LT8494

feATURES

- Low Ripple Burst Mode ${ }^{\otimes}$ Operation:
$7 \mu \mathrm{~A} \mathrm{I}_{\mathrm{O}}$ at $12 \mathrm{~V}_{\text {IN }}$ to $5 \mathrm{~V}_{\text {OUt }}$ Output Ripple (<10mV Typ.)
- Dual Supply Pins:

Improves Efficiency
Reduces Minimum Supply Voltage to ~1V after
Start-Up to Extend Battery Life

- Wide Input Voltage Range of $\sim 1 \mathrm{~V}$ to $60 \mathrm{~V}(2.5 \mathrm{~V}$ to 32 V for Start-Up)
- PG Functional for Input Supply Down to 1.3V
- FMEA Fault Tolerant in TSSOP Package
- Fixed Frequency PWM, SEPIC/BOOST/FLYBACK

Topologies

- NPN Power Switch: 2A/70V
- Programmable Switching Frequency: 250 kHz to 1.5 MHz
- UVLO Programmable on SWEN Pin
- Soft-Start Programmable with One Capacitor
- Small 20-Lead QFN or 20-Lead TSSOP Packages

APPLICATIONS

- Automotive ECU Power
- Power for Portable Products
- Industrial Supplies
$\boldsymbol{\Sigma T}$, LT, LTC, LTM, Linear Technology, Burst Mode and the Linear logo are registered trademarks of Linear Technology Corporation. All other trademarks are the property of their respective owners.

DESCRIPTIOn

The LT ${ }^{\circledR} 8494$ is an adjustable frequency (250 kHzto 1.5 MHz) monolithic switching regulator. Quiescent current can be less than $7 \mu \mathrm{~A}$ when operating and is $\sim 0.3 \mu \mathrm{~A}$ when SWEN is low. The LT8494 can be configured as either a SEPIC, boost or flyback converter.

The low ripple Burst Mode operation maintains high efficiency at low output current while keeping output ripple below 10 mV . Dual supply pins ($\mathrm{V}_{\text {IN }}$ and BIAS) allow the part to automatically operate from the most efficient supply. Input supply voltage can be up to 60V for SEPIC topologies and up to 32 V (with ride-through up to 60V) for boost and flyback topologies. After start-up, battery life is extended since the part can draw current from its output (BIAS) even when $\mathrm{V}_{\text {IN }}$ voltage drops below 2.5 V .
Using a resistor divider on the SWEN pin provides a programmable undervoltage lockout (UVLO) forthe converter. A power good flag signals when $\mathrm{V}_{\text {OUT }}$ reaches 92% of the programmed output voltage.
Additional features such as frequency foldback and softstart are integrated. The LT8494 is available in 20-lead QFN and 20-lead TSSOP packages with exposed pads for low thermal resistance. Fault tolerance in the TSSOP allows for adjacent pin shorts or an open without raising the output voltage above its programmed value.

TYPICAL APPLICATION

No-Load Supply Current

Efficiency

ABSOLUTE MAXIMUM RATINGS (Note 1)

V_{IN}, BIAS Voltage 60 V
SWEN Voltage 60V
FB Voltage 60V
SW Voltage 70V
PG Voltage 6 V
RT Voltage 6 V
SS Voltage 3 V
Operating Junction Temperature Range LT8494E, LT8494I (Notes 2, 3) $-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ Lead Temperature (Soldering, 10 sec)
FE Package $300^{\circ} \mathrm{C}$

PIn CONFIGURATIOn

ORDER INFORMATION

LEAD FREE FINISH	TAPE AND REEL	PART MARKING*	PACKAGE DESCRIPTION	TEMPERATURE RANGE
LT8494EUF\#PBF	LT8494EUF\#TRPBF	8494	$20-$ Lead $(4 \mathrm{~mm} \times 4 \mathrm{~mm})$ Plastic QFN	$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
LT8494IUF\#PBF	LT8494IUF\#TRPBF	8494	$20-$ Lead ($4 \mathrm{~mm} \times 4 \mathrm{~mm}$) Plastic QFN	$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
LT8494EFE\#PBF	LT8494EFE\#TRPBF	LT8494FE	$20-$ Lead Plastic TSSOP	$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
LT8494IFE\#PBF	LT8494IFE\#TRPBF	LT8494FE	$20-$ Lead Plastic TSSOP	$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
LT8494HFE\#PBF	LT8494HFE\#TRPBF	LT8494FE	$20-$ Lead Plastic TSSOP	$-40^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$

[^0]ELECTRICAL CHARACTERISTICS The • denotes the specifications which apply over the full operating junction temperature range, otherwise specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} . \mathrm{V}_{I N}=\mathrm{V}_{\text {SWEN }}=12 \mathrm{~V}, \mathrm{~V}_{\text {BIAS }}=5 \mathrm{~V}$, unless otherwise noted (Note 2).

PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
Minimum V ${ }_{\text {IN }}$ Operating Voltages	$\begin{aligned} & V_{\text {BIAS }}<2.5 \mathrm{~V} \\ & V_{\text {BIAS }} \geq 2.5 \mathrm{~V} \end{aligned}$	\bullet		2.4	$\begin{gathered} 2.5 \\ 0 \end{gathered}$	V
Minimum BIAS Operating Voltages	$\begin{aligned} & V_{\text {IN }}<2.5 \mathrm{~V} \\ & V_{\text {IN }} \geq 2.5 \mathrm{~V} \end{aligned}$	\bullet		2.4	$\begin{gathered} 2.5 \\ 0 \end{gathered}$	V
Power Switch Driver (PSD) Overvoltage Threshold (Note 4)	$\mathrm{V}_{\text {IN }}$ or BIAS Rising $V_{\text {IN }}$ or BIAS Falling		$\begin{gathered} 32.1 \\ 32 \end{gathered}$	$\begin{gathered} 34 \\ 33.9 \end{gathered}$	$\begin{aligned} & 36.5 \\ & 36.4 \end{aligned}$	V
Power Switch Driver (PSD) Overvoltage Threshold Hysteresis (Note 4)				100		mV
Quiescent Current from V ${ }_{\text {IN }}$	$\begin{aligned} & V_{\text {SWEN }}=0 \mathrm{~V} \\ & V_{\text {SWEN }}=5 \mathrm{~V}, V_{\text {FB }}=1.25 \mathrm{~V} \\ & V_{\text {SWEN }}=5 \mathrm{~V}, V_{\text {FB }}=1.25 \mathrm{~V} \text { (LT8494E, LT8494I) } \\ & V_{\text {SWEN }}=5 \mathrm{~V}, V_{\text {FB }}=1.25 \mathrm{~V} \text { (LT8494H) } \end{aligned}$	\bullet		$\begin{aligned} & 0.3 \\ & 3.0 \\ & 3.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 0.9 \\ & 4.8 \\ & 6.2 \\ & 8.0 \\ & \hline \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$
Quiescent Current from BIAS	$\begin{aligned} & V_{\text {SWEN }}=0 \mathrm{~V} \\ & V_{\text {SWEN }}=5 \mathrm{~V}, V_{\text {FB }}=1.25 \mathrm{~V} \\ & V_{\text {SWEN }}=5 \mathrm{~V}, V_{F B}=1.25 \mathrm{~V}(\text { LT8494E, LT8494I }) \\ & V_{\text {SWEN }}=5 \mathrm{~V}, V_{F B}=1.25 \mathrm{~V}(\text { LT8494H }) \end{aligned}$	\bullet		$\begin{aligned} & 0.07 \\ & 1.7 \\ & 1.7 \\ & 1.7 \end{aligned}$	$\begin{aligned} & 0.5 \\ & 2.8 \\ & 3.5 \\ & 10 \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$
BIAS to VIN Comparator Threshold	$V_{\text {BIAS }}-V_{I N}, V_{\text {BIAS }}$ Rising, $V_{\text {IN }}=12 \mathrm{~V}$ $V_{\text {BIAS }}-V_{\text {IN }}, V_{\text {BIAS }}$ Falling, $\mathrm{V}_{\text {IN }}=12 \mathrm{~V}$ Hysteresis (Rising-Falling Threshold)	$\stackrel{\bullet}{\bullet}$	$\begin{aligned} & 0.55 \\ & 0.17 \\ & 0.20 \end{aligned}$	$\begin{gathered} \hline 0.9 \\ 0.37 \\ 0.53 \end{gathered}$	$\begin{gathered} 1.2 \\ 0.57 \\ 0.8 \end{gathered}$	V V V
Feedback Voltage		\bullet	1.178	1.202	1.230	V
FB Pin Bias Current (Note 7)	$V_{F B}=1.202 \mathrm{~V}$			0.1	20	nA
FB Voltage Line Regulation	$\begin{aligned} & 5 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 32 \mathrm{~V}, \text { BIAS }=5 \mathrm{~V} \\ & 5 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 32 \mathrm{~V}, \text { BIAS }=0 \mathrm{~V} \end{aligned}$			$\begin{aligned} & 0.2 \\ & 0.2 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & \mathrm{m} \% / \mathrm{V} \\ & \mathrm{~m} \% / \mathrm{V} \end{aligned}$
Minimum Switch Off-Time				70		ns
Minimum Switch On-Time				95		ns
Switching Frequency	$\begin{aligned} & \mathrm{R}_{\mathrm{T}}=68.1 \mathrm{k} \\ & \mathrm{R}_{\mathrm{T}}=324 \mathrm{k} \end{aligned}$		$\begin{aligned} & 0.92 \\ & 219 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 250 \end{aligned}$	$\begin{aligned} & 1.06 \\ & 280 \end{aligned}$	MHz
Switch Current Limit at Minimum Duty Cycle (Note 5)		\bullet	2.1	2.55	2.95	A
Switch Current Limit at Maximum Duty Cycle (Note 6)		\bullet	1.3	1.85	2.4	A
Switch V ${ }_{\text {CESAT }}$	$\mathrm{I}_{\text {SW }}=1.2 \mathrm{~A}$			340		mV
Switch Leakage Current (Note 7)	$\mathrm{V}_{\text {SW }}=12 \mathrm{~V}, \mathrm{~V}_{\text {SWEN }}=0 \mathrm{~V}$			0.01	1	$\mu \mathrm{A}$
Soft-Start Charging Current (Note 7)	$V_{S S}=100 \mathrm{mV}$	\bullet	5.2	8.2	12.2	$\mu \mathrm{A}$
SWEN Pin Current (Note 7)	$\begin{aligned} & V_{\text {SWEN }}=1.2 \mathrm{~V} \\ & V_{\text {SWEN }}=5 \mathrm{~V} \\ & V_{\text {SWEN }}=12 \mathrm{~V} \end{aligned}$			$\begin{gathered} 0 \\ 35 \\ 240 \end{gathered}$	$\begin{gathered} 25 \\ 200 \\ 550 \end{gathered}$	nA $n A$ $n A$
SWEN Rising Voltage Threshold		\bullet	0.9	1	1.1	V
SWEN Voltage Hysteresis				30		mV
PG Threshold as \% of $\mathrm{V}_{\text {FB }}$ Regulation Voltage	$V_{\text {FB }}$ Rising $V_{F B}$ Falling	\bullet	$\begin{aligned} & 86 \\ & 87 \end{aligned}$	$\begin{aligned} & 92 \\ & 88 \end{aligned}$	$\begin{aligned} & 97 \\ & 93 \end{aligned}$	\%
PG Hysteresis				46		mV
PG Output Voltage Low	$\begin{aligned} & I_{\text {SINK }}=1.25 \mathrm{~mA} \\ & I_{\text {SINK }}=100 \mu \mathrm{~A}, \mathrm{~V}_{\text {BIAS }}=0 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=1.3 \mathrm{~V} \\ & \mathrm{I}_{\text {SINK }}=100 \mu \mathrm{~A}, \mathrm{~V}_{\text {BIAS }}=1.3 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0 \mathrm{~V} \end{aligned}$	$\stackrel{\bullet}{\bullet}$		$\begin{aligned} & 33 \\ & 15 \\ & 15 \end{aligned}$	$\begin{aligned} & 150 \\ & 150 \\ & 150 \end{aligned}$	mV mV mV
PG Leakage Current	$\begin{aligned} & V_{\text {PG }}=5 \mathrm{~V}(\text { LT8494E, LT8494I) } \\ & V_{P G}=5 \mathrm{~V}(\mathrm{LT} 8494 \mathrm{H}) \end{aligned}$	\bullet		$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0.3 \\ & 1.0 \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$

ELECTRICAL CHARACTERISTICS

Note 1: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to any Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime. Voltages are with respect to GND pin unless otherwise noted.
Note 2: The LT8494E is guaranteed to meet performance specifications from $0^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ junction temperature. Specifications over the $-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ operating junction temperature range are assured by design, characterization and correlation with statistical process controls. The LT8494I is guaranteed to meet performance specifications from $-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ junction temperature. The LT8494H is guaranteed over the full $-40^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ operating junction temperature range. Operation lifetime is derated at junction temperatures greater than $125^{\circ} \mathrm{C}$.
Note 3: This IC includes overtemperature protection that is intended to protect the device during momentary overload conditions.

Junction temperature will exceed the maximum operating range when overtemperature protection is active. Continuous operation above the specified maximum operating junction temperature may impair device reliability.
Note 4: See Power Supplies and Operating Limits in the Applications Information section for more details.
Note 5: Current limit guaranteed by design and/or correlation to static test. Slope Compensation reduces current limit at higher duty cycles.
Note 6: Max duty cycle current limit measured at 1 MHz switching frequency.
Note 7: Polarity specification for all currents into pins is positive. All voltages are referenced to GND unless otherwise specified.

TYPICAL PGRFORMAOCE CHARACTERISTICS $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified.

Switching Waveforms, Burst
Mode Operation

Switching Waveforms, Full
Frequency Continuous Operation

Load Regulation

Transient Load Response, Load Current is Stepped from 20mA (Burst Mode Operation) to 220 mA

TYPICAL PERFORMAOCE CHARACTERISTICS $T_{A}=25^{\circ} \mathrm{C}$ unless otherwise specified.

Transient Load Response, Load Current is Stepped from 300mA to 500 mA

FRONT PAGE APPLICATION
$\mathrm{V}_{\text {IN }}=12 \mathrm{~V}$
$V_{\text {OUT }}=5 \mathrm{~V}$

Switch Current Limit at Minimum
 Duty Cycle

Minimum Switch Off-Time

Minimum Switch On-Time

Frequency Foldback

Switch Current Limit at 500kHz

Oscillator Frequency

TYPICAL PERFORMAOCE CHARACTERISTICS $T_{A}=25^{\circ} \mathrm{C}$ unless otherwise specified.

