl}, \text { OUTx }}+\mathrm{E}_{\mathrm{Cl}, \text { OUTy }}\right)$	$0.5 \times \mathrm{R}_{\text {on, OUTx, } \mathrm{y}}$
3 PS of the same type (see note 2)	$\begin{aligned} & 0,8 x \\ & \left(I_{\text {max }, \text { OUTx }}+I_{\text {max }, \text { OUTy }^{+}}\right. \\ & \left.I_{\text {max }, \text { OUTz }}\right) \end{aligned}$	$\begin{aligned} & 0,58 \mathrm{x} \\ & \left(\mathrm{E}_{\mathrm{Cl}, \mathrm{OUTx}}+\mathrm{E}_{\mathrm{Cl}, \mathrm{OUTy}}+\right. \\ & \left.\mathrm{E}_{\mathrm{Cl}, \mathrm{OUTz}}\right) \end{aligned}$	$\begin{aligned} & 0.34 \mathrm{x} \\ & \mathrm{R}_{\mathrm{on}, \mathrm{OUTx}, \mathrm{y}, \mathrm{z}} \end{aligned}$
2 PS with the same nominal current, but different clamping voltage (application without free-wheeling-diode) (see note 3)	$0.7 \times$ (I max, OUTx $+I_{\text {max }}$ OUTy $)$	Clamping energy of the PS with the lower clamping voltage	$\frac{R_{\text {on }, \text { OUTx }} \times R_{\text {on }, \text { OUTy }}}{R_{\text {on }, \text { OUTx }}+R_{\text {on }, \text { OUTy }}}$
2 PS with the same nominal current, but different clamping voltage (application with free-wheeling-diode) (see note 3)	$0.7 \times$ ($\mathrm{Imax}_{\text {max }}$ OUTx ${ }^{\text {I }}$ max,OUTy $)$	no clamping required	$\frac{R_{\text {on }, \text { OUTx }} \times R_{\text {on }}, \text { OUTy }}{} \frac{R_{\text {on }, A x}+R_{\text {on }}, \text { OUTy }}{}$
2 PS with the same clamping voltage, but different nominal current (see note 4)	$\operatorname{Max}\left[\begin{array}{r}I_{\text {max }, \text { OUTx }} \\ I_{\text {max, OUTy }} \\ 0.75 \times\left(I_{\text {max }} \text { OUTx }\right.\end{array}\right]$	$\operatorname{Min}\left[\begin{array}{l}\mathrm{E}_{\text {CI, OUTx }} \\ \mathrm{E}_{\text {CI,OUTy }}\end{array}\right]$	$\frac{\mathrm{R}_{\text {on, OUTx }} \times \mathrm{R}_{\text {on, OUTy }}}{\mathrm{R}_{\text {on, OUTx }}+\mathrm{R}_{\text {on, OUTY }}}$
2 PS with different nominal current and different clamping voltage (see note 5)	$\operatorname{Max}\left[\begin{array}{l}I_{\text {max, OUTx }} \\ I_{\text {max,OUTy }}\end{array}\right]$	Clamping energy of the PS with the lower clamping voltage	$\frac{R_{\text {on }, \text { OUTx }} \times R_{\text {on }, \text { OUTy }}}{R_{\text {on }, \text { OUTx }}+R_{\text {on }, \text { OUTy }}}$

note 1: For every PS there exists only one symmetrical PS
OUT1 and OUT2 are symmetrical PS.
OUT3 and OUT4 are symmetrical PS.
OUT17 and OUT18 are symmetrical PS.
note 2: PS of the same type have the same nominal current and the same clamping voltage
note 3: Parallel connection of PS-type $2,2 \mathrm{~A} / 45 \mathrm{~V}$ with type $2,2 \mathrm{~A} / 70 \mathrm{~V}$
note 4: Parallel connection of PS-type $2,2 \mathrm{~A} / 45 \mathrm{~V}$ with type $3.0 \mathrm{~A} / 45 \mathrm{~V}$ or Parallel connection of PS-type 1.1A/45V with type 2,2A/45V
note 5: Parallel connection of PS-type $2,2 \mathrm{~A} / 70 \mathrm{~V}$ with type $1.1 \mathrm{~A} / 45 \mathrm{~V}$ or
Parallel connection of PS-type 2,2A/70V with type $3.0 \mathrm{~A} / 45 \mathrm{~V}$
If the power stages are configured for static current limitation the max. current limitation of the parallel connected PS is the summation of the corresponding max. values of the
PS (Isc,outx $+\mathrm{I}_{\mathrm{Sc}, \text { OUTy }}+\ldots .$. .

The following statements apply to Power Stages within different TLE6244X

The application has to take into account that all maximum ratings of each TLE6244X are observed.

2. Maximum Ratings

2.1 Definition of Test Conditions

The integrated circuit must not be destroyed if maximum ratings are reached. Every maximum rating is allowed to reach, as far as no other maximum rating is exceeded.

Unless otherwise indicated all voltages are referred to GND (GND pins $1 . . .8$ connected to each other)

Positive current flows into the pin.

2.2 Test Coverage (TC) in Series Production

In the standard production flow not all parameters can be covered due to technical or economic reasons. Therefore the following test coverage was defined:
A) Parameter test
B) $\mathrm{Go} / \mathrm{NoGo}$ test (in the course of release qualification/characterization: parameter test)
C) Guaranteed by design (covered by lab tests, not considered within the standard production flow)

2.3 Thermal Limits

Operating temperature TLE6244

continuous additionally only for the power switches (for 100h accumulated)

Storage temperature

Thermal resistance

$$
150^{\circ} \mathrm{C} \leq \mathrm{T}_{J} \leq 200^{\circ} \mathrm{C}
$$

$$
-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{C}} \leq 125^{\circ} \mathrm{C}
$$

$$
-40^{\circ} \mathrm{C} \leq \mathrm{T}_{J} \leq 150^{\circ} \mathrm{C}
$$

$$
\mathrm{R}_{\mathrm{thJC}} \leq 2,5 \mathrm{~K} / \mathrm{W}
$$

2.4 Electrical Limits

Limits must absolutely not be exceeded. By exceeding only one limit the integrated circuit might be destroyed.

