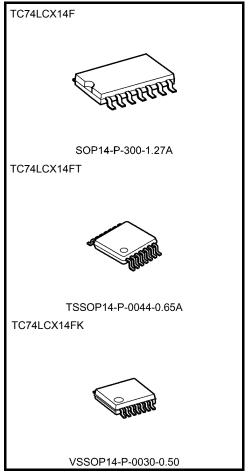
TOSHIBA CMOS Digital Integrated Circuit Silicon Monolithic

TC74LCX14F, TC74LCX14FT, TC74LCX14FK

Low-Voltage Hex Schmitt Inverter with 5-V Tolerant Inputs and Outputs

The TC74LCX14 is a high-performance CMOS schmitt inverter. Designed for use in 3.3-V systems, it achieves high-speed operation while maintaining the CMOS low power dissipation.

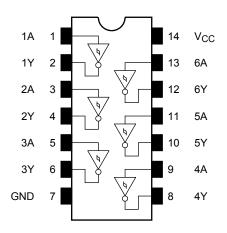

The device is designed for low-voltage (3.3 V) VCC applications, but it could be used to interface to 5-V supply environment for inputs.

Pin configuration and function are the same as the TC74LCX04 but the inputs have hysteresis and with Schmitt trigger function, the TC74LCX14F/FT/FK can be used as line receivers which will receive slow input signals.

All inputs are equipped with protection circuits against static discharge.

Features

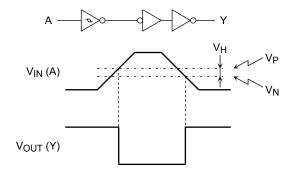
- Low-voltage operation: VCC = 1.65 to 3.6 V
- High-speed operation: $t_{pd} = 6.5 \text{ ns (max) (V}_{CC} = 3.0 \text{ to } 3.6 \text{ V)}$
- Ouput current: $|I_{OH}|/I_{OL} = 24 \text{ mA (min)} (V_{CC} = 3.0 \text{ V})$
- Latch-up performance: $> \pm 500 \text{ mA}$
- Available in JEITA SOP, TSSOP and VSSOP (US)
- · Power-down protection provided on all inputs and outputs
- Pin and function compatible with the 74 series (74AC/VHC/HC/F/ALS/LS etc.) 14 type

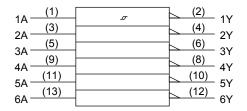


Weight

SOP14-P-300-1.27A : 0.18 g (typ.) TSSOP14-P-0044-0.65A : 0.06 g (typ.) VSSOP14-P-0030-0.50 : 0.02 g (typ.)

Note: The Electrical Characteristics of $V_{CC}=1.8\pm0.15V$ is only applicable for products which manufactured from January 2009 onward.


Pin Assignment (top view)


Truth Table

Inputs	Outputs
Α	Y
L	Н
Н	L

System Diagram and waveform

IEC Logic Symbol

Absolute Maximum Ratings (Note 1)

Characteristics	Symbol	Rating	Unit
Power supply voltage	V _{CC}	−0.5 to 7.0	V
DC input voltage	V _{IN}	-0.5 to 7.0	V
		-0.5 to 7.0 (Note 2)	V
DC output voltage	Vout	-0.5 to V _{CC} + 0.5 (Note 3)	
Input diode current	I _{IK}	-50	mA
Output diode current	lok	±50 (Note 4)	mA
DC output current	lout	±50	mA
Power dissipation	PD	180	mW
DC V _{CC} /ground current	I _{CC} /I _{GND}	±100	mA
Storage temperature	T _{stg}	-65 to 150	°C

Note 1: Exceeding any of the absolute maximum ratings, even briefly, lead to deterioration in IC performance or even destruction.

Using continuously under heavy loads (e.g. the application of high temperature/current/voltage and the significant change in temperature, etc.) may cause this product to decrease in the reliability significantly even if the operating conditions (i.e. operating temperature/current/voltage, etc.) are within the absolute maximum ratings and the operating ranges.

Please design the appropriate reliability upon reviewing the Toshiba Semiconductor Reliability Handbook ("Handling Precautions"/"Derating Concept and Methods") and individual reliability data (i.e. reliability test report and estimated failure rate, etc).

