DC Motor Driver for Servo Driver Applications

$\sqrt{\text { RoHS }}$

1 Overview

$1.1 \quad$ Features

- Optimized for headlight beam control applications
- Delivers up to 0.8 A
- Low saturation voltage;
typ. 1.2 V total @ $25^{\circ} \mathrm{C}$; 0.4 A
- Output protected against short circuit

- Overtemperature protection with hysteresis
- Over- and undervoltage lockout
- No crossover current
- Internal clamp diodes
- Green Product (RoHS compliant)
- AEC Qualified

1.2 Description

The TLE 4209A is a fully protected H -Bridge Driver designed specifically for automotive headlight beam control and industrial servo control applications.
The part is built using Infineons bipolar high voltage power technology DOPL.
The device is available in a PG-DIP-8-4 package.
The servo-loop-parameter pos.- and neg. Hysteresis, pos.- and neg. deadband and angle-amplification are programmable with external resitors.
An internal window-comparator controls the input line. In the case of a fault condition, like short circuit to GND, short circuit to supply-voltage, and broken wire, the TLE 4209A stops the motor immediately (brake condition).
Furthermore the built in features like over- and undervoltage-lockout, short-circuitprotection and over-temperature-protection will open a wide range of automotive- and industrial applications.

Type	Package
TLE 4209A	PG-DIP-8-4

1.3 Pin Definitions and Functions

Pin No. PG-DIP-8-4	Symbol	Function
1	FB	Feedback Input
2	HYST	Hysteresis I/O
3	OUT1	Power Output 1
4	$V_{\text {S }}$	Power Supply Voltage
5	OUT2	Power Output 2
6	GND	Ground
7	RANGE	Range Input
8	REF	Reference Input

Figure 1 Pin Configuration

 (top view)TLE 4209A

1.4 Functional Block Diagram

Figure 2 Block Diagram

1.5 Absolute Maximum Ratings

Parameter	Symbol	Limit Values		Unit	Remarks
		min.	max.		

Voltages

Supply voltage	V_{S}	-0.3	45	V	-
Supply voltage	V_{S}	-1	-	V	$t<0.5 \mathrm{~s} ; I_{\mathrm{S}}>-2 \mathrm{~A}$
Logic input voltages (FB, REF, RANGE, HYST)	V_{I}	-0.3	20	V	-

Currents

Output current (OUT1, OUT2)	$I_{\text {OUT }}$	-	-	A	internally limited
Output current (Diode)	$I_{\text {OUT }}$	-1	1	A	-
Input current	$I_{\text {IN }}$	-2	2	mA	
(FB, REF, RANGE, HYST)		-6	6	mA	$t<2 \mathrm{~ms} ; t / T<0.1$

Temperatures

Junction temperature	T_{j}	-40	150	${ }^{\circ} \mathrm{C}$	-
Storage temperature	$T_{\text {stg }}$	-50	150	${ }^{\circ} \mathrm{C}$	-

Thermal Resistances

Junction ambient	(PG-DIP-8-4)	$R_{\text {thjA }}$		100	K/W	-

Note: Stresses above those listed here may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

1.6 Operating Range

Parameter	Symbol	Limit Values		Unit	Remarks
		min.	max.		
Supply voltage	V_{S}	8	18	V	After V_{S} rising above $V_{\mathrm{UV}} \mathrm{ON}$
Supply voltage increasing	V_{S}	-0.3	$V_{\mathrm{UV} \text { ON }}$	V	Outputs in tristate
Supply voltage decreasing	V_{S}	-0.3	$V_{\mathrm{UV} \text { OF }}$ F	V	Outputs in tristate
Output current		$I_{\mathrm{OUT1-2}}$	-0.8	0.8	A
Input current (FB, REF)	I_{IN}	-50	500	$\mu \mathrm{~A}$	-
Junction temperature	T_{j}	-40	150	${ }^{\circ} \mathrm{C}$	-

Note: In the operating range, the functions given in the circuit description are fulfilled.

1.7 Electrical Characteristics

$8 \mathrm{~V}<V_{\mathrm{S}}<18 \mathrm{~V} ; I_{\text {OUT1-2 }}=0 \mathrm{~A} ;-40^{\circ} \mathrm{C}<T_{\mathrm{j}}<150^{\circ} \mathrm{C}$ (unless otherwise specified)

Parameter	Symbol	Limit Values			Unit	Test Condition
		min.	typ.	max.		