FB Pin Current

PG Pin Current vs Supply Voltage

PG Output Voltage vs Supply Voltage

Pin Current

Quiescent Current

PIn functions (afn/ssop)

SS (Pin 1/Pin 8): Soft-Start Pin. Place a soft-start capacitor on this pin. Upon start-up, the SS pin will be charged by a (nominally) 256k resistor to about 2.1V.

RT (Pin 2/Pin 10): Oscillator Frequency Set Pin. Place a resistor from this pin to ground to set the internal oscillator frequency. Minimize capacitance on this pin. See the Applications Information section for more details.

GND (Pins 3, 4, 9, 11, 13, 14, 15, Exposed Pad 21/Pins 14, 16, Exposed Pad 21): Ground. Solder all pins and the exposed pad directly to the local ground plane. The exposed pad metal of the package provides both electrical contact to ground and good thermal contact to the printed circuit board.

NC (Pins 5, 7, 8, 18, 19/4, 5, 6, 9, 11, 13, 15, 17, 19): NC pins are not connected to internal circuitry. Some NC pins in the TSSOP package must be left floating to ensure FMEA fault tolerance (see Applications Informations section for details).
SWEN (Pin 6/Pin 12): Switch Enable Detect Pin. This pin enables/disables the switching regulator and soft-start. A resistor divider can be connected to SWEN to perform an undervoltage lockout function.
$V_{\text {IN }}$ (Pin 10/Pin 18): Supply Input Pin. This pin is typically connected to the input of the DC/DC converter. Must be locally bypassed.

SW (Pin 12/Pin 20): Switch Pin. This is the collector of the internal NPN power switch. Minimize trace area connected to this pin to minimize EMI.
BIAS (Pin 16/Pin 1): Supply Input Pin. This pin is typically connected to the output of the DC/DC converter in cases where $\mathrm{V}_{\text {IN }}$ can be higher than $\mathrm{V}_{\text {OUt }}$. Must be locally bypassed.
FB (Pin 17/Pin 2, 3): Output Voltage Feedback Pin. The LT8494 regulates the FB pin to 1.202 V . Connect a resistor divider between the output, FB and GND to set the regulated output voltage.

PG (Pin 20/Pin 7): The PG pin is the open-drain output of an internal comparator. PG remains low until the FB pin is above 92% of the regulation voltage, and there are no fault conditions. See the Applications Information section for more details.

BLOCK DIAGRAM

OPERATION

The LT8494 is a constant-frequency, current mode SEPIC/boost/flyback regulator. Operation can be best understood by referring to the Block Diagram. In the Block Diagram, the adjustable oscillator, with frequency set by the external R_{\top} resistor, enables an RS latch, turning on the internal power switch. An amplifier and comparator monitor the switch current flowing through an internal sense resistor, turning the switch off when this current reaches a level determined by the voltage at VC. An error amplifier adjusts the VC voltage by measuring the output voltage through an external resistor divider tied to the FB pin. If the error amplifier's output voltage (VC) increases, more current is delivered to the output; if the VC voltage decreases, less current is delivered. An active clamp on the VC voltage provides current limit. An internal regulator provides power to the control circuitry.
In order to improve efficiency, the NPN power switch driver (see Block Diagram) supplies NPN base current from whichever of $\mathrm{V}_{\text {IN }}$ and BIAS has the lower supply voltage. However, if either of them is below 2.4 V or above 34 V (typical values), the power switch draws current from the other pin. If both supply pins are below 2.4 V or above 34 V then switching activity is stopped.
To further optimize efficiency, the LT8494 automatically enters Burst Mode operation in light load situations. Between bursts, all circuitry associated with controlling the output switch is shut down, reducing the $\mathrm{V}_{\text {IN }} /$ BIAS pin supply currents to be less than $3 \mu \mathrm{~A}$ typically (see Electrical Characteristics).

The LT8494 contains a power good comparator which trips when the FB pin is above 92% of its regulated value. The PG output is an open-drain transistor that is off when the output is in regulation, allowing an external resistor to pull the PG pin high (See Applications Information section for details).
Several functions are provided to enable a very clean start-up for the LT8494.

- First, the SWEN pin voltage is monitored by an internal voltage reference to give a precise turn-on threshold. An external resistor divider can be connected from the input power supply to the SWEN pin to provide a userprogrammable undervoltage lockout function.
- Second, the soft-start circuitry provides for a gradual ramp-up of the switch current. When the part is brought out of shutdown, the external SS capacitor is first discharged, and then an integrated 256 k resistor pulls the SS pin up to ~2.1V. By connecting an external capacitor to the SS pin, the voltage ramp rate on the pin can be set. Typical values for the soft-start capacitor range from 100 nF to $1 \mu \mathrm{~F}$.
- Finally, the frequency foldback circuit reduces the maximum switching frequency when the FB pin is below 1 V . This feature reduces the minimum duty cycle that the part can achieve thus allowing better control of the switch current during start-up.

APPLICATIONS INFORMATION

Low Ripple Burst Mode Operation

To enhance efficiency at light loads, the LT8494 regulator enters low ripple Burst Mode operation keeping the output capacitor charged to the proper voltage while minimizing the input quiescent current. During Burst Mode operation, the LT8494 regulator delivers single-cycle bursts of current to the output capacitor with each followed by a sleep period where the output power is delivered to the load by the output capacitor. The quiescent currents of $\mathrm{V}_{I \mathbb{N}} / \mathrm{BIAS}$ are reduced to less than $3 \mu A$ typically during the sleep time (see Electrical Characteristics table).

As the load current decreases towards a no-load condition, the frequency of single current pulses decreases (see Figure 1), therefore the percentage of time that the LT8494 operates in sleep mode increases, resulting in reduced average input current and thus high efficiency even at very low loads.
By maximizing the time between pulses, the LT8494 quiescent current is minimized. Therefore, to optimize the quiescent current performance at light loads, the current in the feedback resistor divider and the reverse current in the external diode must be minimized, as these appear to the output as load currents. More specifically, during the sleep time, the boost converter has the reverse diode leakage current conducting from output to input, while the SEPIC converter has leakage current conducting from output to ground. Use the largest possible feedback resis-

Figure 1. Switching Frequency in Burst Mode Operation
tors and a low leakage Schottky diode in applications with ultralow Q current.

In Burst Mode operation, the burst frequency and the charge delivered with each pulse will not change with output capacitance. Therefore, the output voltage ripple will be inversely proportional to the output capacitance. In a typical application with a $47 \mu \mathrm{~F}$ output capacitor, the output ripple is about 10 mV , and with two $47 \mu \mathrm{~F}$ output capacitors the output ripple is about 5 mV (see Switching Waveforms, Burst Mode Operation in Typical Performance Characteristics section). The output voltage ripple can continue to be decreased by increasing the output capacitance.

At higher output loads the LT8494 regulator runs at the frequency programmed by the R_{T} resistor and operates as a standard current mode regulator. The transition between high current mode and Iow ripple Burst Mode operation is seamless, and will not disturb the output voltage.

Setting the Output Voltage

The output voltage is programmed with a resistor divider from output to the FB pin (R2) and from the FB pin to ground (R1). Choose the 1\% resistors according to:

$$
\mathrm{R} 2=\mathrm{R} 1\left(\frac{\mathrm{~V}_{\text {OUT }}}{1.202}-1\right)
$$

Note that choosing larger resistors decreases the quiescent current of the application circuits. In low load applications, choosing larger resistors is more critical since the part enters Burst Mode operation with lower quiescent current.