Power Supplies $U_{\text {VDD }}$ and $U_{\text {UBatt }}$
Static (without destruction) *)

$$
\begin{gathered}
-0.3 \mathrm{~V} \leq \mathrm{U}_{\mathrm{VDD}} \leq 36 \mathrm{~V} \\
-0.3 \mathrm{~V} \leq \mathrm{U}_{\mathrm{UBatt}} \leq 37 \mathrm{~V} \\
-0.5 \mathrm{~V} \leq \mathrm{U}_{\mathrm{VDD}} \leq 36 \mathrm{~V} \\
-0.5 \mathrm{~V} \leq \text { U }_{\text {UBatt }} \leq 40 \mathrm{~V}
\end{gathered}
$$

Dynamic $<10 \mu \mathrm{sec}$ (without destruction)

Dynamic (500 ms, 10 x in lifetime, without destruction) $-0.5 \mathrm{~V} \leq \mathrm{U}_{\mathrm{UBatt}} \leq 40 \mathrm{~V}$
*) $U_{V D D} \geq 5.5 \mathrm{~V}$ is allowed only in case of error conditions! Not suitable for continuous operation.

SPI Output

Output voltage

$$
-0.3 \mathrm{~V} \leq \mathrm{U}_{\mathrm{SO}} \leq 36 \mathrm{~V}
$$

Output current

$$
\mathrm{I}_{\mathrm{SO}} \leq 5 \mathrm{~mA}
$$

Outputs Low Side Switches

Static voltage (without destruction) OUT1...6 $\leq 64 \mathrm{~V}$
OUT7.. $18 \leq 40 \mathrm{~V}$
Dynamic voltage without destruction after ISO/DIS7637-1, pulses 1 to 4
OUT1 to 6, OUT9 to16: via external load (e.g. 2W lamp) $\leq 2 \mathrm{~ms}$
OUT7, OUT8, OUT17 and OUT18: via external load $\leq 2 \mathrm{~ms}$

Ground Current

Total current GND1+2 (pins 26/27)
$\mathrm{I}_{\mathrm{GND} 1+2} \leq 18 \mathrm{~A}$
(total ground current of OUT5,6,9,10,17,18)
Total current GND3+4 (pins 58/59)
(total ground current of OUT1,2,7,8,11,12,15,16)
Total current GND5+6 (pins 11/12)
$\mathrm{I}_{\mathrm{GND} 5+6} \leq 6 \mathrm{~A}$
(total ground current of OUT3,13)
Total current GND7+8 (pins 41/42)
$\mathrm{I}_{\mathrm{GND7}+8} \leq 6 \mathrm{~A}$
(total ground current of OUT4,14)
Attention: Even if all ground pins are connected with each other on the PCB the total ground currents $\mathrm{I}_{\mathrm{GND} 1+2}$ and $\mathrm{I}_{\mathrm{GND} 3+4}$ and $\mathrm{I}_{\mathrm{GND} 5+6}$ and $\mathrm{I}_{\mathrm{GND7+8}}$ must not be exceeded.

The 4 ground pins GND1... 4 are internally connected to the heat sink via an unspecified rivet joint. Therefore it is advisable to short-circuit the 4 ground pins on the PCB and to connect them with the heat sink. In addition the 4 ground pins GND5.. 8 must be connected to the other ground pins on the PCB

Inputs of the Power Switches, SPI Inputs, Reset and Shut-off of the Power Stages

Input voltage
Input currents
Pin $\overline{\text { RST }}$

Input currents

$$
\text { Minimum reset duration (Power-On) } 15 \mathrm{~ms}
$$

see 3.4.4
see 3.4.4, 3.9.1, 3.9.2, 3.9.3, 3.13.2

3. Electrical Characteristics

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \(\frac{3.1 \text { Operating }}{}\)
\(\frac{\text { Range }}{\text { (see also } 3.13}\)
\(\frac{\text { VDD-monitoring }}{\text { ABE) }}\) \& \begin{tabular}{l}
Out of this range the power stages can be shut off by the VDD-monitoring except OUT8 \\
Voltage referred to GND_ \(\overline{\mathrm{ABE}}\) \\
Minimum reset duration \\
(Power-On) \\
Minimum reset duration in operation mode \\
\(4.5 \mathrm{~V} \leq \mathrm{U}_{\mathrm{VDD}} \leq 5.5 \mathrm{~V}\)
\end{tabular} \& \begin{tabular}{l}
UVDD \\
\(t_{\text {RST, min }}\) \\
\(t_{\mathrm{t}_{\mathrm{RT}, \text { min }}}\)
\end{tabular} \& \begin{tabular}{l}
4.7 \\
15 \\
1
\end{tabular} \& \& 5.3 \& \begin{tabular}{l}
V \\
ms \\
\(\mu \mathrm{s}\)
\end{tabular} \\
\hline 3.2 Validity of Parameters \& \begin{tabular}{l}
Parameters are valid for \\
\(4.5 \mathrm{~V} \leq \mathrm{U}_{\mathrm{VDD}} \leq 5.5 \mathrm{~V}\), \\
\(4.5 \mathrm{~V} \leq \mathrm{U}_{\text {UBatt }} \leq 37 \mathrm{~V}\) \\
TLE6244: \(-40^{\circ} \mathrm{C} \leq \mathrm{T}_{j} \leq 150^{\circ} \mathrm{C}\) and 2 power stages in current limitation \\
unless otherwise noted. \\
If VDD-monitoring is active the power stages are switched off except OUT8 (see page 28). Positive current flows into the pin, negative current flows out of the pin. \\
Unless otherwise noted all voltages are referred to GND \\
(GND1... 8 connected with each other). \\
If the \(U_{V D D}\) falls below this trashed the power stages (except OUT8) are switched off. If \(U_{V D D}\) rises above this threshold the power stages work regularly after a delay time of \(250 \mu \mathrm{sec}\). \\
Threshold for shut off of OUT8: If \(U_{V D D}\) rises above this threshold the power stages work regularly after a delay time of \(250 \mu \mathrm{sec}\). \\
Supply voltage
\end{tabular} \& \begin{tabular}{l}
\(U_{V D D}\) \\
UVDD \\
UVDD
\end{tabular} \& 3.5

