Photologic ${ }^{\otimes}$ Slotted Optical Switch

OPB930 and OPB940 (L and W Series)

Features:

- Choice of aperture size
- Choice of output configurations
- Choice of opaque or IR transmissive shell
- Choice of pins (L) or wires (W)
- $0.125^{\prime \prime}(3.18 \mathrm{~mm})$ slot width
- $0.320^{\prime \prime}$ (8.128 mm) lead spacing for PCBoard (side mounting)
- Data rates to 250 kBaud

Description:

The OPB930 and OPB940 series of Photologic ${ }^{\circledR}$ photo integrated circuit switches provide optimum flexibility for the design engineer. Building from a standard housing with a $0.125^{\prime \prime}(3.18 \mathrm{~mm})$ wide slot, a user can specify the type and polarity of TTL output, discrete shell material, aperture width and either 0.350 " (8.9 mm) long pins
(L Series) or $24^{\prime \prime}$ (610 mm) AWG, UL listed wire leads (W Series).
All housings are made from an opaque grade of injection-molded plastic that minimizes the assembly's sensitivity to both visible and near-infrared ambient radiation. Discrete shells (exposed on the parallel faces inside the device throat) are either IR transmissive plastic (for applications where aperture contamination may occur) or opaque plastic (for maximum protection against ambient light).

Electrical output can be specified as either TTL Totem Pole or TTL Open Collector, either of which can be supplied with buffer or inverter output polarity. All devices have the added stability of a built-in hysteresis amplifier.

Custom electrical, wire and cabling and connectors are available. Contact your local representative or OPTEK for more information.

Applications:

- Mechanical switch replacement
- Speed indication (tachometer)
- Mechanical limit indication
- Edge sensing

4 - Side mount opaque Plastic discrete shell

Electrical Specification Variations:
0 = Buffered Totem-Pole Output
1 = Buffered Open-Collector Output
2 = Inverted Totem-Pole Output
3 = Inverted Open-Collector Output

CONTAINS POLYSULFONE
To avoid stress cracking, we suggest using ND Industries' Vibra-Tite for thread-locking Vibra-Tite evaporates fast without causing structural failure in OPTEK's molded plastics.

Photologic ${ }^{\circledR}$ Slotted Optical Switch

OPB930, OPB940 Buffered Totem-Pole OPB931, OPB941 Buffered Open-Collector	
	${ }^{\mathrm{V}} \mathrm{CC}$ OUT
OPB932, OPB942 Inverted Totem-Pole OPB933 \& OPB943 Invert	Open-Collector \qquad ${ }^{V} \mathrm{CC}$ OUT GND
Absolute Maximum Ratings ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)	
Supply Voltage, $\mathrm{V}_{\text {cc }}$ (not to exceed 3 seconds)	10 V
Operating Temperature Range	$-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Lead Soldering Temperature (1/16 inch (1.6mm) from the case for 5 sec. with soldering iron ${ }^{(1)}$	$260^{\circ} \mathrm{C}$
Input Infrared LED	
Input Diode Power Dissipation ${ }^{(2)}$	100 mW
Output Photologic ${ }^{\text {® }}$ Power Dissipation ${ }^{(3)}$	200 mW
Total Device Power Dissipation ${ }^{(4)}$	300 mW
Output Photologic®	
Voltage at Output Lead (Open Collector Output)	35 V
Diode Forward DC Current	40 mA
Diode Reverse DC Voltage	2 V

Notes:
(1) RMA flux is recommended. Duration can be extended to 10 seconds maximum when flow soldering.
(2) Derate linearly $2.22 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above 25°.
(3) Derate linearly $4.44 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above 25°.
(4) Derate linearly $6.66 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above 25°.
(5) OPB930L/OPB940L series devices are terminated with $0.020^{\prime \prime}$ square leads designed for PCBoard mounting.
(6) Methanol and isopropanol are recommended as cleaning agents. Plastic housing is soluble in chlorinated hydrocarbons and ketones.
(7) All parameters tested using pulse technique.

T Electronics

OPB930 and OPB940 (L and W Series)

OPB930 and OPB940 (L and W Series)