Power Switch Duty Cycle

In order to maintain loop stability and deliver adequate current to the load, the power NPN (Q1 in the Block Diagram) cannot remain on for 100% of each clock cycle. The maximum allowable duty cycle is given by:

$$
D C_{\text {MAX }}=\frac{T_{P}-\text { Minimum Switch 0ff-Time }}{T_{P}} \cdot 100 \%
$$

APPLICATIONS INFORMATION

where T_{p} is the clock period and Minimum Switch Off-Time (found in the Electrical Characteristics) is typically 70ns.
Conversely, the power NPNs (Q1 in the Block Diagram) cannot remain off for 100% of each clock cycle, and will turn on for a minimum time (Minimum Switch On-Time) when in regulation. This Minimum Switch On-Time governs the minimum allowable duty cycle given by:

$$
D C_{\text {MIN }}=\frac{\text { Minimum Switch On-Time }}{T_{P}} \cdot 100 \%
$$

where T_{p} is the clock period and Minimum Switch On-Time (found in the Electrical Characteristics) is typically 95ns.
The application should be designed such thatthe operating duty cycle (DC) is between $\mathrm{DC}_{\text {MIN }}$ and $\mathrm{DC}_{\text {MAX }}$. Normally, DC rises with higher $V_{\text {OUT }}$ and lower $V_{\text {IN }}$.
Duty cycle equations for both boost and SEPIC topologies are given below, where V_{D} is the diode forward voltage drop and $V_{\text {CESAT }}$ is typically 340 mV at 1.2 A .
For the boost topology:

$$
D C \cong \frac{V_{\text {OUT }}-V_{\text {IN }}+V_{D}}{V_{\text {OUT }}+V_{D}-V_{\text {CESAT }}}
$$

For the SEPIC topology:

$$
D C \cong \frac{V_{\text {OUT }}+V_{D}}{V_{\text {IN }}+V_{\text {OUT }}+V_{D}-V_{\text {CESAT }}}
$$

The LT8494 can be used in configurations where the duty cycle is higher than $\mathrm{DC}_{\text {MAX }}$, but it must be operated in the discontinuous conduction mode or Burst Mode operation so that the effective duty cycle is reduced.

Setting the Switching Frequency

The LT8494 uses a constant frequency PWM architecture that can be programmed to switch from 250 kHz to 1.5 MHz by using a resistor tied from the RT pin to ground. Table 1 shows the necessary R_{\top} values for various switching frequencies.

Table 1. Switching Frequency vs R_{T} Value

SWITCHING FREQUENCY (MHz)	$\mathbf{R}_{\mathbf{T}}$ VALUE $(\mathbf{k} \boldsymbol{\Omega})$
0.25	324
0.4	196
0.6	124
0.8	88.7
1.0	68.1
1.2	54.9
1.4	45.3
1.5	41.2

Inductor Selection

General Guidelines: The high frequency operation of the LT8494 allows forthe use of small surface mount inductors. For high efficiency, choose inductors with high frequency core material, such as ferrite, to reduce core losses. To improve efficiency, choose inductors with more volume for a given inductance. The inductor should have low DCR (copper wire resistance) to reduce ${ }^{2} \mathrm{R}$ losses, and must be able to handle the peak inductor current without saturating. Note that in some applications, the current handling requirements of the inductor can be lower, such as in the SEPIC topology when using uncoupled inductors, where each inductor only carries a fraction of the total switch current. Molded chokes or chip inductors usually do not have enough core area to support peak inductor currents in the 2 A to 3 A range. To minimize radiated noise, use a toroidal or shielded inductor. Note that the inductance of shielded types will drop more as current increases, and will saturate more easily.
Minimum Inductance: Although there can be a trade-off with efficiency, it is often desirable to minimize board space by choosing smaller inductors. When choosing an inductor, there are two conditions that limit the minimum inductance; (1) providing adequate load current, and (2) avoidance of subharmonic oscillation. Choose an inductance that is high enough to meet both of these requirements.

APPLICATIONS INFORMATION

Adequate Load Current: Small value inductors result in increased ripple currents and thus, due to the limited peak switch current, decrease the average current that can be provided to a load (lout). In order to provide adequate load current, L should be at least:

For boost topologies, or:

for the SEPIC topologies.
where:
$\mathrm{L}=\mathrm{L} 1| | \mathrm{L} 2$ for the uncoupled SEPIC topology
DC = switch duty cycle (see previous section)
$\mathrm{I}_{\text {LIM }}=$ switch current limit, typically about 2.35A at 50\% duty cycle (see the Typical Performance Characteristics section)
η = power conversion efficiency (typically 85% to 90% for boost and 80% to 85% for SEPIC at high currents)
$f=$ switching frequency
Negative values of L indicate that the output load current Iout exceeds the switch current limit capability of the LT8494.
Avoiding Subharmonic Oscillations: The internal slope compensation circuit of LT8494 helps prevent the subharmonic oscillations that can occur when the duty cycle is greater than 50%, provided that the inductance exceeds a minimum value. In applications that operate with duty cycles greater than 50\%, the inductance must be at least:

$$
L>\frac{\left(V_{\text {IN }}-V_{\text {CESAT }}\right) \cdot(2 D C-1)}{0.76 \cdot(1.5 \cdot D C+1) \cdot f \cdot(1-D C)}
$$

for boost and coupled inductor SEPIC, or:

$$
L 1 \| L 2>\frac{\left(V_{\text {IN }}-V_{\text {CESAT }}\right) \cdot(2 D C-1)}{0.76 \cdot(1.5 \cdot D C+1) \cdot f \cdot(1-D C)}
$$

for the uncoupled inductor SEPIC topologies.
Maximum Inductance: Excessive inductance can reduce current ripple to levels that are difficult for the current comparator (A2 in the Block Diagram) to cleanly discriminate, thus causing duty cycle jitter and/or poor regulation. The maximum inductance can be calculated by:

$$
L_{\text {MAX }}=\frac{V_{\text {IN }}-V_{\text {CESAT }}}{I_{\text {MIN(RIPPLE }}} \cdot \frac{D C}{f}
$$

where $\mathrm{L}_{\text {MAX }}$ is L1||L2 for uncoupled SEPIC topologies and $I_{\text {MIIN(RIPPLE) }}$ is typically 150 mA .
Current Rating: Finally, the inductor(s) must have a rating greater than its peak operating current to prevent inductor saturation resulting in efficiency loss.

In steady state, the peak and average input inductor currents (continuous conduction mode only) are given by:

$$
\begin{aligned}
& I_{\text {L1(PEAK })}=\frac{V_{O U T} \bullet I_{O U T}}{V_{I N} \bullet \eta}+\frac{V_{I N} \bullet D C}{2 \bullet L 1 \bullet f} \\
& I_{\text {LI(AVG })}=\frac{V_{O U T} \bullet I_{O U T}}{V_{I N} \bullet \eta}
\end{aligned}
$$

for the boost and uncoupled inductor SEPIC topology.
For uncoupled SEPIC topologies, the peak and average currents of the output inductor L2 are given by:

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{L} 2(\text { PEAK })}=\mathrm{I}_{\mathrm{OUT}}+\frac{\mathrm{V}_{\text {OUT }} \bullet(1-\mathrm{DC})}{2 \cdot \mathrm{~L} 2 \bullet f} \\
& \mathrm{I}_{\mathrm{L} 2(\mathrm{AVG})}=\mathrm{I}_{\mathrm{OUT}}
\end{aligned}
$$

APPLICATIONS INFORMATION

For the coupled inductor SEPIC:

$$
\begin{aligned}
& I_{L(P E A K)}=I_{O U T} \cdot\left(1+\frac{V_{O U T}}{V_{I N} \bullet \eta}\right)+\frac{V_{\text {IN }} \bullet D C}{2 \bullet L \bullet f} \\
& I_{L(A V G)}=I_{O U T} \cdot\left[1+\frac{V_{O U T}}{V_{I N} \bullet \eta}\right]
\end{aligned}
$$

Note: Inductor current can be higher during load transients. It can also be higher during short-circuit and start-up if inadequate soft-start capacitance is used. Thus, $I_{\text {L(PEAK }}$ may be higher than the switch current limit of 2.95A, and the RMS inductor current is approximately equal to $I_{\text {L(AVG) }}$. Choose an inductor having sufficient saturation current and RMS current ratings.