4.5 \& 4.2 \& 4.5

3.5
5.5 \& V

v

v

\hline
\end{tabular}

3.3 Power Consumption	$\begin{aligned} & \text { UVDD } \leq 5.5 \mathrm{~V} \\ & 5,5 \mathrm{~V}<\mathrm{UVDD}<36 \mathrm{~V} \text { (IC is not } \\ & \text { destroyed) } \\ & \text { UUBatt }=14 \mathrm{~V} \\ & \text { UUBatt }=28 \mathrm{~V} \\ & \text { UUBatt } \leq \text { UVDD }^{\text {VD }} \end{aligned}$ Power consumption in standby mode in case of missing $U_{V D D}$, $U_{\text {UBatt }} \leq 14 \mathrm{~V}$	A C A A A A	IVDD lVDD IUBatt IUBatt $l_{\text {UBatt }}$ $I_{\text {UBatt }}$			$\begin{gathered} 20 \\ 50 \\ 3 \\ 4 \\ 1 \\ 200 \end{gathered}$	mA mA mA mA mA $\mu \mathrm{A}$	
3.4 Inputs of the Power Stages and Reset \qquad IN1...IN16, RST 3.4.1 Low Level	Outputs are switched off if inputs are open (parallel control). Reset not active, Power stage on for $\begin{aligned} & \mathrm{i}=1 \ldots 5,9 \ldots 15 \\ & \mathrm{i}=6,7,16 \end{aligned}$ Power stage off for $\mathrm{i}=8$	B	$U_{\overline{R S T L}}$ $\mathrm{U}_{\text {INiL }}$ $U_{\text {INiL }}$ $U_{\text {INil }}$			$\begin{aligned} & 1.0 \\ & 1.0 \\ & 1.0 \\ & 1.0 \end{aligned}$	V V V V	
3.4.2 High Level	Power stage off for $\text { i = 1...7, 9... } 16$ Power stage on for $i=8$	B	$\begin{aligned} & \mathrm{U}_{\overline{\mathrm{RSTH}}} \\ & \mathrm{U}_{\mathrm{INiH}} \\ & \mathrm{U}_{\mathrm{INiH}} \end{aligned}$	$\begin{aligned} & 1.7 \\ & 2.0 \\ & 2.0 \end{aligned}$			$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$	
3.4.3 Hysteresis		C	$\begin{aligned} & \Delta \mathrm{U}_{\mathrm{INi}}, \\ & \Delta \mathrm{U}_{\overline{\mathrm{RST}}} \end{aligned}$	0.1		0.6	V	
3.4.4 Input Currents In, RST	$\begin{aligned} & -0.3 \mathrm{~V} \leq \mathrm{U}_{\mathrm{INi}, \overline{\mathrm{RST}}} \leq \mathrm{U}_{\mathrm{VDD}} \\ & (\mathrm{i}=1 \ldots . . .7,9 . .16) \end{aligned}$	A/B	$\mathrm{I}_{\text {INi,RST }}$	-100		5	$\mu \mathrm{A}$	
	$\begin{aligned} & U_{\mathrm{VDD}} \leq \mathrm{U}_{\mathrm{INi}} \leq 36 \mathrm{~V} \\ & (\mathrm{i}=1 \ldots . . .7,9 \ldots 16) \end{aligned}$	C	$\left\|I_{\text {INi }}\right\|$			5	$\mu \mathrm{A}$	
	$-0.3 \mathrm{~V} \leq \mathrm{U}_{\mathrm{IN} 8} \leq \mathrm{U}_{\mathrm{VDD}}$	A/B	$\mathrm{I}_{\text {IN8 }}$	-100		100	$\mu \mathrm{A}$	
	$0.8 \mathrm{~V} \leq \mathrm{U}_{\text {IN8 }} \leq \mathrm{U}_{\mathrm{VDD}}$, pull down $\mathrm{U}_{\mathrm{VDD}} \leq \mathrm{U}_{\mathrm{IN} 8} \leq 36 \mathrm{~V}$, pull down	$\begin{aligned} & \mathrm{A} \\ & \mathrm{C} \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\text {IN8 }} \\ & \mathrm{I}_{\mathrm{IN} 8} \end{aligned}$	$\begin{aligned} & 20 \\ & 20 \end{aligned}$	40 40	100 100	$\mu \mathrm{A}$ $\mu \mathrm{A}$	
	$0 \mathrm{~V} \leq \mathrm{U}_{\overline{\mathrm{RST}}} \leq \mathrm{U}_{\mathrm{VDD}}-1.7 \mathrm{~V}, \text { pull up }$	A	$-1 \overline{R S T}$	20	40	100	$\mu \mathrm{A}$	
	$\begin{aligned} & 0 \mathrm{~V} \leq \mathrm{U}_{\text {INi }} \leq \mathrm{U}_{\text {VDD }}-1.7 \mathrm{~V} \text {, pull up } \\ & (\mathrm{i}=6,7,16) \end{aligned}$	A	$-l_{\text {INi }}$	5	10	20	$\mu \mathrm{A}$	
	Bit BMUX $=1$ (CONFIG_REG): $0 \mathrm{~V} \leq \mathrm{U}_{\mathrm{INi}} \leq \mathrm{U}_{\mathrm{VDD}}-1.7 \mathrm{~V}$, pull up ($\mathrm{i}=1 . .5,9 . .15$)	A	$-l_{\text {INi }}$	20	40	100	$\mu \mathrm{A}$	
	Bit BMUX $=0$ (CONFIG_REG): $0 \mathrm{~V} \leq \mathrm{U}_{\mathrm{INi}} \leq \mathrm{U}_{\mathrm{VDD}}$, high-impedance ($\mathrm{i}=1 . .5,9 . .15$)	A	$\\|_{1 \mathrm{Ni}}{ }^{\text {l }}$			1	$\mu \mathrm{A}$	