Note 2: $V_{CC} = 0 V$

Note 3: High or low state. IOUT absolute maximum rating must be observed.

Note 4: Vout < GND, Vout > Vcc

Operating Ranges (Note 1)

Characteristics	Symbol	Rating	Unit	
Power supply voltage	V _{CC}	1.65 to 3.6	V	
Tower suppry voltage	VCC	1.5 to 3.6 (Note 2)	V	
Input voltage	V _{IN}	0 to 5.5	V	
Output voltage	\/a	0 to 5.5 (Note 3)	V	
Output voltage	V _{OUT}	0 to V _{CC} (Note 4)	V	
Output current	la/la.	±24 (Note 5)	mA	
Output current	I _{OH} /I _{OL}	±12 (Note 6)	MA	
Operating temperature	T _{opr}	-40 to 85	°C	

Note 1: The operating ranges must be maintained to ensure the normal operation of the device. Unused inputs must be tied to either V_{CC} or GND.

3

Note 2: Data retention only

Note 3: $V_{CC} = 0 V$

Note 4: High or low state Note 5: $V_{CC} = 3.0$ to 3.6 V

Note 6: $V_{CC} = 2.7 \text{ to } 3.0 \text{ V}$

Electrical Characteristics

DC Characteristics (Ta = -40 to 85°C)

Characteristics Symbol Test Condition		V _{CC} (V)	Min	Max	Unit			
					1.65	0.7	1.35	
	H-level	V _P	_	_		0.95	1.7	
					3.0	1.2	2.2	V
Threshold voltage					1.65	0.3	0.8	
	L-level	V_N	_		2.3	0.45	1.15	
					3.0	0.6	1.5	
					1.65	0.3	0.8	
Hysteresis voltage		V _H	_		2.3	0.35	1.0	V
					3.0	0.4	1.2	
			V _{IN} = V _{IL}	I _{OH} = -100 μA	1.65 to 3.6	V _{CC} -0.2	_	
				I _{OH} = -4 mA	1.65	1.05	_	-
	H-level			$I_{OH} = -8 \text{ mA}$	2.3	1.7	_	
	n-ievei	V _{OH}		I _{OH} = -12 mA	2.7	2.2	_	
				I _{OH} = -18 mA	3.0	2.4	_	
Output valtage				I _{OH} = -24 mA	3.0	2.2	_	V
Output voltage				$I_{OL} = 100 \mu A$	1.65 to 3.6	_	0.2	V
				I _{OL} = 4 mA	1.65	_	0.45	
	L-level	V	Mar. Mar.	I _{OL} = 8 mA	2.3	_	0.7	
	L-ievei	V _{OL}	$V_{IN} = V_{IH}$	I _{OL} = 12 mA	2.7	_	0.4	
				I _{OL} = 16 mA	3.0	_	0.4	
		I _{OL} = 24 mA		3.0	_	0.55		
Input leakage currer	nt	I _{IN}	V _{IN} = 0 to 5.5 V		1.65 to 3.6	_	±5.0	μА
Power-off leakage of	urrent	l _{OFF}	V _{IN} /V _{OUT} = 5.5 V		0	_	10.0	μА
Quiescent supply cu	Out a sent assent		V _{IN} = V _{CC} or GND		1.65 to 3.6	_	10.0	
Quiescent supply ct	ni ciil	Icc	V _{IN} = 3.6 to 5.5 V		1.65 to 3.6	_	±10.0	μΑ
Increase in I _{CC} per	input	Δl _{CC}	$V_{IH} = V_{CC} - 0.6 V$		2.7 to 3.6	_	500	

AC Characteristics (Ta = -40 to 85°C)

Characteristics	Symbol	Test Condition V _{CC} (V)		Min	Max	Unit
			1.8 ± 0.15	_	25.0	
Propagation delay time	t _{pLH}	Figure 1, Figure 2	2.5 ± 0.2	_	8.5	no
Fropagation delay time	t_{pHL}	i iguie 1, i iguie 2	2.7	_	7.5	ns
			3.3 ± 0.3	1.5	6.5	
Output to output skew	t _{osLH}	(Note)	2.7	_	_	ns
Output to output skew	t _{osHL}	(NOIE)	3.3 ± 0.3		1.0	113

Note: Parameter guaranteed by design.