Current Consumption

Supply current	$I_{\text {S }}$	-	12	20	mA	-
Supply current	$I_{\text {S }}$	-	20	30	mA	$I_{\text {OUT } 1}=0.4 \mathrm{~A}$ $I_{\text {OUT } 2}=-0.4 \mathrm{~A}$
Supply current	$I_{\text {S }}$	-	30	50	mA	$I_{\text {OUT } 1}=0.8 \mathrm{~A}$ $I_{\text {OUT } 2}=-0.8 \mathrm{~A}$

Over- and Under Voltage Lockout

UV Switch ON voltage	$V_{\text {UV ON }}$	-	7.4	8	V	$V_{\text {S }}$ increasing
UV Switch OFF voltage	$V_{\text {UV OFF }}$	6.3	6.9	-	V	$V_{\text {S }}$ decreasing
UV ON/OFF Hysteresis	$V_{\text {UVHY }}$	-	0.5	-	V	$V_{\text {UV ON }}-V_{\text {UV OFF }}$
OV Switch OFF voltage	$V_{\text {OV OFF }}$	-	20.5	23	V	$V_{\text {S }}$ increasing
OV Switch ON voltage	$V_{\text {OV ON }}$	17.5	20	-	V	$V_{\text {S }}$ decreasing
OV ON/OFF Hysteresis	$V_{\text {OVHY }}$	-	0.5	-	V	$V_{\text {OV OFF }}-V_{\text {OV ON }}$

TLE 4209A

Overview

1.7 Electrical Characteristics (cont'd)

$8 \mathrm{~V}<V_{\mathrm{S}}<18 \mathrm{~V} ; I_{\text {OUT1-2 }}=0 \mathrm{~A} ;-40^{\circ} \mathrm{C}<T_{\mathrm{j}}<150^{\circ} \mathrm{C}$ (unless otherwise specified)

Parameter	Symbol	Limit Values		Unit	Test Condition	
		min.	typ.	max.		

Outputs OUT1-2

Saturation Voltages

Source (upper) $I_{\mathrm{OUT}}=-0.2 \mathrm{~A}$	$V_{\text {SAT }}$	-	0.85	1.15	V	$T_{\mathrm{j}}=25^{\circ} \mathrm{C}$
Source (upper) $I_{\mathrm{OUT}}=-0.4 \mathrm{~A}$	$V_{\text {SAT U }}$	-	0.90	1.20	V	$T_{\mathrm{j}}=25^{\circ} \mathrm{C}$
Sink (upper) $I_{\mathrm{OUT}}=-0.8 \mathrm{~A}$	$V_{\text {SAT U }}$	-	1.10	1.50	V	$T_{\mathrm{j}}=25^{\circ} \mathrm{C}$
Sink (lower) $I_{\mathrm{OUT}}=0.2 \mathrm{~A}$	$V_{\text {SAT }}$	-	0.15	0.23	V	$T_{\mathrm{j}}=25^{\circ} \mathrm{C}$
Sink (lower) $I_{\mathrm{OUT}}=0.4 \mathrm{~A}$	$V_{\text {SAT L }}$	-	0.25	0.40	V	$T_{\mathrm{j}}=25^{\circ} \mathrm{C}$
Sink (lower) $I_{\mathrm{OUT}}=0.8 \mathrm{~A}$	$V_{\text {SAT }}$	-	0.45	0.75	V	$T_{\mathrm{j}}=25^{\circ} \mathrm{C}$

Total drop	$I_{\mathrm{OUT}}=0.2 \mathrm{~A}$	V_{SAT}	-	1.0	1.4	V	$V_{\mathrm{SAT}}=V_{\mathrm{SAT}}+$ V_{SATL}
Total drop	$I_{\mathrm{OUT}}=0.4 \mathrm{~A}$	V_{SAT}	-	1.2	1.7	V	$V_{\mathrm{SAT}}=V_{\mathrm{SAT}}+$ $V_{\text {SAT }}$
Total drop	$I_{\mathrm{OUT}}=0.8 \mathrm{~A}$	$V_{\text {SAT }}$	-	1.6	2.5	V	$V_{\text {SAT }}=V_{\text {SAT }}+$ $V_{\text {SAT }}$