Capacitor Selection

Low ESR (equivalent series resistance) capacitors should be used at the output to minimize the output ripple voltage. Multilayer ceramic capacitors are an excellent choice, as they have an extremely low ESR and are available in very small packages. X5R or X7R dielectrics are preferred, as these materials retain their capacitance over wider voltage and temperature ranges. Always use a capacitor with a sufficient voltage rating. Many capacitors rated at $2.2 \mu \mathrm{~F}$ to $20 \mu \mathrm{~F}$, particularly 0805 or 0603 case sizes, have greatly reduced capacitance at the desired output voltage. Solid tantalum or OS-CON capacitors can be used, but they will occupy more board area than a ceramic and will have a higher ESR with greater output ripple.
Ceramic capacitors also make a good choice for the input decoupling capacitor, which should be placed as closely as possible to the $\mathrm{V}_{\text {IN }}$ and BIAS pins of the LT8494. A $2.2 \mu \mathrm{~F}$ to 4.7μ Finput capacitor is sufficient for most applications.

Audible Noise

Ceramic capacitors are small, robust and have very low ESR. However, due to their piezoelectric nature, ceramic capacitors can sometimes create audible noise when used with the LT8494. During Burst Mode operation, the LT8494 regulator's switching frequency depends on the load current, and at very light loads the regulator can excite
the ceramic capacitor at audio frequencies, generating audible noise. Since LT8494 operates at a lower current limit during Burst Mode operation, the noise is typically very quiet. If this is unacceptable, use a high performance tantalum or electrolytic capacitor at the output.

Diode Selection

The diode used in boost or SEPIC topologies conducts current only during the switch off-time. During the switch on-time, the diode has reverse voltage across it. The peak reverse voltage is equal to $\mathrm{V}_{\text {OUT }}$ in the boost topology and equal to $\left(\mathrm{V}_{\text {OUT }}+\mathrm{V}_{\text {IN }}\right)$ in the SEPIC topology. Use a diode with a reverse voltage rating greater than the peak reverse voltage.
An additional consideration is the reverse leakage current. The leakage current appears to the output as load current and affects the efficiency, most noticeably, under light load conditions. In Burst Mode operation, after the inductor current vanishes, the reverse voltage across the boost diode is approximately equal to $\mathrm{V}_{\text {OUT }}-\mathrm{V}_{\text {IN }}$ in the boost topology and $\mathrm{V}_{\text {OUT }}$ in the SEPIC topology. The percentage of time that the diode is reverse biased increases as load current decreases.
Schottky diodes that have larger forward voltages often have less leakage, so a trade-off exists between light load and high load efficiency. Also the Schottky diodes with larger reverse bias ratings may have less leakage at a given output voltage, therefore, superior leakage performance can be achieved at the expense of diode size. Finally, keep in mind that the leakage current of a power Schottky diode goes up exponentially with junction temperature. Therefore, the Schottky diode must be selected with care to avoid excessive increase in light load supply current at high temperatures.

Soft-Start

The LT8494 contains a soft-start circuit to limit peak switch currents during start-up. High start-up current is inherent in switching regulators since the feedback loop is saturated due to $\mathrm{V}_{\text {OUT }}$ being far from its final value. The

APPLICATIONS InFORMATION

regulator tries to charge the output capacitor as quickly as possible, which results in large peak currents. The start-up current can be limited by connecting an external capacitor (typically 100 nF to $1 \mu \mathrm{~F}$) to the SS pin. This capacitor is slowly charged to $\sim 2.1 \mathrm{~V}$ by an internal 256 k resistor once the part is activated. SS pin voltages below $\sim 0.8 \mathrm{~V}$ reduce the internal current limit. Thus, the gradual ramping of the SS voltage also gradually increases the current limit as the capacitor charges. This, in turn, allows the output capacitor to charge gradually toward its final value while limiting the start-up current. When the switching regulator shuts down, the soft-start capacitor is automatically discharged to $\sim 100 \mathrm{mV}$ or less before charging resumes, thus assuring that the soft-start occurs after every reactivation of the switching regulation.

Power Supplies and Operating Limits

The LT8494 draws supply current from the $\mathrm{V}_{\text {IN }}$ and BIAS pins. The largest supply current draw occurs when the switching regulator is enabled (SWEN is high) and the power switch is toggling on and off. Under light load conditions the switching regulator enters Burst Mode operation where the power switch toggles infrequently and the input current is significantly reduced (see the Low Ripple Burst Mode Operation section).

Power Switch Driver (PSD) Operating Range: The NPN power switch is driven by a power switch driver (PSD) as shown in the Block Diagram. The driver must be powered by a supply ($\mathrm{V}_{\text {IN }}$ or BIAS) that is above the minimum operating voltage and below the PSD overvoltage threshold. These voltages are typically 2.4 V and 34 V respectively (see Electrical Characteristics).

If neither $\mathrm{V}_{\text {IN }}$ nor BIAS is within this operating range, the PSD and the switching regulator are automatically disabled. Voltages up to 60 V are not harmful to the PSD, however, as discussed, switching regulation is automatically disabled when neither $\mathrm{V}_{\text {IN }}$ nor BIAS is in the valid operating range.

When both $\mathrm{V}_{\text {IN }}$ and BIAS are too low for proper LT8494 operation (typically < 2.4 V), the chip will enter shutdown and draw minimal current from both supplies.

Automatic Power Supply Selection: In order to minimize power loss, the LT8494 draws as much of its required currentas possible fromthe lowest suitable voltage supply (VIN or BIAS) in accordance with the requirements described in the previous two sections. This selection is automatic and can change as $\mathrm{V}_{\text {IN }}$ and/or BIAS voltages change.
The LT8494 compares the $\mathrm{V}_{\text {IN }}$ and BIAS voltages to determine which is lower. The comparator has an offset and hysteresis as shown in the Electrical Characteristics section. The voltage comparison happens continuously when the power switch is toggling. The result of the latest comparison is latched inside the LT8494 when switching stops. If the power switch is not toggling, the LT8494 uses the last $V_{\text {IN }}$ Vs BIAS comparison to determine which supply is lower. After initial power up or any thermal lockout the LT8494 always concludes that $\mathrm{V}_{\text {IN }}$ is the lower supply voltage until subsequent voltage comparisons can be made while the power switch is toggling.
BIAS Connection for SEPIC Converters: For SEPIC converters, where $\mathrm{V}_{\text {IN }}$ can be above or below $\mathrm{V}_{\text {OUT }}$, BIAS is typically connected to $V_{\text {Out }}$ which improves efficiency when $\mathrm{V}_{\text {IN }}$ voltage is higher than $\mathrm{V}_{\text {OUT }}$. Connecting BIAS to $\mathrm{V}_{\text {OUT }}$ in a SEPIC topology also allows the switching regulator to operate with V_{IN} above 34 V (typical switch driver overvoltage threshold) in cases where $\mathrm{V}_{\text {OUt }}$ is regulated below the PSD overvoltage threshold. Finally, connecting BIAS to $\mathrm{V}_{\text {OUT }}$ also allows the converter to operate from $\mathrm{V}_{\text {IN }}$ voltages less than 2.4 V after $\mathrm{V}_{\text {OUT }}$ rises within the PSD operating range. This can be very useful in battery powered applications since the battery voltage drops as it discharges.
BIAS Connection for Boost Converters: For boost converters, BIAS is typically connected to $\mathrm{V}_{\text {OUT }}$ or to ground. Connecting BIAS to $\mathrm{V}_{\text {OUt }}$ allows the converter to operate with $\mathrm{V}_{\text {IN }}<2.5 \mathrm{~V}$ after $\mathrm{V}_{\text {OUT }}$ has risen within the PSD operating range. However, during no load conditions on $\mathrm{V}_{\text {OUT }}$, despite $V_{\text {IN }}$ being selected as the primary input supply, the overall power loss will be slightly elevated due to the small amount of current still being drawn from the higher voltage BIAS pin. To minimize boost converter power loss during no load conditions, connect BIAS instead to ground.