 $(t_{OSLH} = |t_{pLHm} - t_{pLHn}|, \ t_{OSHL} = |t_{pHLm} - t_{pHLn}|)$

Dynamic Switching Characteristics (Ta = 25°C, input: $t_r = t_f = 2.5$ ns, $C_L = 50$ pF, $R_L = 500$ Ω)

Characteristics	Symbol	Test Condition	V _{CC} (V)	Тур.	Unit
Quiet output maximum dynamic V_{OL}	V _{OLP}	$V_{IH} = 3.3 \text{ V}, V_{IL} = 0 \text{ V}$	3.3	8.0	V
Quiet output minimum dynamic V _{OL}	V _{OLV}	$V_{IH} = 3.3 \text{ V}, V_{IL} = 0 \text{ V}$	3.3	8.0	V

Capacitive Characteristics (Ta = 25°C)

Characteristics	Symbol	Test Condition	V _{CC} (V)	Тур.	Unit
Input capacitance	C _{IN}	_	3.3	7	pF
Output capacitance	C _{OUT}	_	0	8	pF
Power dissipation capacitance	C _{PD}	f _{IN} = 10 MHz (Not	9) 3.3	25	pF

Note: C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load.

Average operating current can be obtained by the equation:

 $I_{CC (opr)} = C_{PD} \cdot V_{CC} \cdot f_{IN} + I_{CC}/6 \text{ (per gate)}$

AC Test Circuit

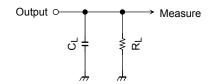


Figure 1

AC Waveform

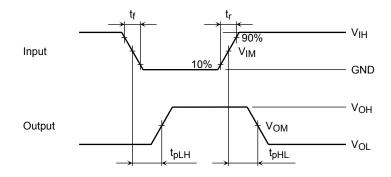
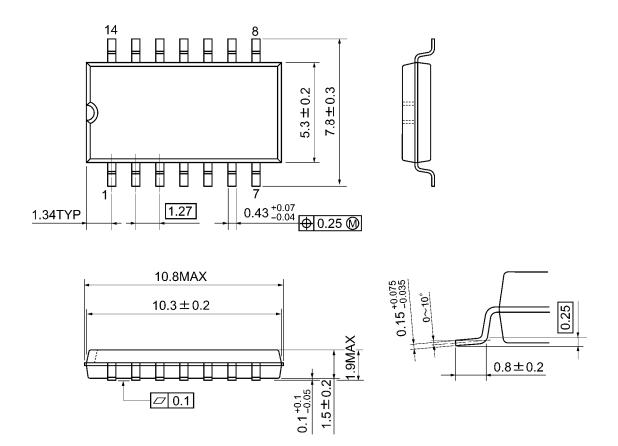


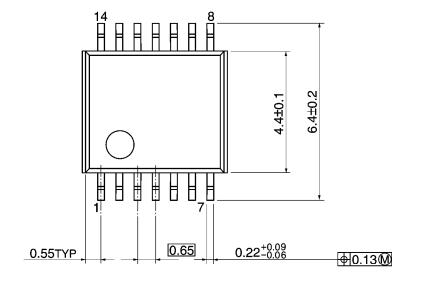
Figure 2 t_{pLH}, t_{pHL}

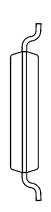

		Vcc					
	Symbol	$3.3\pm0.3~\textrm{V}$	2.5 + 0.2 V	1.8 ± 0.15 V			
		2.7V	2.5 ± 0.2 V	1.8 ± 0.15 V			
Input	V _{IH}	2.7V	V _{CC}	V _{CC}			
	V_{IM}	1.5V	V _{CC} /2	V _{CC} /2			
	t_r , t_f	2.5ns	2.0ns	2.0ns			
Output	V _{OM}	1.5V	V _{OH} /2	V _{OH} /2			
Load	CL	50pF	30pF	30pF			
	R_L	500Ω	500Ω	1kΩ			