Electrical Characteristics ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)						
SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITIONS
Input Diode						
V_{F}	Forward Voltage	-		1.7	v	$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$
I_{R}	Reverse Current	-	-	100	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{R}}=2.0 \mathrm{~V}$
Output Photologic@ Sensor						
$\mathrm{V}_{\text {cc }}$	Operating D.C. Supply Voltage	4.75	-	5.25	v	-
$I_{\text {cca }}$	Low Level Supply Current: Totem Pole \& Open-Collector	-	-	15	mA	$\mathrm{V}_{\mathrm{CC}}=5.25, \mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}^{(1)}$
	Inverted Totem-Pole \& Inverted Open-Collector	-	-	15	mA	$\mathrm{V}_{\mathrm{cc}}=5.25, \mathrm{I}_{\mathrm{F}}=15 \mathrm{~mA}$
I_{CH}	High Level Supply Current: Totem Pole \& Open-Collector	-	-	15	mA	$\mathrm{V}_{\mathrm{cc}}=5.25, \mathrm{I}_{\mathrm{F}}=15 \mathrm{~mA}$
	Inverted Totem-Pole \& Inverted Open-Collector	-	-	15	mA	$\mathrm{V}_{\mathrm{cc}}=5.25, \mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}^{(1)}$
VoL	Low Level Output Voltage: Totem Pole \& Open-Collector	-	-	0.4	V	$\underset{(1)}{\mathrm{V}_{\mathrm{cc}}}=4.75, \mathrm{l}_{\mathrm{oL}}=12.8 \mathrm{~mA}, \mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}$
	Inverted Totem-Pole \& Inverted Open-Collector	-	-	0.4	V	$\mathrm{V}_{\mathrm{CC}}=4.75, \mathrm{I}_{\mathrm{oL}}=12.8 \mathrm{~mA}, \mathrm{I}_{\mathrm{F}}=15 \mathrm{~mA}$
$\mathrm{V}_{\text {OH }}$	High Level Output Voltage: Totem-Pole \& Open-Collector	2.4	-	-	V	$\mathrm{V}_{\text {cc }}=4.75, \mathrm{I}_{\text {OH }}=-800 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{F}}=15 \mathrm{~mA}$
	Inverted Totem-Pole \& Inverted Open-Collector	2.4	-	-	V	$\underset{\text { (1) }}{\mathrm{V}_{\mathrm{cC}}}=4.75, \mathrm{I}_{\mathrm{OH}}=-800 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}$
I_{OH}	High Level Output Current: Totem Pole \& Open-Collector	-	-	100	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=4.75, \mathrm{~V}_{\text {OH }}=30 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=15 \mathrm{~mA}$,
	Inverted Totem-Pole \& Inverted Open-Collector	-	-	100	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=4.75, \mathrm{~V}_{\text {OH }}=30 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}^{(1)}$
$\mathrm{IF}_{\mathrm{F}}(+)$	LED Positive-Going Threshold Current	-	-	15	mA	$\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}$
$\mathrm{I}_{\mathrm{F}}(+), \mathrm{I}_{\mathrm{F}}(-)$	Hysteresis	-	2.0	-	v	$\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}$
los	Short Circuit Output Current: Totem Pole \& Open-Collector	-15	-	-60	mA	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=15 \mathrm{~mA}$, Output $=$ GND
	Inverted Totem-Pole \& Inverted Open-Collector	-15	-	-60	mA	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}^{(1)}$, Output $=$ GND

Photologic ${ }^{\circledR}$ Slotted Optical Switch

TT Electronics

OPB930 and OPB940 (L and W Series)

Electrical Characteristics ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)						
SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITIONS
$\mathrm{tr}_{\mathrm{r}} \mathrm{r}_{\mathrm{r}}$	Output Rise Time, Output Fall Time	-	70	-	ns	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=0$ or 15 mA
$\mathrm{T}_{\text {PLH }}$	Propagation Delay Low-High	-	5.0	-	$\mu \mathrm{s}$	$\mathrm{R}_{\mathrm{L}}=8$ TTL loads (Totem Pole)
$\mathrm{T}_{\text {PHL }}$	Propagation Delay High-Low	-	5.0	-	$\mu \mathrm{s}$	$\mathrm{R}_{\mathrm{L}}=360 \Omega$ (Open-Collector)

Notes:
(1) Normal application would be with light source blocked, simulated by $\mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}$.
(2) All parameters are tested using pulse techniques.

Photologic ${ }^{\circledR}$ Slotted Optical Switch

OPB930 and OPB940 (L and W Series)

OPB930 and OPB940 (L and W Series)

OPB930 and OPB940 (L and W Series)

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Optical Switches, Transmissive, Photo IC Output category:
Click to view products by TT Electronics manufacturer:
Other Similar products are found below :
EE-SMR3-1T GP1A51HRJ00F OPB916BOCZ OPB917BOCZ OPB917IOCZ EE-SX460-P1 OPB932W51Z OPB461N11 OPB963T11 OPB481T11Z OPB992N55Z HOA0963-N55 OPB960N11 EE-SX4088-W1 OPB121B OPB916BZ GP1A52LRJ00F EE-SX3148-P1 HOA0961-N51 HOA0961-T51 HOA0963-T51 HOA0973-N51 HOA0973-T51 HOA2004-001 HOA2006-001 HOA2007-001 HOA6960T55 HOA6961-T51 HOA6962-T55 HOA6970-T55 HOA6971-N51 HOA6971-T55 HOA6972-T51 HOA6981-L55 HOA6981-P51 HOA6981-T51 HOA6981-T55 HOA6982-T51 HOA6983-T55 HOA6990-L51 HOA6990-T51 HOA6991-L51 HOA6991-T51 HOA6991T55 HOA6992-L51 HOA6992-N55 HOA6992-P51 HOA6994-T51 EE-SA407-P2 EE-SX3009-P1