Clamp Diodes

Forward voltage; upper	V_{FU}	-	1.0	1.5	V	$I_{\mathrm{F}}=0.4 \mathrm{~A}$
Upper leakage current	I_{LKU}	-		5	mA	$I_{\mathrm{F}}=0.4 \mathrm{~A}$
Forward voltage; lower	V_{FL}	-	0.9	1.4	V	$I_{\mathrm{F}}=0.4 \mathrm{~A}$

1.7 Electrical Characteristics (cont'd)

$8 \mathrm{~V}<V_{\mathrm{S}}<18 \mathrm{~V}$; $I_{\text {OUT1-2 }}=0 \mathrm{~A} ;-40^{\circ} \mathrm{C}<T_{\mathrm{j}}<150^{\circ} \mathrm{C}$ (unless otherwise specified)

Parameter	Symbol	Limit Values			Unit	Test Condition
		min.	typ.	max.		

Input-Interface

Input REF

Quiescent voltage	$V_{\text {REFq }}$	-	200	240	mV	$I_{\text {REF }}=0 \mu \mathrm{~A}$
Input resistance	$R_{\text {REF }}$	4.5	6.0	7.5	$\mathrm{k} \Omega$	$0 \mathrm{~V}<V_{\text {REF }}<0.5 \mathrm{~V}$

Input FB

Quiescent voltage	V_{FBq}	-	200	240	mV	$I_{\mathrm{FB}}=0 \mu \mathrm{~A}$
Input resistance	R_{FB}	4.5	6.0	7.5	$\mathrm{k} \Omega$	$0 \mathrm{~V}<V_{\mathrm{FB}}<0.5 \mathrm{~V}$

Input/Output HYST

Current Offset	$I_{\text {HYSTIO }}$ 250	-2	0.35	3	$\mu \mathrm{A}$	$\begin{aligned} & I_{\mathrm{REF}}=I_{\mathrm{FB}}= \\ & 250 \mu \mathrm{~A} \\ & V_{\mathrm{HYST}}=V_{\mathrm{S}} / 2 \end{aligned}$
	$I_{\text {HYSTIO }}$ 40	-1.3	0	1.3	$\mu \mathrm{A}$	$\begin{aligned} & I_{\mathrm{REF}}=I_{\mathrm{FB}}= \\ & 40 \mu \mathrm{~A} \\ & V_{\mathrm{HYST}}=V_{\mathrm{S}} / 2 \\ & \hline \end{aligned}$
Current Amplification $A_{\mathrm{HYST}}=I_{\mathrm{HYST}} /\left(I_{\mathrm{REF}}-I_{\mathrm{FB}}\right)$	$A_{\text {HYST }}$	0.8	0.95	1.1	-	$\begin{aligned} & -20 \mu \mathrm{~A}<I_{\text {HYST }} \\ & <-10 \mu \mathrm{~A} ; \\ & 10 \mu \mathrm{~A}<I_{\text {HYST }} \\ & <20 \mu \mathrm{~A} ; \\ & I_{\text {REF }}=250 \mu \mathrm{~A} \\ & V_{\text {HYST }}=V_{\mathrm{S}} / 2 \end{aligned}$
$\begin{aligned} & \hline \text { Current Gain } \\ & G_{\mathrm{HYST}}=\left(I_{\mathrm{HYST}}-I_{\mathrm{HYSTIO} 40}\right) \\ & \hline\left(I_{\mathrm{REF}}-I_{\mathrm{FB}}\right) \end{aligned}$	$G_{\text {HYST }}$	0.8	0.95	1.1	-	$\begin{aligned} & I_{\mathrm{HYST}}=+/-2 \mu \mathrm{~A} ; \\ & I_{\mathrm{REF}}=40 \mu \mathrm{~A} ; \\ & V_{\mathrm{HYST}}=V_{\mathrm{S}} / 2 \\ & \hline \end{aligned}$
Threshold voltage High	$\begin{aligned} & V_{\mathrm{HYH}} / \\ & V_{\mathrm{S}} \end{aligned}$	51	52	54	\%	-
Deadband voltage High	$\begin{aligned} & V_{\mathrm{DBH}} / \\ & V_{\mathrm{S}} \end{aligned}$	50	50.4	51	\%	-