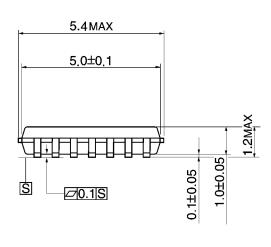
6

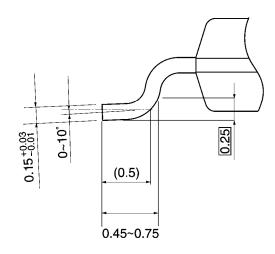
Package Dimensions

SOP14-P-300-1.27A Unit: mm

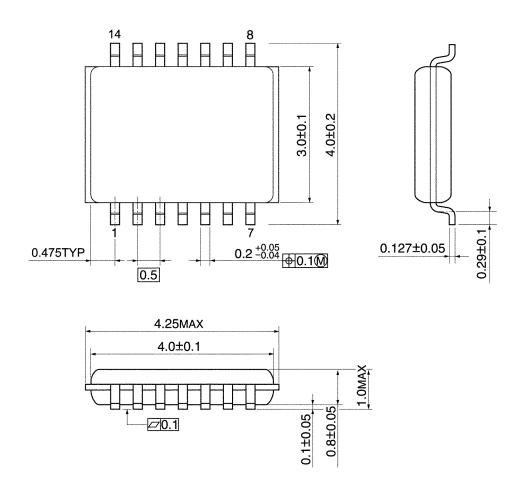

Weight: 0.18 g (typ.)


TOSHIBA


Package Dimensions


TSSOP14-P-0044-0.65A

Unit: mm



Weight: 0.06 g (typ.)

Package Dimensions

VSSOP14-P-0030-0.50 Unit: mm

Weight: 0.02 g (typ.)