\qquad

	approximately linear characteristic line can be assumed for the short circuit shutdown threshold.						
	Between $17 \mathrm{~V} \leq \mathrm{U}_{\text {UBatt }} \leq 21 \mathrm{~V}$, the short circuit shutdown threshold is switched.						
3.5.3.1 Maximum Battery Voltage at Short Circuit to Battery	A power stage that is switched off in case of SCB can be switched on again by an off/on cycle at the corresponding input pin resp. by the change of the state of the corresponding SPI bit SCONx (see page 16), by the $\mu \mathrm{sec}-\mathrm{Bus}$, by a DEL_DIA instruction or can be released again by reset. If the fault register is cleared before this release (by a DEL_DIA instruction), a new fault entry of SCB is immediately carried out, even if SCB condition is no longer present.						
	See Note 1.11.1	C	$\begin{aligned} & \text { UOUT } \\ & 1 . .6 \end{aligned}$	36			V
3.5.4 Shutoff Delay	Shutoff delay of the power stages after detection of SCB	B	$t_{\text {Voff }}$	60		215	$\mu \mathrm{s}$
3.5.5 On Resistance	OUT1,2,5,6: $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$	A	$\mathrm{R}_{\text {on1,2,5,6 }}$	220	320	400	$\mathrm{m} \Omega$
	OUT1,2,5,6: $T_{J}=150^{\circ} \mathrm{C}$	A	$\mathrm{R}_{\text {on } 1,2,5,6}$	420	600	750	$\mathrm{m} \Omega$
	OUT1,2,5,6: $\mathrm{T}_{\mathrm{J}}=-40^{\circ} \mathrm{C}$	A	$\mathrm{R}_{\text {on } 1,2,5,6}$	180	250	310	$\mathrm{m} \Omega$
	OUT3,4: $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$	A	$\mathrm{R}_{\text {on } 3,4}$	210	300	380	$\mathrm{m} \Omega$
	OUT3,4: $\mathrm{T}_{\mathrm{J}}=150^{\circ} \mathrm{C}$	A	$\mathrm{R}_{\text {on } 3,4}$	410	580	720	$\mathrm{m} \Omega$
	OUT3,4: $\mathrm{T}_{\mathrm{J}}=-40^{\circ} \mathrm{C}$ For $U_{\text {UBatt }} \leq 10 \mathrm{~V} R_{\text {on }}$ is increased up to 20%.	A	$\mathrm{R}_{\text {on } 3,4}$	170	240	300	$\mathrm{m} \Omega$
3.5.6 On/off Delay Times	"On"	B	$\mathrm{t}_{\text {don1...6 }}$			10	$\mu \mathrm{s}$
		B	$\mathrm{t}_{\text {son1... } 6}$			5	$\mu \mathrm{s}$
	„Off"	B	$\mathrm{t}_{\text {doff1 ... } 6}$			10	$\mu \mathrm{s}$
	(Measurement with ohmic load)	C	$\mathrm{t}_{\text {soff1 ...6 }}$			10	$\mu \mathrm{s}$
	$\left\|t_{\text {don }}-t_{\text {doff }}\right\|$	C	$\Delta t_{\text {d }}$			5	$\mu \mathrm{s}$
	switch-on slew rate	C	Son1... 6			15	$\mathrm{V} / \mu \mathrm{s}$
	switch-off slew rate	C	$\mathrm{S}_{\text {off1 ... } 6}$			21	$\mathrm{V} / \mu \mathrm{s}$

\qquad

\qquad

3.6.6 On /off Delay Times	"On" "Off" (Measurementwithohmic load) $\left\|\mathrm{t}_{\text {don }}-\mathrm{t}_{\text {dofft }}\right\|$ switch-on slew rate switch-off slew rate	B B B C C C C	$t_{\text {don }}$ $t_{\text {son }}$ $t_{\text {doff }}$ $t_{\text {doff }}$ $t_{\text {soff }}$ $\Delta t_{\text {d }}$ $s_{\text {don }}$ $\mathrm{s}_{\text {onf }}$ $\mathrm{s}_{\text {off }}$			10 5 10 10 5 20 25	$\mu \mathrm{s}$ $\mu \mathrm{s}$ $\mu \mathrm{s}$ $\mu \mathrm{s}$ $\mu \mathrm{s}$ $\mathrm{V} / \mu \mathrm{s}$ $\mathrm{V} / \mu \mathrm{s}$
3.6.7 Leakage Current	$U_{\text {VDD }}=0 \mathrm{~V}, U_{\text {OUT9 }} \ldots 14=14 \mathrm{~V}$ (leakage current of the DMOS, diagnostic current $=0$)	A	Iouti			50	$\mu \mathrm{A}$
	$U_{\text {VDD }}=0 \mathrm{~V}, U_{\text {OUT9 }} \ldots 14=24 \mathrm{~V}$ (leakage current of the DMOS, diagnostic current $=0$)	A	Iouti			200	$\mu \mathrm{A}$
3.6.8 Clamping							
3.6.8. Clamping Voltage	$\mathrm{I}_{\text {OUti }}=0.2 \mathrm{~A}$	A	$U_{9 . \ldots 14}$	40	45	50	v
3.6.8.2 Maximum Clamping Energy $\mathrm{T}_{\mathrm{C}} \leq 110^{\circ} \mathrm{C}$	Linear decreasing current, $f_{\text {max }}=30 \mathrm{~Hz}$ (see diagrams $E=f(I)$ on page 66)						
	IOUT9...14 $\leq 2.2 \mathrm{~A}$	C	E			14	mJ
	$\mathrm{l}_{\text {OUT9...14 }} \leq 1.0 \mathrm{~A}$	C	E			30	mJ
3.6.8.3 Maximum Clamping Energy $\mathrm{T}_{\mathrm{C}} \leq 60^{\circ} \mathrm{C}$	Linear decreasing current, $\mathrm{f}_{\max }=30 \mathrm{~Hz}$						
	$\mathrm{I}_{\text {OUT9... } 14} \leq 2.2 \mathrm{~A}$	C	E			17	mJ
	lout9...14 $\leq 1.0 \mathrm{~A}$	C	E			36	mJ
3.6.8.4 Maximum Clamping Energy with two Outputs connected in parallel	Each output 75% of the values of 3.6.8.2 resp. 3.6.8.3.	c					
3.6.8.5 Maximum Clamping Energy at Load Dump	For a maximum of 10 times during ECU life (load dump with 400 ms and $R_{i}=2 \Omega$ over the load, e.g. 2 W lamp)	c	E			50	mJ
3.6.8.6 Jump Start	Each output 150% of the values of 3.6.8.3. For a maximum of 10 jump starts of 2 minutes each during ECU life.	C					
3.6.8.7 Singlepulse $\mathrm{T}_{\mathrm{C}} \leq 60^{\circ} \mathrm{C}$	$\begin{aligned} & \text { lout9... } 14 \\ & \text { pulse }\end{aligned} \leq 0.6 \mathrm{~A}$, max 10000 pulse	c	E			50	mJ