APPLICATIONS INFORMATION

For boost applications with $\mathrm{V}_{\text {OUT }}$ higher than the PSD operating range, the BIAS pin should not typically be connected to $V_{\text {OUT }}$. The LT8494 will never draw the majority of its current from BIAS due to the excessive voltage, therefore this connection does not help to improve efficiency. Alternative choices for the BIAS pin connection are ground or another supply that is within the PSD operating range.
Maximum V IN for Boost Converters: $\mathrm{V}_{\text {IN }}$ cannot generally be higher than $\mathrm{V}_{\text {OUT }}$ in boost topologies because of the $D C$ path from $V_{\text {IN }}$ to $V_{\text {OUT }}$ though the inductor and the output diode. If $\mathrm{V}_{\text {IN }}$ must be higher than $\mathrm{V}_{\text {OUT }}$, then the inductor must be powered by a separate supply that is always below $V_{\text {OUT. }}$ Otherwise a SEPIC topology can be used.

Also, the LT8494 will not operate in a boost topology with $\mathrm{V}_{\text {IN }}$ voltages above the PSD operating range unless BIAS is connected to an alternative supply within the valid operating range.
$V_{\text {IN }} /$ BIAS Ramp Rate: While initially powering a switching converter application, the $\mathrm{V}_{\text {IN }} / \mathrm{BIAS}$ ramp rate should be limited. High $V_{\text {IN }} /$ BIAS ramp rates can cause excessive inrush currents in the passive components of the converter. This can lead to current and/or voltage overstress and may damage the passive components or the chip. Ramping rates less than $500 \mathrm{mV} / \mu \mathrm{s}$, depending on component parameters, will generally prevent these issues. Also, be careful to avoid hot-plugging. Hot-plugging occurs when an active voltage supply is instantly connected or switched to the input of the converter. Hot-plugging results in very fast input ramp rates and is not recommended. Finally, for more information, refer to Linear Application Note 88, which discusses voltage overstress that can occur when inductive source impedance is hot-plugged to an input pin bypassed by ceramic capacitors.

Output Power Good

The power good circuits operate properly as long as either $\mathrm{V}_{\text {IN }}$ or BIAS is above 1.3 V . When the LT8494's output voltage is above 92% of the regulation voltage, which refers to the FB pin voltage being above 1.1 V (typical), the output voltage is considered good and the open-drain PG
pin becomes high impedance and is typically pulled high with an external resistor. Otherwise, the internal pull-down device will pull the PG pin low. To prevent glitches, the power good function has around 46 mV of hysteresis on the FB pin.
As shown in Figure 2, the PG pin is also actively pulled low during several fault conditions: The SWEN pin is below 1 V , thermal shutdown, or $\mathrm{V}_{\text {IN }}$ and BIAS are both under 2.4V.

Figure 2. Power Good Function

Enabling the Switching Regulator

The SWEN pin is used to enable or disable the switching regulator. The rising threshold of SWEN is typically 1 V , with 30 mV of hysteresis. The switching regulator is disabled by driving the SWEN pin below this threshold which deactivates the NPN power switch. The switching regulator is enabled by driving SWEN pin above its threshold. Before active switching begins, the soft-start capacitor will be quickly discharged then slowly charged causing a gradual startup of the regulator. SWEN can be connected to $\mathrm{V}_{\text {IN }}$ if always on operation is desired, although some current may flow into the SWEN pin (see Typical Performance Characteristics) increasing overall bias current of the system.
By connecting a resistor divider from $\mathrm{V}_{\text {IN }}$ to SWEN (see Figure 3), the LT8494 will be programmed to disable the switching regulator when $\mathrm{V}_{\text {IN }}$ drops below a desired threshold. Typically, this threshold is used in situations where the input supply is current limited, or has a relatively high source resistance. A switching regulator draws constant power from the source, so source current increases as

APPLICATIONS INFORMATION

Figure 3. $V_{\text {IN }}$ Undervoltage Lockout
source voltage drops. This looks like a negative resistance load to the source and can cause the source to current limit or latch low under low source voltage conditions. The input UVLO prevents the regulator from operating at source voltages where the problems might occur.
As shown in Figure 3, by connecting a resistor divider from the $\mathrm{V}_{\text {IN }}$ pin to the SWEN pin, the falling undervoltage lockout threshold is set to:

$$
\mathrm{V}_{\mathrm{IN}(\mathrm{UVLO})}=\frac{\mathrm{R} 3+\mathrm{R} 4}{\mathrm{R} 3} \cdot 0.97 \mathrm{~V}
$$

From the previous equation, the resistor divider shown in Figure 3 gives the $\mathrm{V}_{\text {IN }}$ pin a falling undervoltage lockout threshold of 2.96 V . When $\mathrm{V}_{\text {IN }}$ is below this threshold, the switching regulation is disabled and the SS pin starts to discharge. After choosing the value of R3, for example, R4 can be calculated using:

$$
\mathrm{R} 4=\mathrm{R} 3 \cdot\left(\frac{\mathrm{~V}_{\text {IN(UVLO) }}}{0.97}-1\right) \Omega
$$

High Temperature Considerations

For higher ambient temperatures, care should be taken in the layout of the PCB to ensure good heat sinking of the LT8494. The exposed pad on the bottom of the package must be soldered to a ground plane. This ground should be tied to large copper layers below with thermal vias; these layers will spread heat dissipated by the LT8494. Placing additional vias can reduce thermal resistance further. The maximum load current should be derated as the ambient temperature approaches the maximum junction rating. Power dissipation within the LT8494 is estimated by calculating the total power loss from an
efficiency measurement and subtracting the diode loss, FB resistor loss and inductor loss. The die temperature is calculated by multiplying the LT8494 power dissipation by the thermal resistance from junction to ambient.