1.7 Electrical Characteristics (cont'd)

$8 \mathrm{~V}<V_{\mathrm{S}}<18 \mathrm{~V} ; I_{\text {OUT1-2 }}=0 \mathrm{~A} ;-40^{\circ} \mathrm{C}<T_{\mathrm{j}}<150^{\circ} \mathrm{C}$ (unless otherwise specified)

| Parameter | Symbol | | Limit Values | | | Unit |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | Test Condition

Input RANGE

Input current	$I_{\text {RANGE }}$	-1	-	1	$\mu \mathrm{~A}$	$0 \mathrm{~V}<V_{\text {RANGE }}$ $<V_{\mathrm{S}}$
Switch-OFF voltage High	$V_{\text {OFFH }}$	160	200	240	mV	refer to V_{S}
Switch-OFF voltage Low	$V_{\text {OFFL }}$	300	400	500	mV	refer to GND

Thermal Shutdown

Thermal shutdown junction temperature	T_{jSD}	150	175	200	${ }^{\circ} \mathrm{C}$	-
Thermal switch-on junction temperature	T_{jSO}	120	-	170	${ }^{\circ} \mathrm{C}$	-
Temperature hysteresis	ΔT	-	30		K	-

Note: The listed characteristics are ensured over the operating range of the integrated circuit. Typical characteristics specify mean values expected over the production spread. If not otherwise specified, typical characteristics apply at $T_{A}=25^{\circ} \mathrm{C}$ and the given supply voltage.

TLE 4209A

Diagrams

2 Diagrams

Figure 3 Application Circuit

TLE 4209A

Diagrams

Expressions:
HY = Hysteresis
DB = Deadband
$\mathrm{H}=\mathrm{High}$
L = Low
W = Window

Figure 4 Hysteresis, Phaselag and Deadband-Definitions

Figure 5 Timing and Phase-Lag

3 Package Outlines

Figure 6 PG-DIP-8-4 (Plastic Dual In-line Package)

Green Product (RoHS compliant)

To meet the world-wide customer requirements for environmentally friendly products and to be compliant with government regulations the device is available as a green product. Green products are RoHS-Compliant (i.e Pb-free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020).

You can find all of our packages, sorts of packing and others in our

Revision History

Revision	Date	Changes
Rev. 1.1	$2007-07-23$	Page 1: added Green Product and AEC logo feature list:: deleted Pb-free Lead finish... added Green Product and AEC Qualified
		Page 12: added Green Product description
	Page 14: updated disclaimer	
Rev. 1.0	$2006-04-10$	Page1: Package name changed from P-DIP-8-4 to PG-DIP-8- 4 (G stands for Green Package, Pb free lead finish) Changed package drawing) Expand feature List: Pb-free Lead finish (100\% matte Sn)
	Page 12	Modify footnote
	Page 13	Include Revision History Page
	Page 14	Include Disclaimer Page
Prev. Rev.	$2000-09-05$	

Edition 2007-07-24

Published by Infineon Technologies AG
81726 Munich, Germany
(C) 2007 Infineon Technologies AG

All Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office.
Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Motor/Motion/Ignition Controllers \& Drivers category:
Click to view products by Infineon manufacturer:
Other Similar products are found below :
LV8133JA-ZH LV8169MUTBG LV8774Q-AH LV8860PV-TLM-H MC33931EKR2 MC34GD3000EP FSB50250UTD FSB50550TB2 FSBF15CH60BTH MP6507GR-P MP6508GF MSVCPM2-63-12 MSVGW45-14-2 MSVGW54-14-5 NTE7043 CAT3211MUTAG LA6245P-CL-TLM-E LA6245P-TLM-E LA6565VR-TLM-E LB11650-E LB1694N-E LB1837M-TLM-E LB1845DAZ-XE LC898111AXBMH LC898300XA-MH SS30-TE-L-E STK531-345A-E STK581U3A0D-E STK58AUNP0D-E STK621-068C-E STK621-140C STK621-728S-E STK625-728-E STK672-400B-E STK672-432AN-E STK672-432BN-E STK672-440AN-E STK672-442AN-E AMIS30621AUA FSB50550ASE 26700 LV8161MUTAG LV8281VR-TLM-H LV8702V-TLM-H LV8734VZ-TLM-H LV8773Z-E LV8807QA-MH MC33932EK MCP8024T-H/MP TND027MP-AZ