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
3.7.8.5 Maximum Clamping Energy at Load Dump \\
3.7.8.6 Jump Start \\
3.7.8.7 Singlepulse
\[
\mathrm{T}_{\mathrm{C}} \leq 60^{\circ} \mathrm{C}
\]
\end{tabular} \& \begin{tabular}{l}
For a maximum of 10 times during ECU life (load dump with 400 ms and \(\mathrm{R}_{\mathrm{i}}=2 \Omega\) over the load, e.g. 2 W lamp) \\
Each output \(150 \%\) of the values of 3.7.8.3. \\
For a maximum of 10 jump starts of 2 minutes each during ECU life. \\
IOUT15, \(16 \leq 0.6 \mathrm{~A}, \max 10000\) pulses
\end{tabular} \& \(C\)
\(C\)
\(C\) \& E \& \& 50 \& mJ

$m J$

\hline | 3.8 Power Outputs 1.1A/45V |
| :--- |
| OUT7,8, |
| OUT17,18 |
| 3.8.1 Nominal Current | \& | In case of open input (parallel control) or missing power supply the power stage is switched off. Parallel connection of power stages is possible. |
| :--- |
| for OUT7, 8, 17, 18 | \& C \& Iouti \& \& 1.1 \& A

\hline | 3.8.2 Extended Current Range |
| :--- |
| 3.8.3 Maximum Current | \& | $\mathrm{I}_{\text {OUT7, }, 17,18}>1.1 \mathrm{~A}$ |
| :--- |
| Accumulated operating time |
| $4.5 \mathrm{~V} \leq \mathrm{U}_{\text {UBatt }} \leq 17 \mathrm{~V}$ for OUT7, 8 |
| $4.5 \mathrm{~V} \leq$ U UBatt for OUT17,18 | \& C \& \& \& 100 \& h

\hline Shut down Threshold \& $$
\begin{aligned}
& \mathrm{T}_{J}=-40^{\circ} \mathrm{C} \\
& \mathrm{~T}_{J}=150^{\circ} \mathrm{C}
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& \mathrm{B} \\
& \mathrm{~A}
\end{aligned}
$$

\] \& Iouti IOUTi \& \[

$$
\begin{aligned}
& 1.2 \\
& 1.1
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 2.2 \\
& 2.0
\end{aligned}
$$
\] \& A

\hline \& $$
\begin{aligned}
& U_{\text {UBatt }}>21 \mathrm{~V} \text { only for OUT7,8 } \\
& T_{J}=-40^{\circ} \mathrm{C} \\
& T_{J}=150^{\circ} \mathrm{C}
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& \mathrm{B} \\
& \mathrm{~A}
\end{aligned}
$$

\] \& Iouti louti \& \[

$$
\begin{aligned}
& 1.5 \\
& 1.3
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 2.5 \\
& 2.3
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \text { A } \\
& \text { A }
\end{aligned}
$$
\]

\hline \& | For OUT7, OUT8 |
| :--- |
| Above this limit short circuit to UBatt is detected. For the duration of the shutoff delay time $t_{\text {Voff }}$ (see 3.8.4) the output current is limited to approximately this value. If the short circuit condition is still present after $t_{\text {Voff }}$, the outputs OUT7/8 are switched off. An error is stored after $t_{\text {Diag }}$ (see 3.11.4). The same is true for OUT17 OUT18 if the static current limitation is not enabled. | \& \& \& \& \&

\hline
\end{tabular}

3.8.3.1 Maximum Battery Voltage at Short Circuit to Battery

3.8.4 Shutoff Delay

Between $-40^{\circ} \mathrm{C}$ and $150^{\circ} \mathrm{C}$ an approximately linear characteristic line can be assumed.

Between $17 \mathrm{~V} \leq \mathrm{U}_{\text {UBatt }} \leq 21 \mathrm{~V}$, the short circuit shutdown threshold is switched for OUT7/8

A power stage that is switched off in case of SCB can be switched on again by an off/on cycle at the corresponding input pin resp. by the change of the state of the corresponding bit for SPI or μ sec-bus by a DEL_DIA instruction or can be released again by reset. If the fault register is cleared before this release (by a DEL_DIA instruction), a new fault entry of SCB is immediately carried out, even if SCB condition is no longer present.

For OUT17, OUT18

Above this limit short circuit to UBatt is detected. The output current is limited to approximately this value if the static current limitation is configured. An error is stored after $t_{\text {Diag }}$ (see 3.11.4). If the operation leads to an overtemperature condition, a second protection level (about $170^{\circ} \mathrm{C}$) will change the output into a low duty cycle PWM (selective thermal shutdown with restart) to prevent critical chip temperatures

Between $-40^{\circ} \mathrm{C}$ and $150^{\circ} \mathrm{C}$ an approximately linear characteristic line can be assumed.

See Note 1.11.1

Shutoff delay of the power stages after detection of SCB. For the duration of $t_{\text {Voff }}$ current is limited to maximum current.