The power switch and its driver dissipate the most power in the LT8494 (see Block Diagram). Higher switch current, duty cycle and output voltage result in higher die temperature. Power loss in the power switch driver also increases with higher input supply voltage. The PSD is supplied by the lowest suitable voltage on $\mathrm{V}_{\text {IN }}$ and BIAS. Connecting BIAS to a low voltage supply, often Vout, can reduce the maximum die temperature of the LT8494 (see Automatic Power Supply Selection section).
Also note that leakage current into the SWEN and FB pins increases at high junction temperatures (see Typical Performance Characteristics). The potential leakagecurrent should be considered when choosing high value resistors connected to those pins.
Thermal Lockout: If the die temperature reaches approximately $165^{\circ} \mathrm{C}$, the part will go into thermal lockout and the chip will be reset. The part will be enabled again when the die temperature has dropped by $\sim 5^{\circ} \mathrm{C}$ (nominal). During thermal lockout, the PG pin is actively pulled low, see the Output Power Good section for more details.

Fault Tolerance

The LT8494 is designed to tolerate single fault conditions in the TSSOP package. Shorting two adjacent pins together or leaving one single pin floating does not raise $\mathrm{V}_{\text {OUT }}$ or cause damage to the LT8494 regulator.

Table 3 and Table 4 show the effects that result from shorting adjacent pins and from a floating pin, respectively. NC pins 4, 9, 17, and 19 must remain floating on the PCB to ensure fault tolerance. NC pins 5 and 15 are not connected to internal circuitry and can either be floated or grounded on the PCB without effecting the fault tolerance. It is recommended that the remaining NC pins (6, 11 and 13) also remain floating on the PCB for best fault tolerance. Table 3 assumes that all NC pins are floating. For the best fault tolerance to inadvertent adjacent pin shorts, the BIAS pin must be tied to something higher than 1.230 V or to the output to avoid overvoltage during a short from FB to BIAS.

APPLICATIONS INFORMATION

Table 3. Effects of Pin Shorts (TSSOP)

PIN NAMES	PIN \#	EFFECT ON OUTPUT
FB/BIAS	$1 / 2$	Output voltage will fall to approximately $1.202 V$ if BIAS is connected to the output.
PG/SS	$7 / 8$	No effect or output will fall below regulation.

Table 4.Effects of Floating Pins (TSSOP)

PIN NAME	PIN \#	EFFECT ON OUTPUT		
BIAS	1	Depending on the VIN voltage and the circuit topology, floating this pin will degrade de- vice performance or the output will fall below regulation.		
FB	2,3	No effect if the other FB pad is soldered.		
PG	7	No effect on output.		
SS	8	No effect after part has started. Can potentially lead to an increase of inrush current during start-up.		
RT	10	Output may fall below regulation.		
SWEN	12	Enable state of the pin becomes undefined. Output will not exceed regulation voltage.		
GND	14	No effect if Exposed Pad is soldered. GND 16		No effect on output.
:---				
VIN	18	Depending on the BIAS voltage and the circuit		
:---				
topology, floating this pin will degrade device				
performance or the output will fall below				
regulation.				

Layout Hints

As with all high frequency switchers, when considering layout, care must be taken to achieve optimal electrical, thermal and noise performance. One will not get advertised performance with a careless layout. For maximum efficiency, switch rise and fall times are typically in the 5 ns to 10 ns range. To prevent noise, both radiated and conducted, the high speed switching current path, shown
in Figures 4 and 5, must be kept as short as possible. This is implemented in the suggested PCB layouts in Figures 6 and 7. Shortening this path will also reduce the parasitic trace inductance. At switch-off, this parasitic inductance produces aflyback spike across the LT8494 switch. When operating at higher currents and output voltages, with poor layout, this spike can generate voltages across the LT8494 that may exceed its absolute maximum rating. A ground plane should also be used under the switcher circuitry to prevent interplane coupling and overall noise. The FB components should be kept as far away as practical from the switch node. The ground for these components should be separated from the switch current path. Failure to do so can result in poor stability or subharmonic oscillation.

Figure 4. High Speed Chopped Switching Path for Boost Topology

Figure 5. High Speed Chopped Switching Path for SEPIC Topology

APPLICATIONS INFORMATION

Figure 6. Suggested Component Placement for Boost Topology Using TSSOP Package. Pin 21 (Exposed Pad) Must Be Soldered Directly to the Local Ground Plane for Adequate Thermal Performance. Multiple Vias to Additional Ground Planes Will Improve Thermal Performance

Figure 7. Suggested Component Placement for SEPIC Topology Using TSSOP Package. Pin 21 (Exposed Pad) Must Be Soldered Directly to the Local Ground Plane for Adequate Thermal Performance. Multiple Vias to Additional Ground Planes Will Improve Thermal Performance

TYPICAL APPLICATIONS

450kHz, 5V Output SEPIC Converter (Same as Front Page Application)

C1: 4.7 $\mu \mathrm{F}, 100 \mathrm{~V}, \mathrm{X} 5 \mathrm{R}, 1206$
C3: 2.2 $\mu \mathrm{F}, 100 \mathrm{~V}, \mathrm{X} 5 \mathrm{R}, 1206$
C2: TAIYO YUDEN, EMK325BJ476MM-T
D1: ONSEMI MBRA2H100
L1, L2: COILTRONICS DRQ125-150-R

750kHz, 16V to 32V Input, 48V Output, 0.5A Boost Converter

C1: $2.2 \mu \mathrm{~F}, 50 \mathrm{~V}, \mathrm{X} 5 \mathrm{R}, 1206$
C2: 4.7 F , 100V, X7R, 1210
D1: ONSEMI MBRA2H100
L1: WÜRTH LHMI 74437349220

Transient Response with 400 mA to 500 mA to 400 mA Output Load Step

$V_{\text {IN }}=24 \mathrm{~V}$

Start-Up Waveforms

$\mathrm{V}_{\mathrm{IN}}=24 \mathrm{~V}$
96Ω LOAD

TYPICAL APPLICATIONS

Wide Input and Output Range SEPIC Converter with Charge Pump Switches at 400kHz

TYPICAL APPLICATIONS

Li-Ion to 12V, Low Quiescent Current Boost at 650 kHz

Low Quiescent Current, 5V to 300V, 250kHz Flyback Converter
 DANGER HIGH VOLTAGE!
 Operation by High Voltage Trained Personnel Only

*KEEP MAXIMUM OUTPUT POWER BELOW 0.6W
C1: $2.2 \mu \mathrm{~F}, 25 \mathrm{~V}, \mathrm{X} 5 \mathrm{R}, 1206$
C2: TDK C3225CH2J223K
D1: VISHAY GSD2004S DUAL DIODE CONNECTED IN SERIES
D2: ON SEMICONDUCTOR MBRA2H100
T1: WÜRTH-FLEX FLEXIBAL TRANSFORMER 749196121

TYPICAL APPLICATIONS

1.5MHz, 12V Output SEPIC Converter

C1, C3: 2.2 $2 \mathrm{~F}, 50 \mathrm{~V}, \mathrm{X} 5 \mathrm{R}, 1206$
C2: TAIYO YUDEN TMK325BJ106MM
D1: DENTRAL SEMI CMMSH2-40
L1, L2: COILTRONICS DRQ74-4R7

PACKAGE DESCRIPTION

Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.