RESTRICTIONS ON PRODUCT USE

- Toshiba Corporation, and its subsidiaries and affiliates (collectively "TOSHIBA"), reserve the right to make changes to the information in this document, and related hardware, software and systems (collectively "Product") without notice.
- This document and any information herein may not be reproduced without prior written permission from TOSHIBA. Even with TOSHIBA's written permission, reproduction is permissible only if reproduction is without alteration/omission.
- Though TOSHIBA works continually to improve Product's quality and reliability, Product can malfunction or fail. Customers are responsible for complying with safety standards and for providing adequate designs and safeguards for their hardware, software and systems which minimize risk and avoid situations in which a malfunction or failure of Product could cause loss of human life, bodily injury or damage to property, including data loss or corruption. Before customers use the Product, create designs including the Product, or incorporate the Product into their own applications, customers must also refer to and comply with (a) the latest versions of all relevant TOSHIBA information, including without limitation, this document, the specifications, the data sheets and application notes for Product and the precautions and conditions set forth in the "TOSHIBA Semiconductor Reliability Handbook" and (b) the instructions for the application with which the Product will be used with or for. Customers are solely responsible for all aspects of their own product design or applications, including but not limited to (a) determining the appropriateness of the use of this Product in such design or applications; (b) evaluating and determining the applicability of any information contained in this document, or in charts, diagrams, programs, algorithms, sample application circuits, or any other referenced documents; and (c) validating all operating parameters for such designs and applications. TOSHIBA ASSUMES NO LIABILITY FOR CUSTOMERS' PRODUCT DESIGN OR APPLICATIONS.
- PRODUCT IS NEITHER INTENDED NOR WARRANTED FOR USE IN EQUIPMENTS OR SYSTEMS THAT REQUIRE
 EXTRAORDINARILY HIGH LEVELS OF QUALITY AND/OR RELIABILITY, AND/OR A MALFUNCTION OR FAILURE OF WHICH
 MAY CAUSE LOSS OF HUMAN LIFE, BODILY INJURY, SERIOUS PROPERTY DAMAGE AND/OR SERIOUS PUBLIC IMPACT
 ("UNINTENDED USE"). Except for specific applications as expressly stated in this document, Unintended Use includes, without
 limitation, equipment used in nuclear facilities, equipment used in the aerospace industry, medical equipment, equipment used for
 automobiles, trains, ships and other transportation, traffic signaling equipment, equipment used to control combustions or explosions,
 safety devices, elevators and escalators, devices related to electric power, and equipment used in finance-related fields. IF YOU USE
 PRODUCT FOR UNINTENDED USE, TOSHIBA ASSUMES NO LIABILITY FOR PRODUCT. For details, please contact your
 TOSHIBA sales representative.
- Do not disassemble, analyze, reverse-engineer, alter, modify, translate or copy Product, whether in whole or in part.
- Product shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any
 applicable laws or regulations.
- The information contained herein is presented only as guidance for Product use. No responsibility is assumed by TOSHIBA for any infringement of patents or any other intellectual property rights of third parties that may result from the use of Product. No license to any intellectual property right is granted by this document, whether express or implied, by estoppel or otherwise.
- ABSENT A WRITTEN SIGNED AGREEMENT, EXCEPT AS PROVIDED IN THE RELEVANT TERMS AND CONDITIONS OF SALE
 FOR PRODUCT, AND TO THE MAXIMUM EXTENT ALLOWABLE BY LAW, TOSHIBA (1) ASSUMES NO LIABILITY
 WHATSOEVER, INCLUDING WITHOUT LIMITATION, INDIRECT, CONSEQUENTIAL, SPECIAL, OR INCIDENTAL DAMAGES OR
 LOSS, INCLUDING WITHOUT LIMITATION, LOSS OF PROFITS, LOSS OF OPPORTUNITIES, BUSINESS INTERRUPTION AND
 LOSS OF DATA, AND (2) DISCLAIMS ANY AND ALL EXPRESS OR IMPLIED WARRANTIES AND CONDITIONS RELATED TO
 SALE, USE OF PRODUCT, OR INFORMATION, INCLUDING WARRANTIES OR CONDITIONS OF MERCHANTABILITY, FITNESS
 FOR A PARTICULAR PURPOSE, ACCURACY OF INFORMATION, OR NONINFRINGEMENT.
- Do not use or otherwise make available Product or related software or technology for any military purposes, including without
 limitation, for the design, development, use, stockpiling or manufacturing of nuclear, chemical, or biological weapons or missile
 technology products (mass destruction weapons). Product and related software and technology may be controlled under the
 applicable export laws and regulations including, without limitation, the Japanese Foreign Exchange and Foreign Trade Law and the
 U.S. Export Administration Regulations. Export and re-export of Product or related software or technology are strictly prohibited
 except in compliance with all applicable export laws and regulations.
- Please contact your TOSHIBA sales representative for details as to environmental matters such as the RoHS compatibility of Product.
 Please use Product in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. TOSHIBA ASSUMES NO LIABILITY FOR DAMAGES OR LOSSES
 OCCURRING AS A RESULT OF NONCOMPLIANCE WITH APPLICABLE LAWS AND REGULATIONS.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Inverters category:

Click to view products by Toshiba manufacturer:

Other Similar products are found below:

5962-8550101CA E5-652Z NL17SGU04P5T5G NLX2G04BMX1TCG 412327H 022413E NL17SG14AMUTCG NLU2G04AMUTCG
NLU2GU04BMX1TCG NLV14049UBDR2G NLV14069UBDTR2G NLV17SZ14DFT2G 74LVC2G17FW4-7 NLU2G04CMX1TCG
NLV17SZ06DFT2G NLV27WZ04DFT2G NLV74HCT14ADTR2G NLX2G14CMUTCG SNJ54ACT14W SNJ54AC04W
NCV1729SN35T1G TC74VHC04FK(EL,K) NLV74HC04ADTR2G NLV17SZ04DFT2G NLU1G04AMUTCG NLX2G04CMUTCG
NLX2G04AMUTCG NLV74ACT00DR2G NLV74AC14DR2G NLV37WZ14USG NLV27WZ04DFT1G NLV14106BDG
NLU1GU04CMUTCG NLU1GT14AMUTCG NLU1G04CMUTCG NL17SZU04P5T5G NL17SG14DFT2G 74LVC06ADTR2G
74LVC04ADR2G TC7SZ04AFS,L3J NLU1GT04AMUTCG NLV37WZ04USG NLX3G14FMUTCG NL17SZ04P5T5G NL17SG14P5T5G
NLV27WZU04DFT2G LV0008G100-4E0FN NXV08V080DB1 74AHC1G04QSE-7 74AHC1G14QSE-7