3.8.5 On Resistance	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$	A	$\mathrm{R}_{\text {on7,8, }}$	400	620	780	$\mathrm{m} \Omega$
	$\mathrm{T}_{J}=150^{\circ} \mathrm{C}$	A	$\mathrm{R}_{\text {on } 7,8} \mathbf{1 7 , 1 8}$	780	1200	1500	$\mathrm{m} \Omega$
	$\mathrm{T}_{\mathrm{J}}=-40^{\circ} \mathrm{C}$	A	$\mathrm{R}_{\text {on } 7,8}^{17,18}$	290	450	560	$\mathrm{m} \Omega$
	For $U_{\text {UBatt }} \leq 10 \mathrm{~V} R_{\text {on }}$ is increased up to 20%; condition: UVDD $>4.5 \mathrm{~V}$		17,18				
	For OUT8 only:						
	$3.5 \mathrm{~V}<\left(\mathrm{U}_{\text {VDD }}, U_{\text {UBatt }}\right)<4.5 \mathrm{~V}$						
	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$	A	$\mathrm{R}_{\text {on }}$			1300	$\mathrm{m} \Omega$
	$\mathrm{T}_{J}=150^{\circ} \mathrm{C}$	A	$\mathrm{R}_{\text {on }}$			2200	$\mathrm{m} \Omega$
	$\mathrm{T}_{J}=-40^{\circ} \mathrm{C}$	A	$\mathrm{R}_{\text {on }}$			1050	$\mathrm{m} \Omega$
3.8.6 On/off Delay Times	"On"	B	$\mathrm{t}_{\text {don }}$			10	$\mu \mathrm{s}$
		B	$\mathrm{t}_{\text {son }}$			5	$\mu \mathrm{s}$
	"Off"	B	$\mathrm{t}_{\text {doff }}$			10	$\mu \mathrm{s}$
	(Measurementwithohmicload)	C	$\mathrm{t}_{\text {soff }}$			10	$\mu \mathrm{s}$
	$\left\|t_{\text {don }}-t_{\text {doff }}\right\|$	C	$\Delta t_{\text {d }}$			5	$\mu \mathrm{s}$
	Switch-on slew rate	C	$\mathrm{S}_{\text {on }}$			25	$\mathrm{V} / \mu \mathrm{s}$
	Switch-off slew rate	C	$\mathrm{S}_{\text {off }}$			40	$\mathrm{V} / \mu \mathrm{s}$
3.8.7 Leakage Current	For OUT7,8, OUT1718:						
	$U_{\text {VDD }}=0 \mathrm{~V}, \mathrm{U}_{\text {OUTi }}=14 \mathrm{~V}$ (leakage current of the DMOS, diagnostic current $=0$)	A	Iouti			50	$\mu \mathrm{A}$
	$U_{\text {VDD }}=0 \mathrm{~V}, \mathrm{U}_{\text {OUTi }}=24 \mathrm{~V}$ (leakage current of the DMOS, diagnostic current $=0$)	A	Iouti			200	$\mu \mathrm{A}$
3.8.8 Clamping	For OUT7,8, OUT17,18:						
3.8.8.1 Clamping Voltage	$\mathrm{I}_{\text {OUTi }}=0.2 \mathrm{~A}$	A	$\mathrm{U}_{\text {OUTi }}$	40	45	50	V
3.8.8.2 Maximum Clamping Energy $\mathrm{T}_{\mathrm{C}} \leq 110^{\circ} \mathrm{C}$	Linear decreasing current, $\mathrm{f}_{\max }=10 \mathrm{~Hz}$ (see diagrams $E=f(I)$ on page 67)						
	$\mathrm{I}_{\text {OUTi }} \leq 0.6 \mathrm{~A}$	C	E			10	mJ
	$\mathrm{l}_{\text {OUTi }} \leq 1.1 \mathrm{~A}$	C	E			7	mJ
3.8.8.3 Maximum Clamping Energy $\mathrm{T}_{\mathrm{C}} \leq 60^{\circ} \mathrm{C}$	Linear decreasing current, $f_{\text {max }}=10 \mathrm{~Hz}$						
	$\mathrm{I}_{\text {OUTi }} \leq 0.6$	C	E			12	mJ
	$\mathrm{I}_{\text {OUTi }} \leq 1.1 \mathrm{~A}$	C	E			8.5	mJ

3.9 SPI Interface

The timing of TLE6244X is defined as follows:

- The change at output (SO) is forced by the rising edge of the SCK signal.
- The input signal (SI) is sampled on the falling edge of the SCK signal.
- The data received during a writing access is taken over into the internal registers on the rising edge of the $\overline{\mathrm{SS}}$ signal, if exactly 16 SPI clocks have been counted during $\overline{\mathrm{SS}}=$ active.
(Also: Only if exactly 16 SPI clocks have been counted the instruction DEL_DIA resets the diagnostic registers.)

3.9.1 Input SCK	SPI clock input						
3.9.1.1 Low Level		B	$\mathrm{U}_{\text {SCKL }}$			1.0	V
3.9.1.2 High Level		B	$\mathrm{U}_{\text {SCKH }}$	2.0			V
3.9.1.3 Hysteresis		C	$\Delta \mathrm{U}_{\text {SCK }}$	0.1		0.6	V
3.9.1.4 Input Capacity		C	$\mathrm{C}_{\text {SCK }}$			10	pF
3.9.1.5 Input Current	Pull up current source connected to VDD	A	${ }^{-1}$ SCK	10	20	50	$\mu \mathrm{A}$
3.9.2 Input $\overline{\mathrm{SS}}$	Slave select signal						
3.9.2.1 Low Level	TLE6244X is selected	B	$\mathrm{U}_{\text {SSL }}$			1.0	V
3.9.2.2 High Level		B	$\mathrm{U}_{\text {SSH }}$	2.0			V
3.9.2.3 Hysteresis		C	$\Delta U_{S S}$	0.1		0.6	V
3.9.2.4 Input Capacity		C	$\mathrm{C}_{S S}$			10	pF
3.9.2.5 Input Current	Pull up current source connected to VDD	A	${ }^{-1}$ SS	10	20	50	$\mu \mathrm{A}$
3.9.3 Input SI	SPI data input						
3.9.3.1 Low Level		B	$\mathrm{U}_{\text {SIL }}$			1.0	V
3.9.3.2 High Level		B	$\mathrm{U}_{\text {SIH }}$	2.0			V
3.9.3.3 Hysteresis		C	$\Delta \mathrm{U}_{\mathrm{SI}}$	0.1		0.6	V
3.9.3.4 Input Capacity		C	$\mathrm{C}_{\text {SI }}$			10	pF
3.9.3.5 Input Current	Pull up current source connected to VDD	A	${ }^{-1} \mathrm{ISI}$	10	20	50	$\mu \mathrm{A}$
3.9.4 Output SO	Tristate output of the TLE6244X (SPI output); On active reset ($\overline{\mathrm{RST}}$) output SO is in tristate.						
3.9.4.1 Low Level	$\mathrm{I}_{\text {SO }}=2 \mathrm{~mA}$	A	$\mathrm{U}_{\text {SOL }}$			0.4	V
3.9.4.2 High Level	$\mathrm{I}_{\text {SO }}=-2 \mathrm{~mA}$	A	$\mathrm{U}_{\text {SOH }}$	$\begin{aligned} & U_{V D D} \\ & -1.0 \end{aligned}$			V
3.9.4.3 Capacity	Capacity of the pin in tristate	C	$\mathrm{C}_{\text {so }}$			10	pF
3.9.4.4 Leakage Current	In tristate	A	$\mathrm{I}_{\text {So }}$	-10		10	$\mu \mathrm{A}$