FE Package
20-Lead Plastic TSSOP (4.4mm)
(Reference LTC DWG \# 05-08-1663 Rev J)
Exposed Pad Variation CB

1. CONTROLLING DIMENSION: MILLIMETERS 2. DIMENSIONS ARE IN MILLIMETERS
2. DRAWING NOT TO SCALE

RECOMMENDED SOLDER PAD LAYOUT

. RECOMMENDED MINIMUM PCB METAL SIZE
FOR EXPOSED PAD ATTACHMENT
*DIMENSIONS DO NOT INCLUDE MOLD FLASH. MOLD FLASH
SHALL NOT EXCEED $0.150 \mathrm{~mm}\left(.0066^{\prime \prime}\right)$ PER SIDE

TYPICAL APPLICATION

450kHz, Wide Input Range 12V Output SEPIC Converter

RELATED PARTS

PART NUMBER	DESCRIPTION	COMIMENTS
LT8495	70V, 2A Boost/SEPIC 1.5MHz High Efficiency DC/DC Converter with POR and Watchdog Timer	$\mathrm{V}_{\text {IN: }} 2.5 \mathrm{~V}$ to $32 \mathrm{~V}, \mathrm{~V}_{\text {OUT(MAX }}=70 \mathrm{~V}, \mathrm{I}_{\mathrm{Q}}=9 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{SD}}<1 \mu \mathrm{~A}$, $4 \mathrm{~mm} \times 4 \mathrm{~mm}$ QFN20, TSSOP-20E Packages
LT3580	42V, 2A Boost/Inverting 2.5MHz High Efficiency DC/DC Converter	$\mathrm{V}_{\text {IN }}: 2.5 \mathrm{~V}$ to $32 \mathrm{~V}, \mathrm{~V}_{\text {OUT(MAX }}= \pm 40 \mathrm{~V}, \mathrm{I}_{\mathrm{Q}}=1 \mathrm{~mA}, \mathrm{I}_{\mathrm{SD}}<1 \mu \mathrm{~A}$, $3 \mathrm{~mm} \times 3 \mathrm{~mm}$ DFN-8, MSOP-8E Packages
LT8580	65V, 1A Boost/Inverting DC/DC Converter	$\mathrm{V}_{\mathrm{IN}}: 2.55 \mathrm{~V}$ to $40 \mathrm{~V}, \mathrm{~V}_{\text {OUT(MAX }}= \pm 60 \mathrm{~V}, \mathrm{I}_{\mathrm{Q}}=1.2 \mathrm{~mA}, \mathrm{I}_{\mathrm{SD}}<1 \mu \mathrm{~A}$, $3 \mathrm{~mm} \times 3 \mathrm{~mm}$ DFN-8, MSOP-8E Packages
$\begin{aligned} & \hline \text { LT8570/ } \\ & \text { LT8570-1 } \end{aligned}$	65V, $500 \mathrm{~mA} / 250 \mathrm{~mA} \mathrm{Boost/Inverting} \mathrm{DC/DC} \mathrm{Converter}$	$\mathrm{V}_{\text {IN: }}: 2.55 \mathrm{~V}$ to $40 \mathrm{~V}, \mathrm{~V}_{\text {OUT(MAX }}= \pm 60 \mathrm{~V}, \mathrm{I}_{\mathrm{Q}}=1.2 \mathrm{~mA}, \mathrm{I}_{\mathrm{SD}}<1 \mu \mathrm{~A}$, $3 \mathrm{~mm} \times 3 \mathrm{~mm}$ DFN-8, MSOP-8E Packages
LT8582	40V, Dual 3A, 2.5MHz High Efficiency Boost Converter	$\mathrm{V}_{\text {IN: }} 2.5 \mathrm{~V}$ to $40 \mathrm{~V}, \mathrm{~V}_{\text {OUTT(MAX }}= \pm 40 \mathrm{~V}, \mathrm{I}_{\mathrm{Q}}=2.8 \mathrm{~mA}, \mathrm{I}_{\mathrm{SD}}<1 \mu \mathrm{~A}$, $7 \mathrm{~mm} \times 4 \mathrm{~mm}$ DFN-24 Package
LT8471	40V, Dual 3A, Multitopology High Efficiency DC/DC Converter	$\mathrm{V}_{\text {IN: }}: 2.6 \mathrm{~V}$ to $50 \mathrm{~V}, \mathrm{~V}_{\text {OUT(MAX }}= \pm 45 \mathrm{~V}, \mathrm{I}_{\mathrm{Q}}=2.4 \mathrm{~mA}, \mathrm{I}_{\mathrm{SD}}<1 \mu \mathrm{~A}$, TSSOP-20E Package
LT3581	40V, 3.3A, 2.5MHz High Efficiency Boost Converter	$\mathrm{V}_{\text {IN: }}$: 2.5 V to $40 \mathrm{~V}, \mathrm{~V}_{\text {OUT(MAX }}= \pm 40 \mathrm{~V}, \mathrm{I}_{\mathrm{Q}}=1 \mathrm{~mA}, \mathrm{I}_{\mathrm{SD}}<1 \mu \mathrm{~A}$, $4 \mathrm{~mm} \times 3 \mathrm{~mm}$ DFN-14, MSOP-16E Packages
LT8582	40V, Dual 3A Boost, Inverter, SEPIC, 2.5MHz High Efficiency Boost Converter	$\mathrm{V}_{\text {IN: }}: 2.5 \mathrm{~V}$ to $40 \mathrm{~V}, \mathrm{~V}_{\text {OUT(MAX }}= \pm 40 \mathrm{~V}, \mathrm{I}_{\mathrm{Q}}=2.1 \mathrm{~mA}, \mathrm{I}_{\mathrm{SD}}<1 \mu \mathrm{~A}$, $7 \mathrm{~mm} \times 4 \mathrm{~mm}$ DFN-24 Package
$\begin{aligned} & \text { LT3579/ } \\ & \text { LT3579-1 } \end{aligned}$	40V, 3.3A Boost, Inverter, SEPIC, 2.5MHz High Efficiency Boost Converter	$\mathrm{V}_{\text {IN }}: 2.5 \mathrm{~V}$ to $40 \mathrm{~V}, \mathrm{~V}_{\text {OUT(MAX }}= \pm 40 \mathrm{~V}, \mathrm{I}_{\mathrm{Q}}=1 \mathrm{~mA}, \mathrm{I}_{\text {SD }}<1 \mu \mathrm{~A}$, $4 \mathrm{~mm} \times 5 \mathrm{~mm}$ QFN-20, TSSOP-20E Packages

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Switching Voltage Regulators category:
Click to view products by Linear Technology manufacturer:
Other Similar products are found below :
TLF30682QVS01XUMA1 TPSM84209RKHR FAN53526UC106X FAN53526UC128X MP1587EN-LF FAN48610BUC33X FAN48617UC50X FAN53526UC89X MIC45116-1YMP-T1 NCV891234MW50R2G EN2342QI AST1S31PUR 16017 A6986FTR NCP81103MNTXG NCP81203PMNTXG MAX17242ETPA+ MAX16935RATEB/V+ MP2313GJ-Z NCP81208MNTXG MP8759GD-Z FAN53526UC100X FAN53526UC84X PCA9412AUKZ MP2314SGJ-Z AS1340A-BTDM-10 MP3421GG-P NCP81109GMNTXG MP6003DN-LF-Z MAX16935BAUES/V+ LT8315IFE\#PBF SCY1751FCCT1G NCP81109JMNTXG MAX16956AUBA/V+ AP3409ADNTR-G1 FAN48623UC36FX MPQ2454GH MPQ2454GH-AEC1 MP21148GQD-P AS3701B-BWLM-68 MPQ2143DJ-P MP9942AGJ-P MP8759GD-P MP5610GQG-P MP28200GG-P MP2451DJ-LF-Z MP2326GD-P MP2314SGJ-P MP2158AGQH-P MP2148GQD-18-P

[^0]: Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container. Consult LTC Marketing for information on nonstandard lead based finish parts.
 For more information on lead free part marking, go to: http://www.linear.com/leadfree/
 For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/