$3.10 \mu \mathrm{sec}-\mathrm{bus}$

Timing $\mu \mathrm{sec}-\mathrm{bus}$

Notes for the timing:
Timing definitions are starting or ending at a voltage level of 1V (Low Level) resp. 2V (High Level).
During SSY = high the clock at FCL may be interrupted, i.e. there is no need for a clock during SSY = high.
The clock signal may remain on high or low statically during SSY = high.
A rising edge at SSY and a falling edge at FCL must not occur simultaneously!
On the rising edge of SSY the 16 bits clocked in TLE6244X by the last 16 falling edges at FCL are latched.

3.10.1 Input FCL, FDA, SSY 3.10.1.1 Low Level	$\mu \mathrm{sec}$-bus interface pins						
		B	$\mathrm{U}_{\mathrm{FCLI}}$ UFDAI $U_{\text {SSYI }}$			1.0	V
3.10.1.2 High Level		B	$U_{\text {FCLh }}$ UFDAh $U_{S S Y h}$	2.0			V
3.10.1.3 Hysteresis		C	$\Delta \mathrm{U}_{\mathrm{FCL}}$ $\Delta U_{\text {FDA }}$ $\Delta \mathrm{U}_{\text {SSY }}$	0.1		0.6	V
3.10.1.4 Input Capacity		C	$\mathrm{C}_{\mathrm{FCL}}$ C ${ }_{\text {FDA }}$ $\mathrm{C}_{\mathrm{SSY}}$			10	pF
3.10.1.5 Input Current	Pull up current source connected to VDD	A	$I_{\text {FCL }}$ $I_{\text {FDA }}$ ISSY	5	10	20	$\mu \mathrm{A}$
3.10.2 Timing	Cycle Time	C	${ }^{\text {t }}$ CYC	62			nsec
	Data setup time	C	$\mathrm{t}_{\text {setup }}$	10			nsec
	Data hold time	C	$t_{\text {hold }}$	10			nsec
	Switching time on FCL $\mathrm{f}_{\mathrm{FCL}}<10 \mathrm{MHz}$	C	$\mathrm{t}_{\text {switch }}$			30	nsec

\qquad

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
3.11.4 Filtering Time Power Switches \\
3.11.5 Diagnostic Threshold UBatt
\end{tabular} \& \begin{tabular}{l}
Time from occurrence of one of the errors 'short to ground', 'open load' or 'short to battery' until the fault is entered into the corresponding diagnostic register. \\
Time from occurrence of OT until the information is entered into the corresponding diagnostic register. \\
Bit Ubatt in DIA_REG5
\end{tabular} \& B \& \begin{tabular}{l}
\(t_{\text {Diag }}\) \\
\(t_{\text {DiatOT }}\) \\
\(\mathrm{U}_{\mathrm{th}, \mathrm{UB}}\)
\end{tabular} \& 60

3 \& 240

30
9 \& $\mu \mathrm{s}$

$\mu \mathrm{s}$

V

\hline 3.12 Reverse Currents \& $\mathrm{U}_{\mathrm{VDD}} \leq 1 \mathrm{~V}$ \& \& \& \& \&

\hline \multirow[t]{2}{*}{3.12.1 Reverse Current at OUT1... 18 without Supply Voltage} \& Static \& \[
$$
\begin{aligned}
& \mathrm{C} \\
& \mathrm{C} \\
& \mathrm{C} \\
& \mathrm{C}
\end{aligned}
$$

\] \& | $-l_{01 . . .6}$ |
| :--- |
| -lo9... 16 |
| -l 07,8 |
| $-l_{017,18}$ | \& \[

$$
\begin{gathered}
3 \\
3 \\
0.8 \\
0.8
\end{gathered}
$$
\] \& \& A

A
A
A

\hline \& | Dynamic |
| :--- |
| (Test pulse 1 according to ISO: $100 \mathrm{~V}, \mathrm{R}_{\mathrm{i}}=10 \mathrm{~W}, 2 \mathrm{~ms}$) | \& \[

$$
\begin{aligned}
& \mathrm{C} \\
& \mathrm{C} \\
& \mathrm{C} \\
& \mathrm{C}
\end{aligned}
$$

\] \& | $-I_{01 \ldots 6}$ |
| :--- |
| -lo9... 16 |
| - $\mathbf{l}_{07,8}$ |
| $-l_{017,18}$ | \& \[

$$
\begin{aligned}
& 10 \\
& 10 \\
& 1.5 \\
& 1.5
\end{aligned}
$$
\] \& \& A

A
A
A

\hline \multirow[t]{4}{*}{3.12.2 Reverse Current at OUT1...OUT18 in Operation Mode} \& | $4.5 \mathrm{~V} \leq \mathrm{U}_{\mathrm{VDD}} \leq 5.5 \mathrm{~V}$ |
| :--- |
| Pulsed power stage. |
| Neighboring stages, reset, input signals of the power stages, VDDmonitoring, SPI interface (incl. registers) and μ sec-bus must not be disturbed. Diagnostics of fault conditions at neighboring stages is still possible. Control bits in the SPI registers (serial control of power stages are not disturbed). | \& \& \& \& \&

\hline \& Open load failure at neighboring stages may be detected as short to ground \& $$
\begin{aligned}
& \mathrm{C} \\
& \mathrm{C} \\
& \mathrm{C}
\end{aligned}
$$ \& \[

$$
\begin{gathered}
-I_{01 \ldots 16} \\
-I_{07,8} \\
-l_{017,18}
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
1 \\
0.3 \\
0.3
\end{gathered}
$$
\] \& \& A

A
A

\hline \& Open load failure at neighboring stages are not detected as short to ground \& $$
\begin{aligned}
& \mathrm{C} \\
& \mathrm{C} \\
& \mathrm{C} \\
& \mathrm{C}
\end{aligned}
$$ \& \[

$$
\begin{gathered}
-\mathrm{I}_{\mathrm{O} 1 . .4} \\
-\mathrm{I}_{\mathrm{O} 5 . \ldots 16} \\
-\mathrm{I}_{\mathrm{O} 7,8} \\
-\mathrm{I}_{\mathrm{O} 17,18}
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
0.5 \\
0.25 \\
0.3 \\
0.3
\end{gathered}
$$
\] \& \& A

A
A
A

\hline \& Destruction limit \& C
C
C

C \& | $-l_{01 \ldots 6}$ |
| :--- |
| - ${ }^{-09 . . .16}$ |
| -lo7,8 |
| $-l_{017,18}$ | \& \[

$$
\begin{gathered}
3 \\
3 \\
0.8 \\
0.8
\end{gathered}
$$
\] \& \& A

A
A
A

\hline
\end{tabular}

\qquad

3.13.4 Undervoltage Threshold	Voltage referred to GND_ $\overline{\mathrm{ABE}}$	B	$V_{\text {DDth_I }}$	4.5	4.7	V
3.13.5 Test Mode: Reducing the Overvoltage Threshold	Voltage referred to GND_ $\overline{\mathrm{ABE}}$	B	$V_{\text {DDth_h }}$	4.5	4.7	V
3.13.6 Test Mode: Lifting the Undervoltage Threshold	Voltage referred to GND_ $\overline{\mathrm{ABE}}$	B	$V_{\text {DDth_1 }}$	5.3	5.5	V
3.13.7 Suppression of Glitches	Periodical alternating between overvoltage and normal operating voltage with $\mathrm{T}<50 \mu$ s and overvoltage duration $>5 \mu$ s leads to overvoltage detection. If the transition from undervoltage to overvoltage is faster than the filtering time $\mathrm{t}_{\mathrm{glitch}}$, the filtering time t_{g} litch for overvoltage detection is not started again. The same is valid for reverse order.	A	$\mathrm{t}_{\text {glitch }}$	50	215	$\mu \mathrm{s}$
3.13.8 GND_ $\overline{\text { ABE }}$						
3.13.8.1 Permissible Offset between \qquad GND_ABE and GND		C	$\Delta \mathrm{U}_{\mathrm{GND}}$		0.3	V
3.13.8.2 Bond Lift / Solder Crack on GND_ABE	Pin $\overline{\mathrm{ABE}}$ goes LOW (see 3.13.1.1). The power stages are switched off. The over- and undervoltage thresholds are increased by typically 700 mV for $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.					

3.14 Clamping Energy

3.14.1 $E=f\left(l_{\text {OUT1...6 }}\right)$, 2.2A Power Stages with 70V Clamping

3.14.2 $\mathrm{E}=\mathrm{f}$ (IOUT9...A14), 2.2A Power Stages with 45V Clamping

3.14.3 $E=f\left(I_{\text {OUT7,8,17,18 }}\right), 1100 \mathrm{~mA}$ Power Stages with 45V Clamping

3.14.4 $E=f\left(l_{\text {OUT15, }}\right.$ OUT16 $), 3.0 \mathrm{~A}$ Power Stages with 45V Clamping

E/mJ

4. ESD

All pins of the IC have to be protected against electrostatic discharge (ESD) by appropriate protection components.

The integrated circuit has to meet the requirements of the "Human Body Model" with $\mathrm{U}_{\mathrm{C}}=2 \mathrm{kV}$, $C=100 \mathrm{pF}$ and $\mathrm{R} 2=1,5 \mathrm{k} \Omega$ without any defect or destruction of the IC.

Appropriate measures to reach the required ESD capability have to be coordinated.
The ESD capability of the IC has to be verified by the following test circuit.

$\mathrm{U}_{\mathrm{C}}= \pm 2 \mathrm{kV}$
$R_{1}=100 \mathrm{k} \Omega$
$\mathrm{R}_{2}=1,5 \mathrm{k} \Omega$
$C=100 \mathrm{pF}$

Number of pulses each pin: 18 in all
Frequency: 1 Hz
Arrangement and performance:
The requirements of MIL883D Method 3015 (latest revision) have to be fulfilled.

5. Package Outline

Green Product (RoHS compliant)

To meet the world-wide customer requirements for environmentally friendly products and to be compliant with government regulations the device is available as a green product. Green products are RoHSCompliant (i.e Pb -free finish on leads and suitable for Pb -free soldering according to IPC/JEDEC JSTD-020).

TLE 6244X

6. Revision History

TLE 6244X

Revision History: 2007-06-11 V7 (previous Version V6 - Preliminary Data Sheet)
Changes to V7

$2007-06-11$	Status to Final
$2007-06-11$	typo: MQFM > MQFP

Edition 2007-06-11

Published by
Infineon Technologies AG
81726 Munich, Germany
© 6/11/07 Infineon Technologies AG
All Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/ or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office.
Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Power Switch ICs - Power Distribution category:
Click to view products by Infineon manufacturer:

Other Similar products are found below :
AP22652AW6-7 MAPDCC0001 L9349TR-LF MAPDCC0005 NCP45520IMNTWG-L VND5050K-E MP6205DD-LF-P FPF1018 DS1222
TCK2065G,LF SZNCP3712ASNT3G L9781TR NCP45520IMNTWG-H MC17XS6500BEK SP2526A-1EN-L/TR SP2526A-2EN-L/TR MAX4999ETJ+T MC22XS4200BEK MAX14575BETA+T VN1160C-1-E VN750PEP-E TLE7244SL BTS50060-1EGA
MAX1693HEUB+T MC07XSG517EK TLE7237SL MIC2033-05BYMT-T5 MIC2033-12AYMT-T5 MIC2033-05BYM6-T5 MP6513LGJ-P NCP3902FCCTBG AP22811BW5-7 SLG5NT1437VTR SZNCP3712ASNT1G NCV330MUTBG DML1008LDS-7 MAX4987AEETA+T KTS1670EDA-TR MAX1694EUB+T KTS1640QGDV-TR KTS1641QGDV-TR IPS160HTR BTS500251TADATMA2
NCV451AMNWTBG MC07XS6517BEKR2 SIP43101DQ-T1-E3 DML10M8LDS-13 MAX1922ESA+C71073 MP6231DH-LF-Z
MP62131EK-LF-Z

